rust/src/libstd/task/mod.rs

1481 lines
41 KiB
Rust
Raw Normal View History

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2012-11-28 16:20:41 -08:00
/*!
* Task management.
*
* An executing Rust program consists of a tree of tasks, each with their own
* stack, and sole ownership of their allocated heap data. Tasks communicate
2013-09-27 23:22:16 +02:00
* with each other using ports and channels (see std::rt::comm for more info
* about how communication works).
2012-11-28 16:20:41 -08:00
*
2013-09-27 23:22:16 +02:00
* Tasks can be spawned in 3 different modes.
2012-11-28 16:20:41 -08:00
*
2013-09-27 23:22:16 +02:00
* * Bidirectionally linked: This is the default mode and it's what ```spawn``` does.
* Failures will be propagated from parent to child and vice versa.
*
* * Unidirectionally linked (parent->child): This type of task can be created with
* ```spawn_supervised```. In this case, failures are propagated from parent to child
* but not the other way around.
*
* * Unlinked: Tasks can be completely unlinked. These tasks can be created by using
* ```spawn_unlinked```. In this case failures are not propagated at all.
*
* Tasks' failure modes can be further configured. For instance, parent tasks can (un)watch
* children failures. Please, refer to TaskBuilder's documentation bellow for more information.
*
* When a (bi|uni)directionally linked task fails, its failure will be propagated to all tasks
* linked to it, this will cause such tasks to fail by a `linked failure`.
*
* Task Scheduling:
*
* By default, every task is created in the same scheduler as its parent, where it
* is scheduled cooperatively with all other tasks in that scheduler. Some specialized
* applications may want more control over their scheduling, in which case they can be
* spawned into a new scheduler with the specific properties required. See TaskBuilder's
* documentation bellow for more information.
2012-11-28 16:20:41 -08:00
*
* # Example
*
* ```
2012-11-28 16:20:41 -08:00
* do spawn {
* log(error, "Hello, World!");
* }
* ```
2012-11-28 16:20:41 -08:00
*/
2012-11-18 17:56:50 -08:00
#[allow(missing_doc)];
use prelude::*;
use cell::Cell;
use comm::{stream, Chan, GenericChan, GenericPort, Port, Peekable};
use result::{Result, Ok, Err};
2013-07-31 23:12:20 -07:00
use rt::in_green_task_context;
use rt::local::Local;
use rt::task::{UnwindReasonAny, UnwindReasonLinked, UnwindReasonStr};
use rt::task::{UnwindResult, Success, Failure};
use send_str::{SendStr, IntoSendStr};
use unstable::finally::Finally;
use util;
2012-11-18 17:56:50 -08:00
#[cfg(test)] use any::Any;
#[cfg(test)] use cast;
2013-03-26 16:38:07 -04:00
#[cfg(test)] use comm::SharedChan;
#[cfg(test)] use comm;
#[cfg(test)] use ptr;
#[cfg(test)] use result;
#[cfg(test)] use task;
2013-03-26 16:38:07 -04:00
2012-11-18 17:56:50 -08:00
pub mod spawn;
2012-11-28 16:20:41 -08:00
/// Indicates the manner in which a task exited.
///
/// A task that completes without failing is considered to exit successfully.
/// Supervised ancestors and linked siblings may yet fail after this task
/// succeeds. Also note that in such a case, it may be nondeterministic whether
/// linked failure or successful exit happen first.
///
/// If you wish for this result's delivery to block until all linked and/or
/// children tasks complete, recommend using a result future.
pub type TaskResult = Result<(), ~Any>;
pub struct LinkedFailure;
#[inline]
fn wrap_as_any(res: UnwindResult) -> TaskResult {
match res {
Success => Ok(()),
Failure(UnwindReasonStr(s)) => Err(~s as ~Any),
Failure(UnwindReasonAny(a)) => Err(a),
Failure(UnwindReasonLinked) => Err(~LinkedFailure as ~Any)
}
}
pub struct TaskResultPort {
priv port: Port<UnwindResult>
}
impl GenericPort<TaskResult> for TaskResultPort {
#[inline]
fn recv(&self) -> TaskResult {
wrap_as_any(self.port.recv())
}
#[inline]
fn try_recv(&self) -> Option<TaskResult> {
self.port.try_recv().map(wrap_as_any)
}
}
impl Peekable<TaskResult> for TaskResultPort {
#[inline]
fn peek(&self) -> bool { self.port.peek() }
2012-11-28 16:20:41 -08:00
}
/// Scheduler modes
#[deriving(Eq)]
2012-11-28 16:20:41 -08:00
pub enum SchedMode {
/// Run task on the default scheduler
DefaultScheduler,
2012-11-28 16:20:41 -08:00
/// All tasks run in the same OS thread
SingleThreaded,
}
/**
* Scheduler configuration options
*
* # Fields
*
* * sched_mode - The operating mode of the scheduler
*
*/
pub struct SchedOpts {
priv mode: SchedMode,
}
2012-11-28 16:20:41 -08:00
/**
* Task configuration options
*
* # Fields
*
* * linked - Propagate failure bidirectionally between child and parent.
* True by default. If both this and 'supervised' are false, then
* either task's failure will not affect the other ("unlinked").
*
* * supervised - Propagate failure unidirectionally from parent to child,
* but not from child to parent. False by default.
*
* * watched - Make parent task collect exit status notifications from child
* before reporting its own exit status. (This delays the parent
* task's death and cleanup until after all transitively watched
* children also exit.) True by default.
*
* * indestructible - Configures the task to ignore kill signals received from
* linked failure. This may cause process hangs during
* failure if not used carefully, but causes task blocking
* code paths (e.g. port recv() calls) to be faster by 2
* atomic operations. False by default.
*
2012-11-28 16:20:41 -08:00
* * notify_chan - Enable lifecycle notifications on the given channel
*
2013-07-30 19:20:59 -04:00
* * name - A name for the task-to-be, for identification in failure messages.
*
2012-11-28 16:20:41 -08:00
* * sched - Specify the configuration of a new scheduler to create the task
2013-09-27 23:22:16 +02:00
* in. This is of particular importance for libraries which want to call
* into foreign code that blocks. Without doing so in a different
* scheduler other tasks will be impeded or even blocked indefinitely.
2012-11-28 16:20:41 -08:00
*/
pub struct TaskOpts {
priv linked: bool,
priv supervised: bool,
priv watched: bool,
priv indestructible: bool,
priv notify_chan: Option<Chan<UnwindResult>>,
name: Option<SendStr>,
sched: SchedOpts,
stack_size: Option<uint>
}
2012-11-28 16:20:41 -08:00
/**
* The task builder type.
*
* Provides detailed control over the properties and behavior of new tasks.
*/
// NB: Builders are designed to be single-use because they do stateful
// things that get weird when reusing - e.g. if you create a result future
// it only applies to a single task, so then you have to maintain Some
// potentially tricky state to ensure that everything behaves correctly
// when you try to reuse the builder to spawn a new task. We'll just
// sidestep that whole issue by making builders uncopyable and making
// the run function move them in.
// FIXME (#3724): Replace the 'consumed' bit with move mode on self
pub struct TaskBuilder {
2012-11-28 16:20:41 -08:00
opts: TaskOpts,
priv gen_body: Option<~fn(v: ~fn()) -> ~fn()>,
priv can_not_copy: Option<util::NonCopyable>,
priv consumed: bool,
}
2012-11-28 16:20:41 -08:00
/**
* Generate the base configuration for spawning a task, off of which more
* configuration methods can be chained.
* For example, task().unlinked().spawn is equivalent to spawn_unlinked.
*/
pub fn task() -> TaskBuilder {
TaskBuilder {
2012-11-28 16:20:41 -08:00
opts: default_task_opts(),
gen_body: None,
2012-11-28 16:20:41 -08:00
can_not_copy: None,
consumed: false,
}
2012-11-28 16:20:41 -08:00
}
impl TaskBuilder {
fn consume(&mut self) -> TaskBuilder {
2012-11-28 16:20:41 -08:00
if self.consumed {
fail!("Cannot copy a task_builder"); // Fake move mode on self
2012-11-28 16:20:41 -08:00
}
self.consumed = true;
let gen_body = self.gen_body.take();
let notify_chan = self.opts.notify_chan.take();
2013-07-30 19:20:59 -04:00
let name = self.opts.name.take();
TaskBuilder {
opts: TaskOpts {
2012-11-28 16:20:41 -08:00
linked: self.opts.linked,
supervised: self.opts.supervised,
watched: self.opts.watched,
indestructible: self.opts.indestructible,
notify_chan: notify_chan,
2013-07-30 19:20:59 -04:00
name: name,
sched: self.opts.sched,
stack_size: self.opts.stack_size
2012-11-28 16:20:41 -08:00
},
gen_body: gen_body,
2012-11-28 16:20:41 -08:00
can_not_copy: None,
consumed: false
}
2012-11-28 16:20:41 -08:00
}
/// Decouple the child task's failure from the parent's. If either fails,
/// the other will not be killed.
pub fn unlinked(&mut self) {
self.opts.linked = false;
self.opts.watched = false;
2012-11-28 16:20:41 -08:00
}
/// Unidirectionally link the child task's failure with the parent's. The
/// child's failure will not kill the parent, but the parent's will kill
/// the child.
pub fn supervised(&mut self) {
self.opts.supervised = true;
2013-05-06 19:29:04 -07:00
self.opts.linked = false;
self.opts.watched = false;
2012-11-28 16:20:41 -08:00
}
/// Link the child task's and parent task's failures. If either fails, the
/// other will be killed.
pub fn linked(&mut self) {
self.opts.linked = true;
2013-05-06 19:29:04 -07:00
self.opts.supervised = false;
self.opts.watched = true;
}
/// Cause the parent task to collect the child's exit status (and that of
/// all transitively-watched grandchildren) before reporting its own.
pub fn watched(&mut self) {
self.opts.watched = true;
}
/// Allow the child task to outlive the parent task, at the possible cost
/// of the parent reporting success even if the child task fails later.
pub fn unwatched(&mut self) {
self.opts.watched = false;
}
/// Cause the child task to ignore any kill signals received from linked
/// failure. This optimizes context switching, at the possible expense of
/// process hangs in the case of unexpected failure.
pub fn indestructible(&mut self) {
self.opts.indestructible = true;
2012-11-28 16:20:41 -08:00
}
/// Get a future representing the exit status of the task.
///
/// Taking the value of the future will block until the child task
/// terminates. The future result return value will be created *before* the task is
/// spawned; as such, do not invoke .get() on it directly;
/// rather, store it in an outer variable/list for later use.
///
/// Note that the future returned by this function is only useful for
/// obtaining the value of the next task to be spawning with the
/// builder. If additional tasks are spawned with the same builder
/// then a new result future must be obtained prior to spawning each
/// task.
///
/// # Failure
/// Fails if a future_result was already set for this task.
pub fn future_result(&mut self) -> TaskResultPort {
2012-11-28 16:20:41 -08:00
// FIXME (#3725): Once linked failure and notification are
// handled in the library, I can imagine implementing this by just
// registering an arbitrary number of task::on_exit handlers and
// sending out messages.
if self.opts.notify_chan.is_some() {
fail!("Can't set multiple future_results for one task!");
2012-11-28 16:20:41 -08:00
}
// Construct the future and give it to the caller.
let (notify_pipe_po, notify_pipe_ch) = stream::<UnwindResult>();
2012-11-28 16:20:41 -08:00
// Reconfigure self to use a notify channel.
self.opts.notify_chan = Some(notify_pipe_ch);
TaskResultPort { port: notify_pipe_po }
2012-11-28 16:20:41 -08:00
}
2013-07-30 19:20:59 -04:00
/// Name the task-to-be. Currently the name is used for identification
/// only in failure messages.
pub fn name<S: IntoSendStr>(&mut self, name: S) {
self.opts.name = Some(name.into_send_str());
2013-07-30 19:20:59 -04:00
}
2012-11-28 16:20:41 -08:00
/// Configure a custom scheduler mode for the task.
pub fn sched_mode(&mut self, mode: SchedMode) {
self.opts.sched.mode = mode;
2012-11-28 16:20:41 -08:00
}
/**
* Add a wrapper to the body of the spawned task.
*
* Before the task is spawned it is passed through a 'body generator'
* function that may perform local setup operations as well as wrap
* the task body in remote setup operations. With this the behavior
* of tasks can be extended in simple ways.
*
* This function augments the current body generator with a new body
* generator by applying the task body which results from the
* existing body generator to the new body generator.
*/
pub fn add_wrapper(&mut self, wrapper: ~fn(v: ~fn()) -> ~fn()) {
let prev_gen_body = self.gen_body.take();
let prev_gen_body = match prev_gen_body {
Some(gen) => gen,
None => {
let f: ~fn(~fn()) -> ~fn() = |body| body;
f
}
};
let prev_gen_body = Cell::new(prev_gen_body);
let next_gen_body = {
let f: ~fn(~fn()) -> ~fn() = |body| {
let prev_gen_body = prev_gen_body.take();
wrapper(prev_gen_body(body))
};
f
};
self.gen_body = Some(next_gen_body);
2012-11-28 16:20:41 -08:00
}
/**
* Creates and executes a new child task
*
* Sets up a new task with its own call stack and schedules it to run
* the provided unique closure. The task has the properties and behavior
* specified by the task_builder.
*
* # Failure
*
* When spawning into a new scheduler, the number of threads requested
* must be greater than zero.
*/
pub fn spawn(&mut self, f: ~fn()) {
let gen_body = self.gen_body.take();
let notify_chan = self.opts.notify_chan.take();
2013-07-30 19:20:59 -04:00
let name = self.opts.name.take();
2012-11-28 16:20:41 -08:00
let x = self.consume();
let opts = TaskOpts {
2012-11-28 16:20:41 -08:00
linked: x.opts.linked,
supervised: x.opts.supervised,
watched: x.opts.watched,
indestructible: x.opts.indestructible,
notify_chan: notify_chan,
2013-07-30 19:20:59 -04:00
name: name,
sched: x.opts.sched,
stack_size: x.opts.stack_size
2012-11-28 16:20:41 -08:00
};
let f = match gen_body {
Some(gen) => {
gen(f)
}
None => {
f
}
};
spawn::spawn_raw(opts, f);
2012-11-28 16:20:41 -08:00
}
/// Runs a task, while transferring ownership of one argument to the child.
pub fn spawn_with<A:Send>(&mut self, arg: A, f: ~fn(v: A)) {
let arg = Cell::new(arg);
do self.spawn {
f(arg.take());
2012-11-28 16:20:41 -08:00
}
}
/**
* Execute a function in another task and return either the return value
* of the function or result::err.
*
* # Return value
*
* If the function executed successfully then try returns result::ok
* containing the value returned by the function. If the function fails
* then try returns result::err containing nil.
*
* # Failure
* Fails if a future_result was already set for this task.
*/
pub fn try<T:Send>(&mut self, f: ~fn() -> T) -> Result<T, ~Any> {
2013-01-22 12:38:08 -08:00
let (po, ch) = stream::<T>();
2012-11-28 16:20:41 -08:00
let result = self.future_result();
do self.spawn {
2013-01-22 12:38:08 -08:00
ch.send(f());
2012-11-28 16:20:41 -08:00
}
match result.recv() {
Ok(()) => Ok(po.recv()),
Err(cause) => Err(cause)
2012-11-28 16:20:41 -08:00
}
}
}
/* Task construction */
pub fn default_task_opts() -> TaskOpts {
/*!
* The default task options
*
* By default all tasks are supervised by their parent, are spawned
* into the same scheduler, and do not post lifecycle notifications.
*/
TaskOpts {
2012-11-28 16:20:41 -08:00
linked: true,
supervised: false,
watched: true,
indestructible: false,
notify_chan: None,
2013-07-30 19:20:59 -04:00
name: None,
sched: SchedOpts {
mode: DefaultScheduler,
},
stack_size: None
2012-11-28 16:20:41 -08:00
}
}
/* Spawn convenience functions */
/// Creates and executes a new child task
///
/// Sets up a new task with its own call stack and schedules it to run
/// the provided unique closure.
///
/// This function is equivalent to `task().spawn(f)`.
pub fn spawn(f: ~fn()) {
let mut task = task();
task.spawn(f)
2012-11-28 16:20:41 -08:00
}
/// Creates a child task unlinked from the current one. If either this
/// task or the child task fails, the other will not be killed.
pub fn spawn_unlinked(f: ~fn()) {
let mut task = task();
task.unlinked();
task.spawn(f)
2012-11-28 16:20:41 -08:00
}
pub fn spawn_supervised(f: ~fn()) {
2012-11-28 16:20:41 -08:00
/*!
* Creates a child task supervised by the current one. If the child
* task fails, the parent will not be killed, but if the parent fails,
* the child will be killed.
2012-11-28 16:20:41 -08:00
*/
let mut task = task();
task.supervised();
task.spawn(f)
2012-11-28 16:20:41 -08:00
}
/// Creates a child task that cannot be killed by linked failure. This causes
/// its context-switch path to be faster by 2 atomic swap operations.
/// (Note that this convenience wrapper still uses linked-failure, so the
/// child's children will still be killable by the parent. For the fastest
/// possible spawn mode, use task::task().unlinked().indestructible().spawn.)
pub fn spawn_indestructible(f: ~fn()) {
let mut task = task();
task.indestructible();
task.spawn(f)
}
pub fn spawn_with<A:Send>(arg: A, f: ~fn(v: A)) {
2012-11-28 16:20:41 -08:00
/*!
* Runs a task, while transferring ownership of one argument to the
2012-11-28 16:20:41 -08:00
* child.
*
* This is useful for transferring ownership of noncopyables to
2012-11-28 16:20:41 -08:00
* another task.
*
* This function is equivalent to `task().spawn_with(arg, f)`.
*/
let mut task = task();
task.spawn_with(arg, f)
2012-11-28 16:20:41 -08:00
}
pub fn spawn_sched(mode: SchedMode, f: ~fn()) {
2012-11-28 16:20:41 -08:00
/*!
* Creates a new task on a new or existing scheduler.
*
* When there are no more tasks to execute the
2012-11-28 16:20:41 -08:00
* scheduler terminates.
*
* # Failure
*
* In manual threads mode the number of threads requested must be
* greater than zero.
*/
let mut task = task();
task.sched_mode(mode);
task.spawn(f)
2012-11-28 16:20:41 -08:00
}
pub fn try<T:Send>(f: ~fn() -> T) -> Result<T, ~Any> {
2012-11-28 16:20:41 -08:00
/*!
* Execute a function in another task and return either the return value
* of the function or result::err.
*
* This is equivalent to task().supervised().try.
*/
let mut task = task();
task.supervised();
task.try(f)
2012-11-28 16:20:41 -08:00
}
/* Lifecycle functions */
2013-07-30 19:20:59 -04:00
/// Read the name of the current task.
pub fn with_task_name<U>(blk: &fn(Option<&str>) -> U) -> U {
use rt::task::Task;
if in_green_task_context() {
do Local::borrow |task: &mut Task| {
2013-07-30 19:20:59 -04:00
match task.name {
Some(ref name) => blk(Some(name.as_slice())),
None => blk(None)
}
}
} else {
fail!("no task name exists in non-green task context")
2013-07-30 19:20:59 -04:00
}
}
pub fn deschedule() {
2012-11-28 16:20:41 -08:00
//! Yield control to the task scheduler
use rt::local::Local;
use rt::sched::Scheduler;
2013-07-31 23:12:20 -07:00
// FIXME(#7544): Optimize this, since we know we won't block.
let sched: ~Scheduler = Local::take();
sched.yield_now();
2012-11-28 16:20:41 -08:00
}
pub fn failing() -> bool {
//! True if the running task has failed
2013-05-19 16:50:21 -07:00
use rt::task::Task;
do Local::borrow |local: &mut Task| {
2013-07-31 23:12:20 -07:00
local.unwinder.unwinding
2013-01-23 16:29:31 -08:00
}
2012-11-28 16:20:41 -08:00
}
/**
* Temporarily make the task unkillable
*
* # Example
*
* ```
2012-11-28 16:20:41 -08:00
* do task::unkillable {
* // detach / deschedule / destroy must all be called together
2012-11-28 16:20:41 -08:00
* rustrt::rust_port_detach(po);
* // This must not result in the current task being killed
* task::deschedule();
2012-11-28 16:20:41 -08:00
* rustrt::rust_port_destroy(po);
* }
* ```
2012-11-28 16:20:41 -08:00
*/
2013-07-22 20:14:15 -04:00
pub fn unkillable<U>(f: &fn() -> U) -> U {
use rt::task::Task;
2013-07-22 20:14:15 -04:00
unsafe {
2013-07-31 23:12:20 -07:00
if in_green_task_context() {
// The inhibits/allows might fail and need to borrow the task.
let t: *mut Task = Local::unsafe_borrow();
2013-07-31 23:12:20 -07:00
do (|| {
(*t).death.inhibit_kill((*t).unwinder.unwinding);
f()
}).finally {
(*t).death.allow_kill((*t).unwinder.unwinding);
}
2013-07-31 23:12:20 -07:00
} else {
2013-07-22 20:14:15 -04:00
// FIXME(#3095): This should be an rtabort as soon as the scheduler
// no longer uses a workqueue implemented with an Exclusive.
2013-07-31 23:12:20 -07:00
f()
}
}
2012-11-28 16:20:41 -08:00
}
/**
* Makes killable a task marked as unkillable. This
* is meant to be used only nested in unkillable.
*
* # Example
*
* ```
* do task::unkillable {
* do task::rekillable {
* // Task is killable
* }
* // Task is unkillable again
* }
*/
pub fn rekillable<U>(f: &fn() -> U) -> U {
use rt::task::Task;
unsafe {
if in_green_task_context() {
let t: *mut Task = Local::unsafe_borrow();
do (|| {
(*t).death.allow_kill((*t).unwinder.unwinding);
f()
}).finally {
(*t).death.inhibit_kill((*t).unwinder.unwinding);
}
} else {
// FIXME(#3095): As in unkillable().
2013-07-31 23:12:20 -07:00
f()
}
}
2012-11-28 16:20:41 -08:00
}
#[ignore(reason = "linked failure")]
2013-08-19 15:40:37 -07:00
#[test]
fn test_kill_unkillable_task() {
use rt::test::*;
// Attempt to test that when a kill signal is received at the start of an
// unkillable section, 'unkillable' unwinds correctly. This is actually
// quite a difficult race to expose, as the kill has to happen on a second
// CPU, *after* the spawner is already switched-back-to (and passes the
// killed check at the start of its timeslice). As far as I know, it's not
// possible to make this race deterministic, or even more likely to happen.
do run_in_uv_task {
do task::try {
do task::spawn {
fail!();
}
do task::unkillable { }
};
}
}
2013-08-19 15:40:37 -07:00
#[test]
#[ignore(cfg(windows))]
fn test_kill_rekillable_task() {
use rt::test::*;
// Tests that when a kill signal is received, 'rekillable' and
// 'unkillable' unwind correctly in conjunction with each other.
do run_in_uv_task {
do task::try {
do task::unkillable {
do task::rekillable {
do task::spawn {
fail!();
}
}
}
};
}
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_rekillable_not_nested() {
do rekillable {
// This should fail before
// receiving anything since
// this block should be nested
// into a unkillable block.
deschedule();
}
}
#[test]
#[ignore(cfg(windows))]
fn test_rekillable_nested_failure() {
let result = do task::try {
do unkillable {
do rekillable {
let (port,chan) = comm::stream();
do task::spawn { chan.send(()); fail!(); }
port.recv(); // wait for child to exist
port.recv(); // block forever, expect to get killed.
2013-08-27 20:09:57 +02:00
}
}
};
assert!(result.is_err());
}
#[test] #[should_fail] #[ignore(cfg(windows))]
2012-11-28 16:20:41 -08:00
fn test_cant_dup_task_builder() {
2013-05-07 17:57:58 -07:00
let mut builder = task();
builder.unlinked();
do builder.spawn {}
2012-11-28 16:20:41 -08:00
// FIXME(#3724): For now, this is a -runtime- failure, because we haven't
// got move mode on self. When 3724 is fixed, this test should fail to
// compile instead, and should go in tests/compile-fail.
2013-05-07 17:57:58 -07:00
do builder.spawn {} // b should have been consumed by the previous call
2012-11-28 16:20:41 -08:00
}
// The following 8 tests test the following 2^3 combinations:
// {un,}linked {un,}supervised failure propagation {up,down}wards.
// !!! These tests are dangerous. If Something is buggy, they will hang, !!!
// !!! instead of exiting cleanly. This might wedge the buildbots. !!!
#[cfg(test)]
fn block_forever() { let (po, _ch) = stream::<()>(); po.recv(); }
#[ignore(reason = "linked failure")]
2013-08-19 15:40:37 -07:00
#[test]
2012-11-28 16:20:41 -08:00
fn test_spawn_unlinked_unsup_no_fail_down() { // grandchild sends on a port
use rt::test::run_in_uv_task;
do run_in_uv_task {
let (po, ch) = stream();
let ch = SharedChan::new(ch);
2012-11-28 16:20:41 -08:00
do spawn_unlinked {
let ch = ch.clone();
do spawn_unlinked {
// Give middle task a chance to fail-but-not-kill-us.
do 16.times { task::deschedule(); }
ch.send(()); // If killed first, grandparent hangs.
}
fail!(); // Shouldn't kill either (grand)parent or (grand)child.
2012-11-28 16:20:41 -08:00
}
po.recv();
2012-11-28 16:20:41 -08:00
}
}
#[ignore(reason = "linked failure")]
2013-08-19 15:40:37 -07:00
#[test]
2012-11-28 16:20:41 -08:00
fn test_spawn_unlinked_unsup_no_fail_up() { // child unlinked fails
use rt::test::run_in_uv_task;
do run_in_uv_task {
do spawn_unlinked { fail!(); }
}
2012-11-28 16:20:41 -08:00
}
#[ignore(reason = "linked failure")]
2013-08-19 15:40:37 -07:00
#[test]
2012-11-28 16:20:41 -08:00
fn test_spawn_unlinked_sup_no_fail_up() { // child unlinked fails
use rt::test::run_in_uv_task;
do run_in_uv_task {
do spawn_supervised { fail!(); }
// Give child a chance to fail-but-not-kill-us.
do 16.times { task::deschedule(); }
}
2012-11-28 16:20:41 -08:00
}
#[ignore(reason = "linked failure")]
2013-08-19 15:40:37 -07:00
#[test]
2012-11-28 16:20:41 -08:00
fn test_spawn_unlinked_sup_fail_down() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
let result: Result<(), ~Any> = do try {
do spawn_supervised { block_forever(); }
fail!(); // Shouldn't leave a child hanging around.
};
assert!(result.is_err());
}
2012-11-28 16:20:41 -08:00
}
#[ignore(reason = "linked failure")]
2013-08-19 15:40:37 -07:00
#[test]
2012-11-28 16:20:41 -08:00
fn test_spawn_linked_sup_fail_up() { // child fails; parent fails
use rt::test::run_in_uv_task;
do run_in_uv_task {
let result: Result<(), ~Any> = do try {
// Unidirectional "parenting" shouldn't override bidirectional linked.
// We have to cheat with opts - the interface doesn't support them because
// they don't make sense (redundant with task().supervised()).
let mut b0 = task();
b0.opts.linked = true;
b0.opts.supervised = true;
do b0.spawn {
fail!();
}
block_forever(); // We should get punted awake
};
assert!(result.is_err());
2013-05-07 17:57:58 -07:00
}
2012-11-28 16:20:41 -08:00
}
#[ignore(reason = "linked failure")]
2013-08-19 15:40:37 -07:00
#[test]
2012-11-28 16:20:41 -08:00
fn test_spawn_linked_sup_fail_down() { // parent fails; child fails
use rt::test::run_in_uv_task;
do run_in_uv_task {
let result: Result<(), ~Any> = do try {
// We have to cheat with opts - the interface doesn't support them because
// they don't make sense (redundant with task().supervised()).
let mut b0 = task();
b0.opts.linked = true;
b0.opts.supervised = true;
do b0.spawn { block_forever(); }
fail!(); // *both* mechanisms would be wrong if this didn't kill the child
};
assert!(result.is_err());
}
2012-11-28 16:20:41 -08:00
}
#[ignore(reason = "linked failure")]
2013-08-19 15:40:37 -07:00
#[test]
2012-11-28 16:20:41 -08:00
fn test_spawn_linked_unsup_fail_up() { // child fails; parent fails
use rt::test::run_in_uv_task;
do run_in_uv_task {
let result: Result<(), ~Any> = do try {
// Default options are to spawn linked & unsupervised.
do spawn { fail!(); }
block_forever(); // We should get punted awake
};
assert!(result.is_err());
}
2012-11-28 16:20:41 -08:00
}
#[ignore(reason = "linked failure")]
2013-08-19 15:40:37 -07:00
#[test]
2012-11-28 16:20:41 -08:00
fn test_spawn_linked_unsup_fail_down() { // parent fails; child fails
use rt::test::run_in_uv_task;
do run_in_uv_task {
let result: Result<(), ~Any> = do try {
// Default options are to spawn linked & unsupervised.
do spawn { block_forever(); }
fail!();
};
assert!(result.is_err());
}
2012-11-28 16:20:41 -08:00
}
#[ignore(reason = "linked failure")]
2013-08-19 15:40:37 -07:00
#[test]
2012-11-28 16:20:41 -08:00
fn test_spawn_linked_unsup_default_opts() { // parent fails; child fails
use rt::test::run_in_uv_task;
do run_in_uv_task {
let result: Result<(), ~Any> = do try {
// Make sure the above test is the same as this one.
let mut builder = task();
builder.linked();
do builder.spawn { block_forever(); }
fail!();
};
assert!(result.is_err());
}
2012-11-28 16:20:41 -08:00
}
// A couple bonus linked failure tests - testing for failure propagation even
// when the middle task exits successfully early before kill signals are sent.
#[ignore(reason = "linked failure")]
2013-08-19 15:40:37 -07:00
#[test]
2012-11-28 16:20:41 -08:00
fn test_spawn_failure_propagate_grandchild() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
let result: Result<(), ~Any> = do try {
// Middle task exits; does grandparent's failure propagate across the gap?
do spawn_supervised {
do spawn_supervised { block_forever(); }
}
do 16.times { task::deschedule(); }
fail!();
};
assert!(result.is_err());
2012-11-28 16:20:41 -08:00
}
}
#[ignore(reason = "linked failure")]
2013-08-19 15:40:37 -07:00
#[test]
2012-11-28 16:20:41 -08:00
fn test_spawn_failure_propagate_secondborn() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
let result: Result<(), ~Any> = do try {
// First-born child exits; does parent's failure propagate to sibling?
do spawn_supervised {
do spawn { block_forever(); } // linked
}
do 16.times { task::deschedule(); }
fail!();
};
assert!(result.is_err());
2012-11-28 16:20:41 -08:00
}
}
#[ignore(reason = "linked failure")]
2013-08-19 15:40:37 -07:00
#[test]
2012-11-28 16:20:41 -08:00
fn test_spawn_failure_propagate_nephew_or_niece() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
let result: Result<(), ~Any> = do try {
// Our sibling exits; does our failure propagate to sibling's child?
do spawn { // linked
do spawn_supervised { block_forever(); }
}
do 16.times { task::deschedule(); }
fail!();
};
assert!(result.is_err());
2012-11-28 16:20:41 -08:00
}
}
#[ignore(reason = "linked failure")]
2013-08-19 15:40:37 -07:00
#[test]
2012-11-28 16:20:41 -08:00
fn test_spawn_linked_sup_propagate_sibling() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
let result: Result<(), ~Any> = do try {
// Middle sibling exits - does eldest's failure propagate to youngest?
do spawn { // linked
do spawn { block_forever(); } // linked
}
do 16.times { task::deschedule(); }
fail!();
};
assert!(result.is_err());
2012-11-28 16:20:41 -08:00
}
}
2013-07-30 19:20:59 -04:00
#[test]
fn test_unnamed_task() {
use rt::test::run_in_uv_task;
2013-07-30 19:20:59 -04:00
do run_in_uv_task {
2013-07-30 19:20:59 -04:00
do spawn {
do with_task_name |name| {
assert!(name.is_none());
}
}
}
}
#[test]
fn test_owned_named_task() {
use rt::test::run_in_uv_task;
2013-07-30 19:20:59 -04:00
do run_in_uv_task {
2013-07-30 19:20:59 -04:00
let mut t = task();
t.name(~"ada lovelace");
do t.spawn {
do with_task_name |name| {
assert!(name.unwrap() == "ada lovelace");
2013-07-30 19:20:59 -04:00
}
}
}
}
#[test]
fn test_static_named_task() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
let mut t = task();
t.name("ada lovelace");
do t.spawn {
do with_task_name |name| {
assert!(name.unwrap() == "ada lovelace");
}
}
}
}
#[test]
fn test_send_named_task() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
let mut t = task();
t.name("ada lovelace".into_send_str());
do t.spawn {
do with_task_name |name| {
assert!(name.unwrap() == "ada lovelace");
}
}
}
}
2012-11-28 16:20:41 -08:00
#[test]
fn test_run_basic() {
2013-01-22 12:38:08 -08:00
let (po, ch) = stream::<()>();
2013-05-07 17:57:58 -07:00
let mut builder = task();
do builder.spawn {
2013-01-22 12:38:08 -08:00
ch.send(());
2012-11-28 16:20:41 -08:00
}
2013-01-22 12:38:08 -08:00
po.recv();
2012-11-28 16:20:41 -08:00
}
#[cfg(test)]
struct Wrapper {
f: Option<Chan<()>>
}
2012-11-28 16:20:41 -08:00
#[test]
fn test_add_wrapper() {
2013-01-22 12:38:08 -08:00
let (po, ch) = stream::<()>();
2013-05-07 17:57:58 -07:00
let mut b0 = task();
let ch = Cell::new(ch);
2013-05-07 17:57:58 -07:00
do b0.add_wrapper |body| {
let ch = Cell::new(ch.take());
let result: ~fn() = || {
let ch = ch.take();
2012-11-28 16:20:41 -08:00
body();
2013-01-22 12:38:08 -08:00
ch.send(());
};
result
2012-11-28 16:20:41 -08:00
};
2013-05-07 17:57:58 -07:00
do b0.spawn { }
2013-01-22 12:38:08 -08:00
po.recv();
2012-11-28 16:20:41 -08:00
}
#[test]
fn test_future_result() {
2013-05-07 17:57:58 -07:00
let mut builder = task();
let result = builder.future_result();
2013-05-07 17:57:58 -07:00
do builder.spawn {}
assert!(result.recv().is_ok());
2012-11-28 16:20:41 -08:00
2013-05-07 17:57:58 -07:00
let mut builder = task();
let result = builder.future_result();
2013-05-07 17:57:58 -07:00
builder.unlinked();
do builder.spawn {
fail!();
2012-11-28 16:20:41 -08:00
}
assert!(result.recv().is_err());
2012-11-28 16:20:41 -08:00
}
2013-08-19 15:40:37 -07:00
#[test] #[should_fail]
2012-11-28 16:20:41 -08:00
fn test_back_to_the_future_result() {
2013-05-07 17:57:58 -07:00
let mut builder = task();
builder.future_result();
builder.future_result();
2012-11-28 16:20:41 -08:00
}
#[test]
fn test_try_success() {
match do try {
~"Success!"
} {
result::Ok(~"Success!") => (),
_ => fail!()
2012-11-28 16:20:41 -08:00
}
}
#[test]
fn test_try_fail() {
match do try {
fail!()
2012-11-28 16:20:41 -08:00
} {
result::Err(_) => (),
result::Ok(()) => fail!()
2012-11-28 16:20:41 -08:00
}
}
#[cfg(test)]
fn get_sched_id() -> int {
do Local::borrow |sched: &mut ::rt::sched::Scheduler| {
2013-07-31 23:12:20 -07:00
sched.sched_id() as int
}
}
2012-11-28 16:20:41 -08:00
#[test]
fn test_spawn_sched() {
2013-01-22 12:38:08 -08:00
let (po, ch) = stream::<()>();
let ch = SharedChan::new(ch);
2012-11-28 16:20:41 -08:00
2013-01-22 12:38:08 -08:00
fn f(i: int, ch: SharedChan<()>) {
let parent_sched_id = get_sched_id();
2012-11-28 16:20:41 -08:00
do spawn_sched(SingleThreaded) {
let child_sched_id = get_sched_id();
2013-03-28 18:39:09 -07:00
assert!(parent_sched_id != child_sched_id);
2012-11-28 16:20:41 -08:00
if (i == 0) {
2013-01-22 12:38:08 -08:00
ch.send(());
2012-11-28 16:20:41 -08:00
} else {
2013-01-22 12:38:08 -08:00
f(i - 1, ch.clone());
2012-11-28 16:20:41 -08:00
}
};
}
f(10, ch);
2013-01-22 12:38:08 -08:00
po.recv();
2012-11-28 16:20:41 -08:00
}
#[test]
fn test_spawn_sched_childs_on_default_sched() {
2013-01-22 12:38:08 -08:00
let (po, ch) = stream();
2012-11-28 16:20:41 -08:00
// Assuming tests run on the default scheduler
let default_id = get_sched_id();
2012-11-28 16:20:41 -08:00
let ch = Cell::new(ch);
2012-11-28 16:20:41 -08:00
do spawn_sched(SingleThreaded) {
let parent_sched_id = get_sched_id();
let ch = Cell::new(ch.take());
2012-11-28 16:20:41 -08:00
do spawn {
2013-05-07 17:57:58 -07:00
let ch = ch.take();
let child_sched_id = get_sched_id();
2013-03-28 18:39:09 -07:00
assert!(parent_sched_id != child_sched_id);
assert_eq!(child_sched_id, default_id);
2013-01-22 12:38:08 -08:00
ch.send(());
2012-11-28 16:20:41 -08:00
};
};
2013-01-22 12:38:08 -08:00
po.recv();
2012-11-28 16:20:41 -08:00
}
#[cfg(test)]
mod testrt {
2013-03-06 19:09:17 -08:00
use libc;
externfn!(fn rust_dbg_lock_create() -> *libc::c_void)
externfn!(fn rust_dbg_lock_destroy(lock: *libc::c_void))
externfn!(fn rust_dbg_lock_lock(lock: *libc::c_void))
externfn!(fn rust_dbg_lock_unlock(lock: *libc::c_void))
externfn!(fn rust_dbg_lock_wait(lock: *libc::c_void))
externfn!(fn rust_dbg_lock_signal(lock: *libc::c_void))
2012-11-28 16:20:41 -08:00
}
#[test]
fn test_spawn_sched_blocking() {
2013-01-10 22:36:54 -08:00
unsafe {
2012-11-28 16:20:41 -08:00
2013-01-10 22:36:54 -08:00
// Testing that a task in one scheduler can block in foreign code
// without affecting other schedulers
do 20u.times {
2013-01-22 12:38:08 -08:00
let (start_po, start_ch) = stream();
let (fin_po, fin_ch) = stream();
2012-11-28 16:20:41 -08:00
2013-01-10 22:36:54 -08:00
let lock = testrt::rust_dbg_lock_create();
2012-11-28 16:20:41 -08:00
2013-01-10 22:36:54 -08:00
do spawn_sched(SingleThreaded) {
2013-06-28 01:45:24 +10:00
testrt::rust_dbg_lock_lock(lock);
2012-11-28 16:20:41 -08:00
2013-06-28 01:45:24 +10:00
start_ch.send(());
2012-11-28 16:20:41 -08:00
2013-06-28 01:45:24 +10:00
// Block the scheduler thread
testrt::rust_dbg_lock_wait(lock);
testrt::rust_dbg_lock_unlock(lock);
2012-11-28 16:20:41 -08:00
2013-06-28 01:45:24 +10:00
fin_ch.send(());
2013-01-10 22:36:54 -08:00
};
2012-11-28 16:20:41 -08:00
2013-01-10 22:36:54 -08:00
// Wait until the other task has its lock
2013-01-22 12:38:08 -08:00
start_po.recv();
2012-11-28 16:20:41 -08:00
2013-01-22 12:38:08 -08:00
fn pingpong(po: &Port<int>, ch: &Chan<int>) {
2013-01-10 22:36:54 -08:00
let mut val = 20;
while val > 0 {
2013-01-22 12:38:08 -08:00
val = po.recv();
ch.send(val - 1);
2013-01-10 22:36:54 -08:00
}
2012-11-28 16:20:41 -08:00
}
2013-01-22 12:38:08 -08:00
let (setup_po, setup_ch) = stream();
let (parent_po, parent_ch) = stream();
2013-01-10 22:36:54 -08:00
do spawn {
2013-01-22 12:38:08 -08:00
let (child_po, child_ch) = stream();
setup_ch.send(child_ch);
pingpong(&child_po, &parent_ch);
2013-01-10 22:36:54 -08:00
};
2013-01-22 12:38:08 -08:00
let child_ch = setup_po.recv();
child_ch.send(20);
pingpong(&parent_po, &child_ch);
2013-01-10 22:36:54 -08:00
testrt::rust_dbg_lock_lock(lock);
testrt::rust_dbg_lock_signal(lock);
testrt::rust_dbg_lock_unlock(lock);
2013-01-22 12:38:08 -08:00
fin_po.recv();
2013-01-10 22:36:54 -08:00
testrt::rust_dbg_lock_destroy(lock);
}
2012-11-28 16:20:41 -08:00
}
}
#[cfg(test)]
fn avoid_copying_the_body(spawnfn: &fn(v: ~fn())) {
2013-01-22 12:38:08 -08:00
let (p, ch) = stream::<uint>();
2012-11-28 16:20:41 -08:00
let x = ~1;
2013-04-22 14:27:30 -07:00
let x_in_parent = ptr::to_unsafe_ptr(&*x) as uint;
2012-11-28 16:20:41 -08:00
2013-02-15 03:51:28 -05:00
do spawnfn || {
2013-04-22 14:27:30 -07:00
let x_in_child = ptr::to_unsafe_ptr(&*x) as uint;
2013-01-22 12:38:08 -08:00
ch.send(x_in_child);
2012-11-28 16:20:41 -08:00
}
2013-01-22 12:38:08 -08:00
let x_in_child = p.recv();
assert_eq!(x_in_parent, x_in_child);
2012-11-28 16:20:41 -08:00
}
#[test]
fn test_avoid_copying_the_body_spawn() {
avoid_copying_the_body(spawn);
}
#[test]
fn test_avoid_copying_the_body_task_spawn() {
do avoid_copying_the_body |f| {
2013-05-07 17:57:58 -07:00
let mut builder = task();
do builder.spawn || {
2012-11-28 16:20:41 -08:00
f();
}
}
}
#[test]
fn test_avoid_copying_the_body_try() {
do avoid_copying_the_body |f| {
2013-02-15 03:51:28 -05:00
do try || {
2012-11-28 16:20:41 -08:00
f()
};
}
}
#[test]
fn test_avoid_copying_the_body_unlinked() {
do avoid_copying_the_body |f| {
2013-02-15 03:51:28 -05:00
do spawn_unlinked || {
2012-11-28 16:20:41 -08:00
f();
}
}
}
#[ignore(reason = "linked failure")]
2012-11-28 16:20:41 -08:00
#[test]
#[should_fail]
fn test_unkillable() {
2013-01-22 12:38:08 -08:00
let (po, ch) = stream();
2012-11-28 16:20:41 -08:00
// We want to do this after failing
do spawn_unlinked {
do 10.times { deschedule() }
2012-11-28 16:20:41 -08:00
ch.send(());
}
do spawn {
deschedule();
2012-11-28 16:20:41 -08:00
// We want to fail after the unkillable task
// blocks on recv
fail!();
2012-11-28 16:20:41 -08:00
}
unsafe {
do unkillable {
let p = ~0;
2013-02-15 03:51:28 -05:00
let pp: *uint = cast::transmute(p);
2012-11-28 16:20:41 -08:00
// If we are killed here then the box will leak
po.recv();
2013-02-15 03:51:28 -05:00
let _p: ~int = cast::transmute(pp);
2012-11-28 16:20:41 -08:00
}
}
// Now we can be killed
po.recv();
}
#[ignore(reason = "linked failure")]
2012-11-28 16:20:41 -08:00
#[test]
#[should_fail]
fn test_unkillable_nested() {
2013-02-02 03:10:12 -08:00
let (po, ch) = comm::stream();
2012-11-28 16:20:41 -08:00
// We want to do this after failing
2013-02-15 03:51:28 -05:00
do spawn_unlinked || {
do 10.times { deschedule() }
2012-11-28 16:20:41 -08:00
ch.send(());
}
do spawn {
deschedule();
2012-11-28 16:20:41 -08:00
// We want to fail after the unkillable task
// blocks on recv
fail!();
2012-11-28 16:20:41 -08:00
}
unsafe {
do unkillable {
do unkillable {} // Here's the difference from the previous test.
let p = ~0;
2013-02-15 03:51:28 -05:00
let pp: *uint = cast::transmute(p);
2012-11-28 16:20:41 -08:00
// If we are killed here then the box will leak
po.recv();
2013-02-15 03:51:28 -05:00
let _p: ~int = cast::transmute(pp);
2012-11-28 16:20:41 -08:00
}
}
// Now we can be killed
po.recv();
}
#[test]
fn test_child_doesnt_ref_parent() {
// If the child refcounts the parent task, this will stack overflow when
// climbing the task tree to dereference each ancestor. (See #1789)
// (well, it would if the constant were 8000+ - I lowered it to be more
// valgrind-friendly. try this at home, instead..!)
static generations: uint = 16;
fn child_no(x: uint) -> ~fn() {
2012-11-28 16:20:41 -08:00
return || {
if x < generations {
let mut t = task();
t.unwatched();
t.spawn(child_no(x+1));
2012-11-28 16:20:41 -08:00
}
}
}
let mut t = task();
t.unwatched();
t.spawn(child_no(0));
2012-11-28 16:20:41 -08:00
}
#[test]
fn test_simple_newsched_spawn() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
spawn(||())
}
}
#[ignore(reason = "linked failure")]
2013-08-19 15:40:37 -07:00
#[test]
fn test_spawn_watched() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
let result = do try {
let mut t = task();
t.unlinked();
t.watched();
do t.spawn {
let mut t = task();
t.unlinked();
t.watched();
do t.spawn {
task::deschedule();
fail!();
}
}
};
assert!(result.is_err());
}
}
#[ignore(reason = "linked failure")]
2013-08-19 15:40:37 -07:00
#[test]
fn test_indestructible() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
let result = do try {
let mut t = task();
t.watched();
t.supervised();
t.indestructible();
do t.spawn {
let (p1, _c1) = stream::<()>();
let (p2, c2) = stream::<()>();
let (p3, c3) = stream::<()>();
let mut t = task();
t.unwatched();
do t.spawn {
do (|| {
p1.recv(); // would deadlock if not killed
}).finally {
c2.send(());
};
}
let mut t = task();
t.unwatched();
do t.spawn {
p3.recv();
task::deschedule();
fail!();
}
c3.send(());
p2.recv();
}
};
assert!(result.is_ok());
}
}
#[test]
fn test_try_fail_cause_static_str() {
match do try {
fail!("static string");
} {
Err(ref e) if e.is::<SendStr>() => {}
Err(_) | Ok(()) => fail!()
}
}
#[test]
fn test_try_fail_cause_owned_str() {
match do try {
fail!(~"owned string");
} {
Err(ref e) if e.is::<SendStr>() => {}
Err(_) | Ok(()) => fail!()
}
}
#[test]
fn test_try_fail_cause_any() {
match do try {
fail!(~413u16 as ~Any);
} {
Err(ref e) if e.is::<u16>() => {}
Err(_) | Ok(()) => fail!()
}
}
#[ignore(reason = "linked failure")]
#[test]
fn test_try_fail_cause_linked() {
match do try {
do spawn {
fail!()
}
} {
Err(ref e) if e.is::<LinkedFailure>() => {}
Err(_) | Ok(()) => fail!()
}
}
#[test]
fn test_try_fail_cause_any_wrapped() {
struct Juju;
match do try {
fail!(~Juju)
} {
Err(ref e) if e.is::<Juju>() => {}
Err(_) | Ok(()) => fail!()
}
}