rust/src/libcore/task/mod.rs

1317 lines
37 KiB
Rust
Raw Normal View History

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2012-11-28 18:20:41 -06:00
// NB: transitionary, de-mode-ing.
// tjc: Deprecated modes allowed because of function arg issue
// in task::spawn. Re-forbid after snapshot.
#[forbid(deprecated_pattern)];
2012-11-18 19:56:50 -06:00
2012-11-28 18:20:41 -06:00
/*!
* Task management.
*
* An executing Rust program consists of a tree of tasks, each with their own
* stack, and sole ownership of their allocated heap data. Tasks communicate
* with each other using ports and channels.
*
* When a task fails, that failure will propagate to its parent (the task
* that spawned it) and the parent will fail as well. The reverse is not
* true: when a parent task fails its children will continue executing. When
* the root (main) task fails, all tasks fail, and then so does the entire
* process.
*
* Tasks may execute in parallel and are scheduled automatically by the
* runtime.
*
* # Example
*
* ~~~
* do spawn {
* log(error, "Hello, World!");
* }
* ~~~
*/
2012-11-18 19:56:50 -06:00
2012-11-28 18:20:41 -06:00
use cmp::Eq;
use result::Result;
use pipes::{stream, Chan, Port};
use local_data_priv::{local_get, local_set};
use util::replace;
2012-11-18 19:56:50 -06:00
2012-11-28 18:20:41 -06:00
use rt::task_id;
use rt::rust_task;
2012-11-18 19:56:50 -06:00
2012-11-28 18:20:41 -06:00
mod local_data_priv;
pub mod local_data;
pub mod rt;
2012-11-18 19:56:50 -06:00
pub mod spawn;
2012-11-28 18:20:41 -06:00
/// A handle to a task
pub enum Task {
TaskHandle(task_id)
}
impl Task : cmp::Eq {
pure fn eq(&self, other: &Task) -> bool { *(*self) == *(*other) }
pure fn ne(&self, other: &Task) -> bool { !(*self).eq(other) }
}
/**
* Indicates the manner in which a task exited.
*
* A task that completes without failing is considered to exit successfully.
* Supervised ancestors and linked siblings may yet fail after this task
* succeeds. Also note that in such a case, it may be nondeterministic whether
* linked failure or successful exit happen first.
*
* If you wish for this result's delivery to block until all linked and/or
* children tasks complete, recommend using a result future.
*/
pub enum TaskResult {
Success,
Failure,
}
impl TaskResult : Eq {
pure fn eq(&self, other: &TaskResult) -> bool {
match ((*self), (*other)) {
(Success, Success) | (Failure, Failure) => true,
(Success, _) | (Failure, _) => false
}
}
pure fn ne(&self, other: &TaskResult) -> bool { !(*self).eq(other) }
}
/// Scheduler modes
pub enum SchedMode {
/// All tasks run in the same OS thread
SingleThreaded,
/// Tasks are distributed among available CPUs
ThreadPerCore,
/// Each task runs in its own OS thread
ThreadPerTask,
/// Tasks are distributed among a fixed number of OS threads
ManualThreads(uint),
/**
* Tasks are scheduled on the main OS thread
*
* The main OS thread is the thread used to launch the runtime which,
* in most cases, is the process's initial thread as created by the OS.
*/
PlatformThread
}
impl SchedMode : cmp::Eq {
pure fn eq(&self, other: &SchedMode) -> bool {
match (*self) {
SingleThreaded => {
match (*other) {
SingleThreaded => true,
_ => false
}
}
ThreadPerCore => {
match (*other) {
ThreadPerCore => true,
_ => false
}
}
ThreadPerTask => {
match (*other) {
ThreadPerTask => true,
_ => false
}
}
ManualThreads(e0a) => {
match (*other) {
ManualThreads(e0b) => e0a == e0b,
_ => false
}
}
PlatformThread => {
match (*other) {
PlatformThread => true,
_ => false
}
}
}
}
pure fn ne(&self, other: &SchedMode) -> bool {
!(*self).eq(other)
}
}
/**
* Scheduler configuration options
*
* # Fields
*
* * sched_mode - The operating mode of the scheduler
*
* * foreign_stack_size - The size of the foreign stack, in bytes
*
* Rust code runs on Rust-specific stacks. When Rust code calls foreign
* code (via functions in foreign modules) it switches to a typical, large
* stack appropriate for running code written in languages like C. By
* default these foreign stacks have unspecified size, but with this
* option their size can be precisely specified.
*/
pub type SchedOpts = {
mode: SchedMode,
foreign_stack_size: Option<uint>
};
/**
* Task configuration options
*
* # Fields
*
* * linked - Propagate failure bidirectionally between child and parent.
* True by default. If both this and 'supervised' are false, then
* either task's failure will not affect the other ("unlinked").
*
* * supervised - Propagate failure unidirectionally from parent to child,
* but not from child to parent. False by default.
*
* * notify_chan - Enable lifecycle notifications on the given channel
*
* * sched - Specify the configuration of a new scheduler to create the task
* in
*
* By default, every task is created in the same scheduler as its
* parent, where it is scheduled cooperatively with all other tasks
* in that scheduler. Some specialized applications may want more
* control over their scheduling, in which case they can be spawned
* into a new scheduler with the specific properties required.
*
* This is of particular importance for libraries which want to call
* into foreign code that blocks. Without doing so in a different
* scheduler other tasks will be impeded or even blocked indefinitely.
*/
pub type TaskOpts = {
linked: bool,
supervised: bool,
mut notify_chan: Option<Chan<TaskResult>>,
sched: Option<SchedOpts>,
};
/**
* The task builder type.
*
* Provides detailed control over the properties and behavior of new tasks.
*/
// NB: Builders are designed to be single-use because they do stateful
// things that get weird when reusing - e.g. if you create a result future
// it only applies to a single task, so then you have to maintain Some
// potentially tricky state to ensure that everything behaves correctly
// when you try to reuse the builder to spawn a new task. We'll just
// sidestep that whole issue by making builders uncopyable and making
// the run function move them in.
// FIXME (#3724): Replace the 'consumed' bit with move mode on self
pub enum TaskBuilder = {
opts: TaskOpts,
gen_body: fn@(v: fn~()) -> fn~(),
can_not_copy: Option<util::NonCopyable>,
mut consumed: bool,
};
/**
* Generate the base configuration for spawning a task, off of which more
* configuration methods can be chained.
* For example, task().unlinked().spawn is equivalent to spawn_unlinked.
*/
pub fn task() -> TaskBuilder {
TaskBuilder({
opts: default_task_opts(),
gen_body: |body| move body, // Identity function
can_not_copy: None,
mut consumed: false,
})
}
#[doc(hidden)] // FIXME #3538
priv impl TaskBuilder {
fn consume() -> TaskBuilder {
if self.consumed {
fail ~"Cannot copy a task_builder"; // Fake move mode on self
}
self.consumed = true;
let notify_chan = replace(&mut self.opts.notify_chan, None);
TaskBuilder({
opts: {
linked: self.opts.linked,
supervised: self.opts.supervised,
mut notify_chan: move notify_chan,
sched: self.opts.sched
},
gen_body: self.gen_body,
can_not_copy: None,
mut consumed: false
})
}
}
impl TaskBuilder {
/**
* Decouple the child task's failure from the parent's. If either fails,
* the other will not be killed.
*/
fn unlinked() -> TaskBuilder {
let notify_chan = replace(&mut self.opts.notify_chan, None);
TaskBuilder({
opts: {
linked: false,
supervised: self.opts.supervised,
mut notify_chan: move notify_chan,
sched: self.opts.sched
},
can_not_copy: None,
.. *self.consume()
})
}
/**
* Unidirectionally link the child task's failure with the parent's. The
* child's failure will not kill the parent, but the parent's will kill
* the child.
*/
fn supervised() -> TaskBuilder {
let notify_chan = replace(&mut self.opts.notify_chan, None);
TaskBuilder({
opts: {
linked: false,
supervised: true,
mut notify_chan: move notify_chan,
sched: self.opts.sched
},
can_not_copy: None,
.. *self.consume()
})
}
/**
* Link the child task's and parent task's failures. If either fails, the
* other will be killed.
*/
fn linked() -> TaskBuilder {
let notify_chan = replace(&mut self.opts.notify_chan, None);
TaskBuilder({
opts: {
linked: true,
supervised: false,
mut notify_chan: move notify_chan,
sched: self.opts.sched
},
can_not_copy: None,
.. *self.consume()
})
}
/**
* Get a future representing the exit status of the task.
*
* Taking the value of the future will block until the child task
* terminates. The future-receiving callback specified will be called
* *before* the task is spawned; as such, do not invoke .get() within the
* closure; rather, store it in an outer variable/list for later use.
*
* Note that the future returning by this function is only useful for
* obtaining the value of the next task to be spawning with the
* builder. If additional tasks are spawned with the same builder
* then a new result future must be obtained prior to spawning each
* task.
*
* # Failure
* Fails if a future_result was already set for this task.
*/
fn future_result(blk: fn(v: Port<TaskResult>)) -> TaskBuilder {
// FIXME (#3725): Once linked failure and notification are
// handled in the library, I can imagine implementing this by just
// registering an arbitrary number of task::on_exit handlers and
// sending out messages.
if self.opts.notify_chan.is_some() {
fail ~"Can't set multiple future_results for one task!";
}
// Construct the future and give it to the caller.
let (notify_pipe_ch, notify_pipe_po) = stream::<TaskResult>();
blk(move notify_pipe_po);
// Reconfigure self to use a notify channel.
TaskBuilder({
opts: {
linked: self.opts.linked,
supervised: self.opts.supervised,
mut notify_chan: Some(move notify_pipe_ch),
sched: self.opts.sched
},
can_not_copy: None,
.. *self.consume()
})
}
/// Configure a custom scheduler mode for the task.
fn sched_mode(mode: SchedMode) -> TaskBuilder {
let notify_chan = replace(&mut self.opts.notify_chan, None);
TaskBuilder({
opts: {
linked: self.opts.linked,
supervised: self.opts.supervised,
mut notify_chan: move notify_chan,
sched: Some({ mode: mode, foreign_stack_size: None})
},
can_not_copy: None,
.. *self.consume()
})
}
/**
* Add a wrapper to the body of the spawned task.
*
* Before the task is spawned it is passed through a 'body generator'
* function that may perform local setup operations as well as wrap
* the task body in remote setup operations. With this the behavior
* of tasks can be extended in simple ways.
*
* This function augments the current body generator with a new body
* generator by applying the task body which results from the
* existing body generator to the new body generator.
*/
fn add_wrapper(wrapper: fn@(v: fn~()) -> fn~()) -> TaskBuilder {
let prev_gen_body = self.gen_body;
let notify_chan = replace(&mut self.opts.notify_chan, None);
TaskBuilder({
opts: {
linked: self.opts.linked,
supervised: self.opts.supervised,
mut notify_chan: move notify_chan,
sched: self.opts.sched
},
// tjc: I think this is the line that gets miscompiled
// w/ last-use off, if we leave out the move prev_gen_body?
// that makes no sense, though...
gen_body: |move prev_gen_body,
body| { wrapper(prev_gen_body(move body)) },
can_not_copy: None,
.. *self.consume()
})
}
/**
* Creates and executes a new child task
*
* Sets up a new task with its own call stack and schedules it to run
* the provided unique closure. The task has the properties and behavior
* specified by the task_builder.
*
* # Failure
*
* When spawning into a new scheduler, the number of threads requested
* must be greater than zero.
*/
fn spawn(f: fn~()) {
let notify_chan = replace(&mut self.opts.notify_chan, None);
let x = self.consume();
let opts = {
linked: x.opts.linked,
supervised: x.opts.supervised,
mut notify_chan: move notify_chan,
sched: x.opts.sched
};
spawn::spawn_raw(move opts, (x.gen_body)(move f));
2012-11-28 18:20:41 -06:00
}
/// Runs a task, while transfering ownership of one argument to the child.
fn spawn_with<A: Send>(arg: A, f: fn~(v: A)) {
let arg = ~mut Some(move arg);
do self.spawn |move arg, move f| {
f(option::swap_unwrap(arg))
}
}
/**
* Runs a new task while providing a channel from the parent to the child
*
* Sets up a communication channel from the current task to the new
* child task, passes the port to child's body, and returns a channel
* linked to the port to the parent.
*
* This encapsulates some boilerplate handshaking logic that would
* otherwise be required to establish communication from the parent
* to the child.
*/
fn spawn_listener<A: Send>(f: fn~(comm::Port<A>)) -> comm::Chan<A> {
let setup_po = comm::Port();
let setup_ch = comm::Chan(&setup_po);
do self.spawn |move f| {
let po = comm::Port();
let ch = comm::Chan(&po);
comm::send(setup_ch, ch);
f(move po);
}
comm::recv(setup_po)
}
/**
* Runs a new task, setting up communication in both directions
*/
fn spawn_conversation<A: Send, B: Send>
(f: fn~(comm::Port<A>, comm::Chan<B>))
-> (comm::Port<B>, comm::Chan<A>) {
let from_child = comm::Port();
let to_parent = comm::Chan(&from_child);
let to_child = do self.spawn_listener |move f, from_parent| {
f(from_parent, to_parent)
};
(from_child, to_child)
}
/**
* Execute a function in another task and return either the return value
* of the function or result::err.
*
* # Return value
*
* If the function executed successfully then try returns result::ok
* containing the value returned by the function. If the function fails
* then try returns result::err containing nil.
*
* # Failure
* Fails if a future_result was already set for this task.
*/
fn try<T: Send>(f: fn~() -> T) -> Result<T,()> {
let po = comm::Port();
let ch = comm::Chan(&po);
let mut result = None;
let fr_task_builder = self.future_result(|+r| {
result = Some(move r);
});
do fr_task_builder.spawn |move f| {
comm::send(ch, f());
}
match option::unwrap(move result).recv() {
Success => result::Ok(comm::recv(po)),
Failure => result::Err(())
}
}
}
/* Task construction */
pub fn default_task_opts() -> TaskOpts {
/*!
* The default task options
*
* By default all tasks are supervised by their parent, are spawned
* into the same scheduler, and do not post lifecycle notifications.
*/
{
linked: true,
supervised: false,
mut notify_chan: None,
sched: None
}
}
/* Spawn convenience functions */
pub fn spawn(f: fn~()) {
/*!
* Creates and executes a new child task
*
* Sets up a new task with its own call stack and schedules it to run
* the provided unique closure.
*
* This function is equivalent to `task().spawn(f)`.
*/
task().spawn(move f)
}
pub fn spawn_unlinked(f: fn~()) {
/*!
* Creates a child task unlinked from the current one. If either this
* task or the child task fails, the other will not be killed.
*/
task().unlinked().spawn(move f)
}
pub fn spawn_supervised(f: fn~()) {
/*!
* Creates a child task unlinked from the current one. If either this
* task or the child task fails, the other will not be killed.
*/
task().supervised().spawn(move f)
}
pub fn spawn_with<A:Send>(arg: A, f: fn~(v: A)) {
/*!
* Runs a task, while transfering ownership of one argument to the
* child.
*
* This is useful for transfering ownership of noncopyables to
* another task.
*
* This function is equivalent to `task().spawn_with(arg, f)`.
*/
task().spawn_with(move arg, move f)
}
pub fn spawn_listener<A:Send>(f: fn~(comm::Port<A>)) -> comm::Chan<A> {
/*!
* Runs a new task while providing a channel from the parent to the child
*
* This function is equivalent to `task().spawn_listener(f)`.
*/
task().spawn_listener(move f)
}
pub fn spawn_conversation<A: Send, B: Send>
(f: fn~(comm::Port<A>, comm::Chan<B>))
-> (comm::Port<B>, comm::Chan<A>) {
/*!
* Runs a new task, setting up communication in both directions
*
* This function is equivalent to `task().spawn_conversation(f)`.
*/
task().spawn_conversation(move f)
}
pub fn spawn_sched(mode: SchedMode, f: fn~()) {
/*!
* Creates a new scheduler and executes a task on it
*
* Tasks subsequently spawned by that task will also execute on
* the new scheduler. When there are no more tasks to execute the
* scheduler terminates.
*
* # Failure
*
* In manual threads mode the number of threads requested must be
* greater than zero.
*/
task().sched_mode(mode).spawn(move f)
}
pub fn try<T:Send>(f: fn~() -> T) -> Result<T,()> {
/*!
* Execute a function in another task and return either the return value
* of the function or result::err.
*
* This is equivalent to task().supervised().try.
*/
task().supervised().try(move f)
}
/* Lifecycle functions */
pub fn yield() {
//! Yield control to the task scheduler
let task_ = rt::rust_get_task();
let killed = rt::rust_task_yield(task_);
if killed && !failing() {
fail ~"killed";
}
}
pub fn failing() -> bool {
//! True if the running task has failed
rt::rust_task_is_unwinding(rt::rust_get_task())
}
pub fn get_task() -> Task {
//! Get a handle to the running task
TaskHandle(rt::get_task_id())
}
/**
* Temporarily make the task unkillable
*
* # Example
*
* ~~~
* do task::unkillable {
* // detach / yield / destroy must all be called together
* rustrt::rust_port_detach(po);
* // This must not result in the current task being killed
* task::yield();
* rustrt::rust_port_destroy(po);
* }
* ~~~
*/
pub unsafe fn unkillable<U>(f: fn() -> U) -> U {
struct AllowFailure {
t: *rust_task,
drop { rt::rust_task_allow_kill(self.t); }
}
fn AllowFailure(t: *rust_task) -> AllowFailure{
AllowFailure {
t: t
}
}
let t = rt::rust_get_task();
let _allow_failure = AllowFailure(t);
rt::rust_task_inhibit_kill(t);
f()
}
/// The inverse of unkillable. Only ever to be used nested in unkillable().
pub unsafe fn rekillable<U>(f: fn() -> U) -> U {
struct DisallowFailure {
t: *rust_task,
drop { rt::rust_task_inhibit_kill(self.t); }
}
fn DisallowFailure(t: *rust_task) -> DisallowFailure {
DisallowFailure {
t: t
}
}
let t = rt::rust_get_task();
let _allow_failure = DisallowFailure(t);
rt::rust_task_allow_kill(t);
f()
}
/**
* A stronger version of unkillable that also inhibits scheduling operations.
* For use with exclusive ARCs, which use pthread mutexes directly.
*/
pub unsafe fn atomically<U>(f: fn() -> U) -> U {
struct DeferInterrupts {
t: *rust_task,
drop {
rt::rust_task_allow_yield(self.t);
rt::rust_task_allow_kill(self.t);
}
}
fn DeferInterrupts(t: *rust_task) -> DeferInterrupts {
DeferInterrupts {
t: t
}
}
let t = rt::rust_get_task();
let _interrupts = DeferInterrupts(t);
rt::rust_task_inhibit_kill(t);
rt::rust_task_inhibit_yield(t);
f()
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_cant_dup_task_builder() {
let b = task().unlinked();
do b.spawn { }
// FIXME(#3724): For now, this is a -runtime- failure, because we haven't
// got move mode on self. When 3724 is fixed, this test should fail to
// compile instead, and should go in tests/compile-fail.
do b.spawn { } // b should have been consumed by the previous call
}
// The following 8 tests test the following 2^3 combinations:
// {un,}linked {un,}supervised failure propagation {up,down}wards.
// !!! These tests are dangerous. If Something is buggy, they will hang, !!!
// !!! instead of exiting cleanly. This might wedge the buildbots. !!!
#[test] #[ignore(cfg(windows))]
fn test_spawn_unlinked_unsup_no_fail_down() { // grandchild sends on a port
let po = comm::Port();
let ch = comm::Chan(&po);
do spawn_unlinked {
do spawn_unlinked {
// Give middle task a chance to fail-but-not-kill-us.
for iter::repeat(16) { task::yield(); }
comm::send(ch, ()); // If killed first, grandparent hangs.
}
fail; // Shouldn't kill either (grand)parent or (grand)child.
}
comm::recv(po);
}
#[test] #[ignore(cfg(windows))]
fn test_spawn_unlinked_unsup_no_fail_up() { // child unlinked fails
do spawn_unlinked { fail; }
}
#[test] #[ignore(cfg(windows))]
fn test_spawn_unlinked_sup_no_fail_up() { // child unlinked fails
do spawn_supervised { fail; }
// Give child a chance to fail-but-not-kill-us.
for iter::repeat(16) { task::yield(); }
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_unlinked_sup_fail_down() {
do spawn_supervised { loop { task::yield(); } }
fail; // Shouldn't leave a child hanging around.
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_sup_fail_up() { // child fails; parent fails
let po = comm::Port::<()>();
let _ch = comm::Chan(&po);
// Unidirectional "parenting" shouldn't override bidirectional linked.
// We have to cheat with opts - the interface doesn't support them because
// they don't make sense (redundant with task().supervised()).
let opts = {
let mut opts = default_task_opts();
opts.linked = true;
opts.supervised = true;
move opts
};
let b0 = task();
let b1 = TaskBuilder({
opts: move opts,
can_not_copy: None,
.. *b0
});
do b1.spawn { fail; }
comm::recv(po); // We should get punted awake
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_sup_fail_down() { // parent fails; child fails
// We have to cheat with opts - the interface doesn't support them because
// they don't make sense (redundant with task().supervised()).
let opts = {
let mut opts = default_task_opts();
opts.linked = true;
opts.supervised = true;
move opts
};
let b0 = task();
let b1 = TaskBuilder({
opts: move opts,
can_not_copy: None,
.. *b0
});
do b1.spawn { loop { task::yield(); } }
fail; // *both* mechanisms would be wrong if this didn't kill the child...
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_unsup_fail_up() { // child fails; parent fails
let po = comm::Port::<()>();
let _ch = comm::Chan(&po);
// Default options are to spawn linked & unsupervised.
do spawn { fail; }
comm::recv(po); // We should get punted awake
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_unsup_fail_down() { // parent fails; child fails
// Default options are to spawn linked & unsupervised.
do spawn { loop { task::yield(); } }
fail;
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_unsup_default_opts() { // parent fails; child fails
// Make sure the above test is the same as this one.
do task().linked().spawn { loop { task::yield(); } }
fail;
}
// A couple bonus linked failure tests - testing for failure propagation even
// when the middle task exits successfully early before kill signals are sent.
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_failure_propagate_grandchild() {
// Middle task exits; does grandparent's failure propagate across the gap?
do spawn_supervised {
do spawn_supervised {
loop { task::yield(); }
}
}
for iter::repeat(16) { task::yield(); }
fail;
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_failure_propagate_secondborn() {
// First-born child exits; does parent's failure propagate to sibling?
do spawn_supervised {
do spawn { // linked
loop { task::yield(); }
}
}
for iter::repeat(16) { task::yield(); }
fail;
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_failure_propagate_nephew_or_niece() {
// Our sibling exits; does our failure propagate to sibling's child?
do spawn { // linked
do spawn_supervised {
loop { task::yield(); }
}
}
for iter::repeat(16) { task::yield(); }
fail;
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_sup_propagate_sibling() {
// Middle sibling exits - does eldest's failure propagate to youngest?
do spawn { // linked
do spawn { // linked
loop { task::yield(); }
}
}
for iter::repeat(16) { task::yield(); }
fail;
}
#[test]
fn test_run_basic() {
let po = comm::Port();
let ch = comm::Chan(&po);
do task().spawn {
comm::send(ch, ());
}
comm::recv(po);
}
#[test]
fn test_add_wrapper() {
let po = comm::Port();
let ch = comm::Chan(&po);
let b0 = task();
let b1 = do b0.add_wrapper |body| {
fn~(move body) {
body();
comm::send(ch, ());
}
};
do b1.spawn { }
comm::recv(po);
}
#[test]
#[ignore(cfg(windows))]
fn test_future_result() {
let mut result = None;
do task().future_result(|+r| { result = Some(move r); }).spawn { }
assert option::unwrap(move result).recv() == Success;
result = None;
do task().future_result(|+r|
{ result = Some(move r); }).unlinked().spawn {
fail;
}
assert option::unwrap(move result).recv() == Failure;
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_back_to_the_future_result() {
let _ = task().future_result(util::ignore).future_result(util::ignore);
}
#[test]
fn test_spawn_listiner_bidi() {
let po = comm::Port();
let ch = comm::Chan(&po);
let ch = do spawn_listener |po| {
// Now the child has a port called 'po' to read from and
// an environment-captured channel called 'ch'.
let res: ~str = comm::recv(po);
assert res == ~"ping";
comm::send(ch, ~"pong");
};
// Likewise, the parent has both a 'po' and 'ch'
comm::send(ch, ~"ping");
let res: ~str = comm::recv(po);
assert res == ~"pong";
}
#[test]
fn test_spawn_conversation() {
let (recv_str, send_int) = do spawn_conversation |recv_int, send_str| {
let input = comm::recv(recv_int);
let output = int::str(input);
comm::send(send_str, move output);
};
comm::send(send_int, 1);
assert comm::recv(recv_str) == ~"1";
}
#[test]
fn test_try_success() {
match do try {
~"Success!"
} {
result::Ok(~"Success!") => (),
_ => fail
}
}
#[test]
#[ignore(cfg(windows))]
fn test_try_fail() {
match do try {
fail
} {
result::Err(()) => (),
result::Ok(()) => fail
}
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_spawn_sched_no_threads() {
do spawn_sched(ManualThreads(0u)) { }
}
#[test]
fn test_spawn_sched() {
let po = comm::Port();
let ch = comm::Chan(&po);
fn f(i: int, ch: comm::Chan<()>) {
let parent_sched_id = rt::rust_get_sched_id();
do spawn_sched(SingleThreaded) {
let child_sched_id = rt::rust_get_sched_id();
assert parent_sched_id != child_sched_id;
if (i == 0) {
comm::send(ch, ());
} else {
f(i - 1, ch);
}
};
}
f(10, ch);
comm::recv(po);
}
#[test]
fn test_spawn_sched_childs_on_same_sched() {
let po = comm::Port();
let ch = comm::Chan(&po);
do spawn_sched(SingleThreaded) {
let parent_sched_id = rt::rust_get_sched_id();
do spawn {
let child_sched_id = rt::rust_get_sched_id();
// This should be on the same scheduler
assert parent_sched_id == child_sched_id;
comm::send(ch, ());
};
};
comm::recv(po);
}
#[nolink]
#[cfg(test)]
extern mod testrt {
fn rust_dbg_lock_create() -> *libc::c_void;
fn rust_dbg_lock_destroy(lock: *libc::c_void);
fn rust_dbg_lock_lock(lock: *libc::c_void);
fn rust_dbg_lock_unlock(lock: *libc::c_void);
fn rust_dbg_lock_wait(lock: *libc::c_void);
fn rust_dbg_lock_signal(lock: *libc::c_void);
}
#[test]
fn test_spawn_sched_blocking() {
// Testing that a task in one scheduler can block in foreign code
// without affecting other schedulers
for iter::repeat(20u) {
let start_po = comm::Port();
let start_ch = comm::Chan(&start_po);
let fin_po = comm::Port();
let fin_ch = comm::Chan(&fin_po);
let lock = testrt::rust_dbg_lock_create();
do spawn_sched(SingleThreaded) {
testrt::rust_dbg_lock_lock(lock);
comm::send(start_ch, ());
// Block the scheduler thread
testrt::rust_dbg_lock_wait(lock);
testrt::rust_dbg_lock_unlock(lock);
comm::send(fin_ch, ());
};
// Wait until the other task has its lock
comm::recv(start_po);
fn pingpong(po: comm::Port<int>, ch: comm::Chan<int>) {
let mut val = 20;
while val > 0 {
val = comm::recv(po);
comm::send(ch, val - 1);
}
}
let setup_po = comm::Port();
let setup_ch = comm::Chan(&setup_po);
let parent_po = comm::Port();
let parent_ch = comm::Chan(&parent_po);
do spawn {
let child_po = comm::Port();
comm::send(setup_ch, comm::Chan(&child_po));
pingpong(child_po, parent_ch);
};
let child_ch = comm::recv(setup_po);
comm::send(child_ch, 20);
pingpong(parent_po, child_ch);
testrt::rust_dbg_lock_lock(lock);
testrt::rust_dbg_lock_signal(lock);
testrt::rust_dbg_lock_unlock(lock);
comm::recv(fin_po);
testrt::rust_dbg_lock_destroy(lock);
}
}
#[cfg(test)]
fn avoid_copying_the_body(spawnfn: fn(v: fn~())) {
let p = comm::Port::<uint>();
let ch = comm::Chan(&p);
let x = ~1;
let x_in_parent = ptr::addr_of(&(*x)) as uint;
do spawnfn |move x| {
let x_in_child = ptr::addr_of(&(*x)) as uint;
comm::send(ch, x_in_child);
}
let x_in_child = comm::recv(p);
assert x_in_parent == x_in_child;
}
#[test]
fn test_avoid_copying_the_body_spawn() {
avoid_copying_the_body(spawn);
}
#[test]
fn test_avoid_copying_the_body_spawn_listener() {
do avoid_copying_the_body |f| {
spawn_listener(fn~(move f, _po: comm::Port<int>) {
f();
});
}
}
#[test]
fn test_avoid_copying_the_body_task_spawn() {
do avoid_copying_the_body |f| {
do task().spawn |move f| {
f();
}
}
}
#[test]
fn test_avoid_copying_the_body_spawn_listener_1() {
do avoid_copying_the_body |f| {
task().spawn_listener(fn~(move f, _po: comm::Port<int>) {
f();
});
}
}
#[test]
fn test_avoid_copying_the_body_try() {
do avoid_copying_the_body |f| {
do try |move f| {
f()
};
}
}
#[test]
fn test_avoid_copying_the_body_unlinked() {
do avoid_copying_the_body |f| {
do spawn_unlinked |move f| {
f();
}
}
}
#[test]
fn test_platform_thread() {
let po = comm::Port();
let ch = comm::Chan(&po);
do task().sched_mode(PlatformThread).spawn {
comm::send(ch, ());
}
comm::recv(po);
}
#[test]
#[ignore(cfg(windows))]
#[should_fail]
fn test_unkillable() {
let po = comm::Port();
let ch = po.chan();
// We want to do this after failing
do spawn_unlinked {
for iter::repeat(10) { yield() }
ch.send(());
}
do spawn {
yield();
// We want to fail after the unkillable task
// blocks on recv
fail;
}
unsafe {
do unkillable {
let p = ~0;
let pp: *uint = cast::transmute(move p);
// If we are killed here then the box will leak
po.recv();
let _p: ~int = cast::transmute(move pp);
}
}
// Now we can be killed
po.recv();
}
#[test]
#[ignore(cfg(windows))]
#[should_fail]
fn test_unkillable_nested() {
let (ch, po) = pipes::stream();
// We want to do this after failing
do spawn_unlinked |move ch| {
for iter::repeat(10) { yield() }
ch.send(());
}
do spawn {
yield();
// We want to fail after the unkillable task
// blocks on recv
fail;
}
unsafe {
do unkillable {
do unkillable {} // Here's the difference from the previous test.
let p = ~0;
let pp: *uint = cast::transmute(move p);
// If we are killed here then the box will leak
po.recv();
let _p: ~int = cast::transmute(move pp);
}
}
// Now we can be killed
po.recv();
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_atomically() {
unsafe { do atomically { yield(); } }
}
#[test]
fn test_atomically2() {
unsafe { do atomically { } } yield(); // shouldn't fail
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_atomically_nested() {
unsafe { do atomically { do atomically { } yield(); } }
}
#[test]
fn test_child_doesnt_ref_parent() {
// If the child refcounts the parent task, this will stack overflow when
// climbing the task tree to dereference each ancestor. (See #1789)
// (well, it would if the constant were 8000+ - I lowered it to be more
// valgrind-friendly. try this at home, instead..!)
const generations: uint = 16;
fn child_no(x: uint) -> fn~() {
return || {
if x < generations {
task::spawn(child_no(x+1));
}
}
}
task::spawn(child_no(0));
}
#[test]
fn test_sched_thread_per_core() {
let (chan, port) = pipes::stream();
do spawn_sched(ThreadPerCore) |move chan| {
let cores = rt::rust_num_threads();
let reported_threads = rt::rust_sched_threads();
assert(cores as uint == reported_threads as uint);
chan.send(());
}
port.recv();
}
#[test]
fn test_spawn_thread_on_demand() {
let (chan, port) = pipes::stream();
do spawn_sched(ManualThreads(2)) |move chan| {
let max_threads = rt::rust_sched_threads();
assert(max_threads as int == 2);
let running_threads = rt::rust_sched_current_nonlazy_threads();
assert(running_threads as int == 1);
let (chan2, port2) = pipes::stream();
do spawn() |move chan2| {
chan2.send(());
}
let running_threads2 = rt::rust_sched_current_nonlazy_threads();
assert(running_threads2 as int == 2);
port2.recv();
chan.send(());
}
port.recv();
}