rust/src/liballoc/rc.rs

666 lines
20 KiB
Rust
Raw Normal View History

2014-06-29 16:33:42 +01:00
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2014-08-04 22:48:39 +12:00
//! Task-local reference-counted boxes (the `Rc` type).
//!
//! The `Rc` type provides shared ownership of an immutable value. Destruction is
//! deterministic, and will occur as soon as the last owner is gone. It is marked
//! as non-sendable because it avoids the overhead of atomic reference counting.
//!
//! The `downgrade` method can be used to create a non-owning `Weak` pointer to the
//! box. A `Weak` pointer can be upgraded to an `Rc` pointer, but will return
//! `None` if the value has already been freed.
//!
//! For example, a tree with parent pointers can be represented by putting the
//! nodes behind strong `Rc` pointers, and then storing the parent pointers as
//! `Weak` pointers.
//!
//! # Examples
//!
//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
//! unique ownership, because more than one gadget may belong to the same
//! `Owner`. `Rc` allows us to share an `Owner` between multiple `Gadget`s, and
//! have the `Owner` kept alive as long as any `Gadget` points at it.
//!
//! ```rust
//! use std::rc::Rc;
//!
//! struct Owner {
//! name: String
//! // ...other fields
//! }
//!
//! struct Gadget {
//! id: int,
//! owner: Rc<Owner>
//! // ...other fields
//! }
//!
//! fn main() {
//! // Create a reference counted Owner.
//! let gadget_owner : Rc<Owner> = Rc::new(
//! Owner { name: String::from_str("Gadget Man") }
//! );
//!
//! // Create Gadgets belonging to gadget_owner. To increment the reference
//! // count we clone the Rc object.
//! let gadget1 = Gadget { id: 1, owner: gadget_owner.clone() };
//! let gadget2 = Gadget { id: 2, owner: gadget_owner.clone() };
//!
//! drop(gadget_owner);
//!
//! // Despite dropping gadget_owner, we're still able to print out the name of
//! // the Owner of the Gadgets. This is because we've only dropped the
//! // reference count object, not the Owner it wraps. As long as there are
//! // other Rc objects pointing at the same Owner, it will stay alive. Notice
//! // that the Rc wrapper around Gadget.owner gets automatically dereferenced
//! // for us.
//! println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
//! println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
//!
//! // At the end of the method, gadget1 and gadget2 get destroyed, and with
//! // them the last counted references to our Owner. Gadget Man now gets
//! // destroyed as well.
//! }
//! ```
//!
//! If our requirements change, and we also need to be able to traverse from
//! Owner → Gadget, we will run into problems: an `Rc` pointer from Owner → Gadget
//! introduces a cycle between the objects. This means that their reference counts
//! can never reach 0, and the objects will stay alive: a memory leak. In order to
//! get around this, we can use `Weak` pointers. These are reference counted
//! pointers that don't keep an object alive if there are no normal `Rc` (or
//! *strong*) pointers left.
//!
//! Rust actually makes it somewhat difficult to produce this loop in the first
//! place: in order to end up with two objects that point at each other, one of
//! them needs to be mutable. This is problematic because `Rc` enforces memory
//! safety by only giving out shared references to the object it wraps, and these
//! don't allow direct mutation. We need to wrap the part of the object we wish to
//! mutate in a `RefCell`, which provides *interior mutability*: a method to
//! achieve mutability through a shared reference. `RefCell` enforces Rust's
//! borrowing rules at runtime. Read the `Cell` documentation for more details on
//! interior mutability.
//!
//! ```rust
//! use std::rc::Rc;
//! use std::rc::Weak;
//! use std::cell::RefCell;
//!
//! struct Owner {
//! name: String,
//! gadgets: RefCell<Vec<Weak<Gadget>>>
//! // ...other fields
//! }
//!
//! struct Gadget {
//! id: int,
//! owner: Rc<Owner>
//! // ...other fields
//! }
//!
//! fn main() {
//! // Create a reference counted Owner. Note the fact that we've put the
//! // Owner's vector of Gadgets inside a RefCell so that we can mutate it
//! // through a shared reference.
//! let gadget_owner : Rc<Owner> = Rc::new(
//! Owner {
//! name: "Gadget Man".to_string(),
//! gadgets: RefCell::new(Vec::new())
//! }
//! );
//!
//! // Create Gadgets belonging to gadget_owner as before.
//! let gadget1 = Rc::new(Gadget{id: 1, owner: gadget_owner.clone()});
//! let gadget2 = Rc::new(Gadget{id: 2, owner: gadget_owner.clone()});
//!
//! // Add the Gadgets to their Owner. To do this we mutably borrow from
//! // the RefCell holding the Owner's Gadgets.
//! gadget_owner.gadgets.borrow_mut().push(gadget1.clone().downgrade());
//! gadget_owner.gadgets.borrow_mut().push(gadget2.clone().downgrade());
//!
//! // Iterate over our Gadgets, printing their details out
//! for gadget_opt in gadget_owner.gadgets.borrow().iter() {
//!
//! // gadget_opt is a Weak<Gadget>. Since weak pointers can't guarantee
//! // that their object is still alive, we need to call upgrade() on them
//! // to turn them into a strong reference. This returns an Option, which
//! // contains a reference to our object if it still exists.
//! let gadget = gadget_opt.upgrade().unwrap();
//! println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
//! }
//!
//! // At the end of the method, gadget_owner, gadget1 and gadget2 get
//! // destroyed. There are now no strong (Rc) references to the gadgets.
//! // Once they get destroyed, the Gadgets get destroyed. This zeroes the
//! // reference count on Gadget Man, so he gets destroyed as well.
//! }
//! ```
#![stable]
use core::cell::Cell;
use core::clone::Clone;
use core::cmp::{PartialEq, PartialOrd, Eq, Ord, Ordering};
2014-06-23 19:09:19 -04:00
use core::default::Default;
use core::fmt;
use core::kinds::marker;
use core::mem::{transmute, min_align_of, size_of, forget};
use core::ops::{Deref, Drop};
use core::option::{Option, Some, None};
use core::ptr;
use core::ptr::RawPtr;
use core::result::{Result, Ok, Err};
use heap::deallocate;
struct RcBox<T> {
value: T,
strong: Cell<uint>,
weak: Cell<uint>
}
2014-08-04 22:48:39 +12:00
/// An immutable reference-counted pointer type.
#[unsafe_no_drop_flag]
#[stable]
pub struct Rc<T> {
// FIXME #12808: strange names to try to avoid interfering with
// field accesses of the contained type via Deref
_ptr: *mut RcBox<T>,
_nosend: marker::NoSend,
_noshare: marker::NoSync
}
#[stable]
impl<T> Rc<T> {
2014-08-04 22:48:39 +12:00
/// Constructs a new reference-counted pointer.
pub fn new(value: T) -> Rc<T> {
unsafe {
Rc {
// there is an implicit weak pointer owned by all the
// strong pointers, which ensures that the weak
// destructor never frees the allocation while the
// strong destructor is running, even if the weak
// pointer is stored inside the strong one.
_ptr: transmute(box RcBox {
value: value,
strong: Cell::new(1),
weak: Cell::new(1)
}),
_nosend: marker::NoSend,
_noshare: marker::NoSync
}
2013-11-16 21:59:42 -08:00
}
}
}
impl<T> Rc<T> {
2014-08-04 22:48:39 +12:00
/// Downgrades the reference-counted pointer to a weak reference.
#[experimental = "Weak pointers may not belong in this module"]
pub fn downgrade(&self) -> Weak<T> {
self.inc_weak();
Weak {
_ptr: self._ptr,
_nosend: marker::NoSend,
_noshare: marker::NoSync
}
}
}
/// Returns true if the `Rc` currently has unique ownership.
///
/// Unique ownership means that there are no other `Rc` or `Weak` values
/// that share the same contents.
#[inline]
#[experimental]
pub fn is_unique<T>(rc: &Rc<T>) -> bool {
// note that we hold both a strong and a weak reference
rc.strong() == 1 && rc.weak() == 1
}
/// Unwraps the contained value if the `Rc` has unique ownership.
///
/// If the `Rc` does not have unique ownership, `Err` is returned with the
/// same `Rc`.
///
2014-08-04 22:48:39 +12:00
/// # Example
///
/// ```
/// use std::rc::{mod, Rc};
/// let x = Rc::new(3u);
/// assert_eq!(rc::try_unwrap(x), Ok(3u));
/// let x = Rc::new(4u);
/// let _y = x.clone();
/// assert_eq!(rc::try_unwrap(x), Err(Rc::new(4u)));
/// ```
#[inline]
#[experimental]
pub fn try_unwrap<T>(rc: Rc<T>) -> Result<T, Rc<T>> {
if is_unique(&rc) {
unsafe {
let val = ptr::read(&*rc); // copy the contained object
// destruct the box and skip our Drop
// we can ignore the refcounts because we know we're unique
deallocate(rc._ptr as *mut u8, size_of::<RcBox<T>>(),
min_align_of::<RcBox<T>>());
forget(rc);
Ok(val)
}
} else {
Err(rc)
}
}
/// Returns a mutable reference to the contained value if the `Rc` has
/// unique ownership.
///
/// Returns `None` if the `Rc` does not have unique ownership.
///
2014-08-04 22:48:39 +12:00
/// # Example
///
/// ```
/// use std::rc::{mod, Rc};
/// let mut x = Rc::new(3u);
/// *rc::get_mut(&mut x).unwrap() = 4u;
/// assert_eq!(*x, 4u);
/// let _y = x.clone();
/// assert!(rc::get_mut(&mut x).is_none());
/// ```
#[inline]
#[experimental]
pub fn get_mut<'a, T>(rc: &'a mut Rc<T>) -> Option<&'a mut T> {
if is_unique(rc) {
let inner = unsafe { &mut *rc._ptr };
Some(&mut inner.value)
} else {
None
}
}
impl<T: Clone> Rc<T> {
/// Acquires a mutable pointer to the inner contents by guaranteeing that
/// the reference count is one (no sharing is possible).
///
/// This is also referred to as a copy-on-write operation because the inner
/// data is cloned if the reference count is greater than one.
#[inline]
#[experimental]
pub fn make_unique(&mut self) -> &mut T {
if !is_unique(self) {
*self = Rc::new((**self).clone())
}
// This unsafety is ok because we're guaranteed that the pointer
// returned is the *only* pointer that will ever be returned to T. Our
// reference count is guaranteed to be 1 at this point, and we required
// the Rc itself to be `mut`, so we're returning the only possible
// reference to the inner data.
let inner = unsafe { &mut *self._ptr };
&mut inner.value
}
}
#[experimental = "Deref is experimental."]
impl<T> Deref<T> for Rc<T> {
2014-08-04 22:48:39 +12:00
/// Borrows the value contained in the reference-counted pointer.
#[inline(always)]
fn deref(&self) -> &T {
&self.inner().value
}
}
#[unsafe_destructor]
#[experimental = "Drop is experimental."]
impl<T> Drop for Rc<T> {
fn drop(&mut self) {
unsafe {
if !self._ptr.is_null() {
self.dec_strong();
if self.strong() == 0 {
ptr::read(&**self); // destroy the contained object
// remove the implicit "strong weak" pointer now
// that we've destroyed the contents.
self.dec_weak();
if self.weak() == 0 {
deallocate(self._ptr as *mut u8, size_of::<RcBox<T>>(),
min_align_of::<RcBox<T>>())
}
}
}
}
}
}
#[unstable = "Clone is unstable."]
impl<T> Clone for Rc<T> {
#[inline]
fn clone(&self) -> Rc<T> {
self.inc_strong();
Rc { _ptr: self._ptr, _nosend: marker::NoSend, _noshare: marker::NoSync }
}
}
#[stable]
2014-06-23 19:09:19 -04:00
impl<T: Default> Default for Rc<T> {
#[inline]
fn default() -> Rc<T> {
Rc::new(Default::default())
}
}
#[unstable = "PartialEq is unstable."]
impl<T: PartialEq> PartialEq for Rc<T> {
#[inline(always)]
fn eq(&self, other: &Rc<T>) -> bool { **self == **other }
#[inline(always)]
fn ne(&self, other: &Rc<T>) -> bool { **self != **other }
}
#[unstable = "Eq is unstable."]
impl<T: Eq> Eq for Rc<T> {}
2014-03-22 16:30:45 -04:00
#[unstable = "PartialOrd is unstable."]
impl<T: PartialOrd> PartialOrd for Rc<T> {
#[inline(always)]
fn partial_cmp(&self, other: &Rc<T>) -> Option<Ordering> {
(**self).partial_cmp(&**other)
}
#[inline(always)]
fn lt(&self, other: &Rc<T>) -> bool { **self < **other }
#[inline(always)]
fn le(&self, other: &Rc<T>) -> bool { **self <= **other }
#[inline(always)]
fn gt(&self, other: &Rc<T>) -> bool { **self > **other }
#[inline(always)]
fn ge(&self, other: &Rc<T>) -> bool { **self >= **other }
}
#[unstable = "Ord is unstable."]
impl<T: Ord> Ord for Rc<T> {
2014-03-22 16:30:45 -04:00
#[inline]
fn cmp(&self, other: &Rc<T>) -> Ordering { (**self).cmp(&**other) }
}
#[experimental = "Show is experimental."]
2014-06-01 23:35:15 -07:00
impl<T: fmt::Show> fmt::Show for Rc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
(**self).fmt(f)
}
}
2014-08-04 22:48:39 +12:00
/// A weak reference to a reference-counted pointer.
#[unsafe_no_drop_flag]
#[experimental = "Weak pointers may not belong in this module."]
pub struct Weak<T> {
// FIXME #12808: strange names to try to avoid interfering with
// field accesses of the contained type via Deref
_ptr: *mut RcBox<T>,
_nosend: marker::NoSend,
_noshare: marker::NoSync
}
#[experimental = "Weak pointers may not belong in this module."]
impl<T> Weak<T> {
2014-08-04 22:48:39 +12:00
/// Upgrades a weak reference to a strong reference.
///
/// Returns `None` if there were no strong references and the data was
/// destroyed.
pub fn upgrade(&self) -> Option<Rc<T>> {
if self.strong() == 0 {
None
} else {
self.inc_strong();
Some(Rc { _ptr: self._ptr, _nosend: marker::NoSend, _noshare: marker::NoSync })
}
}
}
#[unsafe_destructor]
#[experimental = "Weak pointers may not belong in this module."]
impl<T> Drop for Weak<T> {
fn drop(&mut self) {
unsafe {
if !self._ptr.is_null() {
self.dec_weak();
// the weak count starts at 1, and will only go to
// zero if all the strong pointers have disappeared.
if self.weak() == 0 {
deallocate(self._ptr as *mut u8, size_of::<RcBox<T>>(),
min_align_of::<RcBox<T>>())
}
}
}
}
}
#[experimental = "Weak pointers may not belong in this module."]
impl<T> Clone for Weak<T> {
#[inline]
fn clone(&self) -> Weak<T> {
self.inc_weak();
Weak { _ptr: self._ptr, _nosend: marker::NoSend, _noshare: marker::NoSync }
}
}
#[doc(hidden)]
trait RcBoxPtr<T> {
fn inner(&self) -> &RcBox<T>;
#[inline]
fn strong(&self) -> uint { self.inner().strong.get() }
#[inline]
fn inc_strong(&self) { self.inner().strong.set(self.strong() + 1); }
#[inline]
fn dec_strong(&self) { self.inner().strong.set(self.strong() - 1); }
#[inline]
fn weak(&self) -> uint { self.inner().weak.get() }
#[inline]
fn inc_weak(&self) { self.inner().weak.set(self.weak() + 1); }
#[inline]
fn dec_weak(&self) { self.inner().weak.set(self.weak() - 1); }
}
impl<T> RcBoxPtr<T> for Rc<T> {
#[inline(always)]
fn inner(&self) -> &RcBox<T> { unsafe { &(*self._ptr) } }
}
impl<T> RcBoxPtr<T> for Weak<T> {
#[inline(always)]
fn inner(&self) -> &RcBox<T> { unsafe { &(*self._ptr) } }
}
#[cfg(test)]
#[allow(experimental)]
mod tests {
use super::{Rc, Weak};
use std::cell::RefCell;
use std::option::{Option, Some, None};
use std::result::{Err, Ok};
use std::mem::drop;
use std::clone::Clone;
#[test]
fn test_clone() {
let x = Rc::new(RefCell::new(5i));
let y = x.clone();
*x.borrow_mut() = 20;
assert_eq!(*y.borrow(), 20);
}
#[test]
fn test_simple() {
let x = Rc::new(5i);
assert_eq!(*x, 5);
}
#[test]
fn test_simple_clone() {
let x = Rc::new(5i);
let y = x.clone();
assert_eq!(*x, 5);
assert_eq!(*y, 5);
}
#[test]
fn test_destructor() {
let x = Rc::new(box 5i);
assert_eq!(**x, 5);
}
#[test]
fn test_live() {
let x = Rc::new(5i);
let y = x.downgrade();
assert!(y.upgrade().is_some());
}
#[test]
fn test_dead() {
let x = Rc::new(5i);
let y = x.downgrade();
drop(x);
assert!(y.upgrade().is_none());
}
#[test]
fn gc_inside() {
// see issue #11532
2014-05-16 10:15:33 -07:00
use std::gc::GC;
let a = Rc::new(RefCell::new(box(GC) 1i));
assert!(a.try_borrow_mut().is_some());
}
#[test]
fn weak_self_cyclic() {
struct Cycle {
x: RefCell<Option<Weak<Cycle>>>
}
let a = Rc::new(Cycle { x: RefCell::new(None) });
let b = a.clone().downgrade();
*a.x.borrow_mut() = Some(b);
// hopefully we don't double-free (or leak)...
}
#[test]
fn is_unique() {
let x = Rc::new(3u);
assert!(super::is_unique(&x));
let y = x.clone();
assert!(!super::is_unique(&x));
drop(y);
assert!(super::is_unique(&x));
let w = x.downgrade();
assert!(!super::is_unique(&x));
drop(w);
assert!(super::is_unique(&x));
}
#[test]
fn try_unwrap() {
let x = Rc::new(3u);
assert_eq!(super::try_unwrap(x), Ok(3u));
let x = Rc::new(4u);
let _y = x.clone();
assert_eq!(super::try_unwrap(x), Err(Rc::new(4u)));
let x = Rc::new(5u);
let _w = x.downgrade();
assert_eq!(super::try_unwrap(x), Err(Rc::new(5u)));
}
#[test]
fn get_mut() {
let mut x = Rc::new(3u);
*super::get_mut(&mut x).unwrap() = 4u;
assert_eq!(*x, 4u);
let y = x.clone();
assert!(super::get_mut(&mut x).is_none());
drop(y);
assert!(super::get_mut(&mut x).is_some());
let _w = x.downgrade();
assert!(super::get_mut(&mut x).is_none());
}
#[test]
fn test_cowrc_clone_make_unique() {
let mut cow0 = Rc::new(75u);
let mut cow1 = cow0.clone();
let mut cow2 = cow1.clone();
assert!(75 == *cow0.make_unique());
assert!(75 == *cow1.make_unique());
assert!(75 == *cow2.make_unique());
*cow0.make_unique() += 1;
*cow1.make_unique() += 2;
*cow2.make_unique() += 3;
assert!(76 == *cow0);
assert!(77 == *cow1);
assert!(78 == *cow2);
// none should point to the same backing memory
assert!(*cow0 != *cow1);
assert!(*cow0 != *cow2);
assert!(*cow1 != *cow2);
}
#[test]
fn test_cowrc_clone_unique2() {
let mut cow0 = Rc::new(75u);
let cow1 = cow0.clone();
let cow2 = cow1.clone();
assert!(75 == *cow0);
assert!(75 == *cow1);
assert!(75 == *cow2);
*cow0.make_unique() += 1;
assert!(76 == *cow0);
assert!(75 == *cow1);
assert!(75 == *cow2);
// cow1 and cow2 should share the same contents
// cow0 should have a unique reference
assert!(*cow0 != *cow1);
assert!(*cow0 != *cow2);
assert!(*cow1 == *cow2);
}
#[test]
fn test_cowrc_clone_weak() {
let mut cow0 = Rc::new(75u);
let cow1_weak = cow0.downgrade();
assert!(75 == *cow0);
assert!(75 == *cow1_weak.upgrade().unwrap());
*cow0.make_unique() += 1;
assert!(76 == *cow0);
assert!(cow1_weak.upgrade().is_none());
}
}