// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Task-local reference-counted boxes (the `Rc` type). //! //! The `Rc` type provides shared ownership of an immutable value. Destruction is //! deterministic, and will occur as soon as the last owner is gone. It is marked //! as non-sendable because it avoids the overhead of atomic reference counting. //! //! The `downgrade` method can be used to create a non-owning `Weak` pointer to the //! box. A `Weak` pointer can be upgraded to an `Rc` pointer, but will return //! `None` if the value has already been freed. //! //! For example, a tree with parent pointers can be represented by putting the //! nodes behind strong `Rc` pointers, and then storing the parent pointers as //! `Weak` pointers. //! //! # Examples //! //! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`. //! We want to have our `Gadget`s point to their `Owner`. We can't do this with //! unique ownership, because more than one gadget may belong to the same //! `Owner`. `Rc` allows us to share an `Owner` between multiple `Gadget`s, and //! have the `Owner` kept alive as long as any `Gadget` points at it. //! //! ```rust //! use std::rc::Rc; //! //! struct Owner { //! name: String //! // ...other fields //! } //! //! struct Gadget { //! id: int, //! owner: Rc //! // ...other fields //! } //! //! fn main() { //! // Create a reference counted Owner. //! let gadget_owner : Rc = Rc::new( //! Owner { name: String::from_str("Gadget Man") } //! ); //! //! // Create Gadgets belonging to gadget_owner. To increment the reference //! // count we clone the Rc object. //! let gadget1 = Gadget { id: 1, owner: gadget_owner.clone() }; //! let gadget2 = Gadget { id: 2, owner: gadget_owner.clone() }; //! //! drop(gadget_owner); //! //! // Despite dropping gadget_owner, we're still able to print out the name of //! // the Owner of the Gadgets. This is because we've only dropped the //! // reference count object, not the Owner it wraps. As long as there are //! // other Rc objects pointing at the same Owner, it will stay alive. Notice //! // that the Rc wrapper around Gadget.owner gets automatically dereferenced //! // for us. //! println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name); //! println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name); //! //! // At the end of the method, gadget1 and gadget2 get destroyed, and with //! // them the last counted references to our Owner. Gadget Man now gets //! // destroyed as well. //! } //! ``` //! //! If our requirements change, and we also need to be able to traverse from //! Owner → Gadget, we will run into problems: an `Rc` pointer from Owner → Gadget //! introduces a cycle between the objects. This means that their reference counts //! can never reach 0, and the objects will stay alive: a memory leak. In order to //! get around this, we can use `Weak` pointers. These are reference counted //! pointers that don't keep an object alive if there are no normal `Rc` (or //! *strong*) pointers left. //! //! Rust actually makes it somewhat difficult to produce this loop in the first //! place: in order to end up with two objects that point at each other, one of //! them needs to be mutable. This is problematic because `Rc` enforces memory //! safety by only giving out shared references to the object it wraps, and these //! don't allow direct mutation. We need to wrap the part of the object we wish to //! mutate in a `RefCell`, which provides *interior mutability*: a method to //! achieve mutability through a shared reference. `RefCell` enforces Rust's //! borrowing rules at runtime. Read the `Cell` documentation for more details on //! interior mutability. //! //! ```rust //! use std::rc::Rc; //! use std::rc::Weak; //! use std::cell::RefCell; //! //! struct Owner { //! name: String, //! gadgets: RefCell>> //! // ...other fields //! } //! //! struct Gadget { //! id: int, //! owner: Rc //! // ...other fields //! } //! //! fn main() { //! // Create a reference counted Owner. Note the fact that we've put the //! // Owner's vector of Gadgets inside a RefCell so that we can mutate it //! // through a shared reference. //! let gadget_owner : Rc = Rc::new( //! Owner { //! name: "Gadget Man".to_string(), //! gadgets: RefCell::new(Vec::new()) //! } //! ); //! //! // Create Gadgets belonging to gadget_owner as before. //! let gadget1 = Rc::new(Gadget{id: 1, owner: gadget_owner.clone()}); //! let gadget2 = Rc::new(Gadget{id: 2, owner: gadget_owner.clone()}); //! //! // Add the Gadgets to their Owner. To do this we mutably borrow from //! // the RefCell holding the Owner's Gadgets. //! gadget_owner.gadgets.borrow_mut().push(gadget1.clone().downgrade()); //! gadget_owner.gadgets.borrow_mut().push(gadget2.clone().downgrade()); //! //! // Iterate over our Gadgets, printing their details out //! for gadget_opt in gadget_owner.gadgets.borrow().iter() { //! //! // gadget_opt is a Weak. Since weak pointers can't guarantee //! // that their object is still alive, we need to call upgrade() on them //! // to turn them into a strong reference. This returns an Option, which //! // contains a reference to our object if it still exists. //! let gadget = gadget_opt.upgrade().unwrap(); //! println!("Gadget {} owned by {}", gadget.id, gadget.owner.name); //! } //! //! // At the end of the method, gadget_owner, gadget1 and gadget2 get //! // destroyed. There are now no strong (Rc) references to the gadgets. //! // Once they get destroyed, the Gadgets get destroyed. This zeroes the //! // reference count on Gadget Man, so he gets destroyed as well. //! } //! ``` #![stable] use core::cell::Cell; use core::clone::Clone; use core::cmp::{PartialEq, PartialOrd, Eq, Ord, Ordering}; use core::default::Default; use core::fmt; use core::kinds::marker; use core::mem::{transmute, min_align_of, size_of, forget}; use core::ops::{Deref, Drop}; use core::option::{Option, Some, None}; use core::ptr; use core::ptr::RawPtr; use core::result::{Result, Ok, Err}; use heap::deallocate; struct RcBox { value: T, strong: Cell, weak: Cell } /// An immutable reference-counted pointer type. #[unsafe_no_drop_flag] #[stable] pub struct Rc { // FIXME #12808: strange names to try to avoid interfering with // field accesses of the contained type via Deref _ptr: *mut RcBox, _nosend: marker::NoSend, _noshare: marker::NoSync } #[stable] impl Rc { /// Constructs a new reference-counted pointer. pub fn new(value: T) -> Rc { unsafe { Rc { // there is an implicit weak pointer owned by all the // strong pointers, which ensures that the weak // destructor never frees the allocation while the // strong destructor is running, even if the weak // pointer is stored inside the strong one. _ptr: transmute(box RcBox { value: value, strong: Cell::new(1), weak: Cell::new(1) }), _nosend: marker::NoSend, _noshare: marker::NoSync } } } } impl Rc { /// Downgrades the reference-counted pointer to a weak reference. #[experimental = "Weak pointers may not belong in this module"] pub fn downgrade(&self) -> Weak { self.inc_weak(); Weak { _ptr: self._ptr, _nosend: marker::NoSend, _noshare: marker::NoSync } } } /// Returns true if the `Rc` currently has unique ownership. /// /// Unique ownership means that there are no other `Rc` or `Weak` values /// that share the same contents. #[inline] #[experimental] pub fn is_unique(rc: &Rc) -> bool { // note that we hold both a strong and a weak reference rc.strong() == 1 && rc.weak() == 1 } /// Unwraps the contained value if the `Rc` has unique ownership. /// /// If the `Rc` does not have unique ownership, `Err` is returned with the /// same `Rc`. /// /// # Example /// /// ``` /// use std::rc::{mod, Rc}; /// let x = Rc::new(3u); /// assert_eq!(rc::try_unwrap(x), Ok(3u)); /// let x = Rc::new(4u); /// let _y = x.clone(); /// assert_eq!(rc::try_unwrap(x), Err(Rc::new(4u))); /// ``` #[inline] #[experimental] pub fn try_unwrap(rc: Rc) -> Result> { if is_unique(&rc) { unsafe { let val = ptr::read(&*rc); // copy the contained object // destruct the box and skip our Drop // we can ignore the refcounts because we know we're unique deallocate(rc._ptr as *mut u8, size_of::>(), min_align_of::>()); forget(rc); Ok(val) } } else { Err(rc) } } /// Returns a mutable reference to the contained value if the `Rc` has /// unique ownership. /// /// Returns `None` if the `Rc` does not have unique ownership. /// /// # Example /// /// ``` /// use std::rc::{mod, Rc}; /// let mut x = Rc::new(3u); /// *rc::get_mut(&mut x).unwrap() = 4u; /// assert_eq!(*x, 4u); /// let _y = x.clone(); /// assert!(rc::get_mut(&mut x).is_none()); /// ``` #[inline] #[experimental] pub fn get_mut<'a, T>(rc: &'a mut Rc) -> Option<&'a mut T> { if is_unique(rc) { let inner = unsafe { &mut *rc._ptr }; Some(&mut inner.value) } else { None } } impl Rc { /// Acquires a mutable pointer to the inner contents by guaranteeing that /// the reference count is one (no sharing is possible). /// /// This is also referred to as a copy-on-write operation because the inner /// data is cloned if the reference count is greater than one. #[inline] #[experimental] pub fn make_unique(&mut self) -> &mut T { if !is_unique(self) { *self = Rc::new((**self).clone()) } // This unsafety is ok because we're guaranteed that the pointer // returned is the *only* pointer that will ever be returned to T. Our // reference count is guaranteed to be 1 at this point, and we required // the Rc itself to be `mut`, so we're returning the only possible // reference to the inner data. let inner = unsafe { &mut *self._ptr }; &mut inner.value } } #[experimental = "Deref is experimental."] impl Deref for Rc { /// Borrows the value contained in the reference-counted pointer. #[inline(always)] fn deref(&self) -> &T { &self.inner().value } } #[unsafe_destructor] #[experimental = "Drop is experimental."] impl Drop for Rc { fn drop(&mut self) { unsafe { if !self._ptr.is_null() { self.dec_strong(); if self.strong() == 0 { ptr::read(&**self); // destroy the contained object // remove the implicit "strong weak" pointer now // that we've destroyed the contents. self.dec_weak(); if self.weak() == 0 { deallocate(self._ptr as *mut u8, size_of::>(), min_align_of::>()) } } } } } } #[unstable = "Clone is unstable."] impl Clone for Rc { #[inline] fn clone(&self) -> Rc { self.inc_strong(); Rc { _ptr: self._ptr, _nosend: marker::NoSend, _noshare: marker::NoSync } } } #[stable] impl Default for Rc { #[inline] fn default() -> Rc { Rc::new(Default::default()) } } #[unstable = "PartialEq is unstable."] impl PartialEq for Rc { #[inline(always)] fn eq(&self, other: &Rc) -> bool { **self == **other } #[inline(always)] fn ne(&self, other: &Rc) -> bool { **self != **other } } #[unstable = "Eq is unstable."] impl Eq for Rc {} #[unstable = "PartialOrd is unstable."] impl PartialOrd for Rc { #[inline(always)] fn partial_cmp(&self, other: &Rc) -> Option { (**self).partial_cmp(&**other) } #[inline(always)] fn lt(&self, other: &Rc) -> bool { **self < **other } #[inline(always)] fn le(&self, other: &Rc) -> bool { **self <= **other } #[inline(always)] fn gt(&self, other: &Rc) -> bool { **self > **other } #[inline(always)] fn ge(&self, other: &Rc) -> bool { **self >= **other } } #[unstable = "Ord is unstable."] impl Ord for Rc { #[inline] fn cmp(&self, other: &Rc) -> Ordering { (**self).cmp(&**other) } } #[experimental = "Show is experimental."] impl fmt::Show for Rc { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (**self).fmt(f) } } /// A weak reference to a reference-counted pointer. #[unsafe_no_drop_flag] #[experimental = "Weak pointers may not belong in this module."] pub struct Weak { // FIXME #12808: strange names to try to avoid interfering with // field accesses of the contained type via Deref _ptr: *mut RcBox, _nosend: marker::NoSend, _noshare: marker::NoSync } #[experimental = "Weak pointers may not belong in this module."] impl Weak { /// Upgrades a weak reference to a strong reference. /// /// Returns `None` if there were no strong references and the data was /// destroyed. pub fn upgrade(&self) -> Option> { if self.strong() == 0 { None } else { self.inc_strong(); Some(Rc { _ptr: self._ptr, _nosend: marker::NoSend, _noshare: marker::NoSync }) } } } #[unsafe_destructor] #[experimental = "Weak pointers may not belong in this module."] impl Drop for Weak { fn drop(&mut self) { unsafe { if !self._ptr.is_null() { self.dec_weak(); // the weak count starts at 1, and will only go to // zero if all the strong pointers have disappeared. if self.weak() == 0 { deallocate(self._ptr as *mut u8, size_of::>(), min_align_of::>()) } } } } } #[experimental = "Weak pointers may not belong in this module."] impl Clone for Weak { #[inline] fn clone(&self) -> Weak { self.inc_weak(); Weak { _ptr: self._ptr, _nosend: marker::NoSend, _noshare: marker::NoSync } } } #[doc(hidden)] trait RcBoxPtr { fn inner(&self) -> &RcBox; #[inline] fn strong(&self) -> uint { self.inner().strong.get() } #[inline] fn inc_strong(&self) { self.inner().strong.set(self.strong() + 1); } #[inline] fn dec_strong(&self) { self.inner().strong.set(self.strong() - 1); } #[inline] fn weak(&self) -> uint { self.inner().weak.get() } #[inline] fn inc_weak(&self) { self.inner().weak.set(self.weak() + 1); } #[inline] fn dec_weak(&self) { self.inner().weak.set(self.weak() - 1); } } impl RcBoxPtr for Rc { #[inline(always)] fn inner(&self) -> &RcBox { unsafe { &(*self._ptr) } } } impl RcBoxPtr for Weak { #[inline(always)] fn inner(&self) -> &RcBox { unsafe { &(*self._ptr) } } } #[cfg(test)] #[allow(experimental)] mod tests { use super::{Rc, Weak}; use std::cell::RefCell; use std::option::{Option, Some, None}; use std::result::{Err, Ok}; use std::mem::drop; use std::clone::Clone; #[test] fn test_clone() { let x = Rc::new(RefCell::new(5i)); let y = x.clone(); *x.borrow_mut() = 20; assert_eq!(*y.borrow(), 20); } #[test] fn test_simple() { let x = Rc::new(5i); assert_eq!(*x, 5); } #[test] fn test_simple_clone() { let x = Rc::new(5i); let y = x.clone(); assert_eq!(*x, 5); assert_eq!(*y, 5); } #[test] fn test_destructor() { let x = Rc::new(box 5i); assert_eq!(**x, 5); } #[test] fn test_live() { let x = Rc::new(5i); let y = x.downgrade(); assert!(y.upgrade().is_some()); } #[test] fn test_dead() { let x = Rc::new(5i); let y = x.downgrade(); drop(x); assert!(y.upgrade().is_none()); } #[test] fn gc_inside() { // see issue #11532 use std::gc::GC; let a = Rc::new(RefCell::new(box(GC) 1i)); assert!(a.try_borrow_mut().is_some()); } #[test] fn weak_self_cyclic() { struct Cycle { x: RefCell>> } let a = Rc::new(Cycle { x: RefCell::new(None) }); let b = a.clone().downgrade(); *a.x.borrow_mut() = Some(b); // hopefully we don't double-free (or leak)... } #[test] fn is_unique() { let x = Rc::new(3u); assert!(super::is_unique(&x)); let y = x.clone(); assert!(!super::is_unique(&x)); drop(y); assert!(super::is_unique(&x)); let w = x.downgrade(); assert!(!super::is_unique(&x)); drop(w); assert!(super::is_unique(&x)); } #[test] fn try_unwrap() { let x = Rc::new(3u); assert_eq!(super::try_unwrap(x), Ok(3u)); let x = Rc::new(4u); let _y = x.clone(); assert_eq!(super::try_unwrap(x), Err(Rc::new(4u))); let x = Rc::new(5u); let _w = x.downgrade(); assert_eq!(super::try_unwrap(x), Err(Rc::new(5u))); } #[test] fn get_mut() { let mut x = Rc::new(3u); *super::get_mut(&mut x).unwrap() = 4u; assert_eq!(*x, 4u); let y = x.clone(); assert!(super::get_mut(&mut x).is_none()); drop(y); assert!(super::get_mut(&mut x).is_some()); let _w = x.downgrade(); assert!(super::get_mut(&mut x).is_none()); } #[test] fn test_cowrc_clone_make_unique() { let mut cow0 = Rc::new(75u); let mut cow1 = cow0.clone(); let mut cow2 = cow1.clone(); assert!(75 == *cow0.make_unique()); assert!(75 == *cow1.make_unique()); assert!(75 == *cow2.make_unique()); *cow0.make_unique() += 1; *cow1.make_unique() += 2; *cow2.make_unique() += 3; assert!(76 == *cow0); assert!(77 == *cow1); assert!(78 == *cow2); // none should point to the same backing memory assert!(*cow0 != *cow1); assert!(*cow0 != *cow2); assert!(*cow1 != *cow2); } #[test] fn test_cowrc_clone_unique2() { let mut cow0 = Rc::new(75u); let cow1 = cow0.clone(); let cow2 = cow1.clone(); assert!(75 == *cow0); assert!(75 == *cow1); assert!(75 == *cow2); *cow0.make_unique() += 1; assert!(76 == *cow0); assert!(75 == *cow1); assert!(75 == *cow2); // cow1 and cow2 should share the same contents // cow0 should have a unique reference assert!(*cow0 != *cow1); assert!(*cow0 != *cow2); assert!(*cow1 == *cow2); } #[test] fn test_cowrc_clone_weak() { let mut cow0 = Rc::new(75u); let cow1_weak = cow0.downgrade(); assert!(75 == *cow0); assert!(75 == *cow1_weak.upgrade().unwrap()); *cow0.make_unique() += 1; assert!(76 == *cow0); assert!(cow1_weak.upgrade().is_none()); } }