rust/src/libstd/run.rs

1360 lines
41 KiB
Rust
Raw Normal View History

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Process spawning.
#[allow(missing_doc)];
use c_str::ToCStr;
use cast;
2013-07-02 14:47:32 -05:00
use clone::Clone;
use comm::{stream, SharedChan, GenericChan, GenericPort};
use io;
use libc::{pid_t, c_void, c_int};
use libc;
use option::{Some, None};
use os;
use prelude::*;
use ptr;
use task;
use vec::ImmutableVector;
use vec;
/**
* A value representing a child process.
*
* The lifetime of this value is linked to the lifetime of the actual
* process - the Process destructor calls self.finish() which waits
* for the process to terminate.
*/
pub struct Process {
/// The unique id of the process (this should never be negative).
priv pid: pid_t,
/**
* A handle to the process - on unix this will always be NULL, but on
* windows it will be a HANDLE to the process, which will prevent the
* pid being re-used until the handle is closed.
*/
priv handle: *(),
/// Some(fd), or None when stdin is being redirected from a fd not created by Process::new.
priv input: Option<c_int>,
/// Some(file), or None when stdout is being redirected to a fd not created by Process::new.
priv output: Option<*libc::FILE>,
/// Some(file), or None when stderr is being redirected to a fd not created by Process::new.
priv error: Option<*libc::FILE>,
/// None until finish() is called.
priv exit_code: Option<int>,
}
/// Options that can be given when starting a Process.
pub struct ProcessOptions<'self> {
/**
* If this is None then the new process will have the same initial
* environment as the parent process.
*
* If this is Some(vec-of-names-and-values) then the new process will
* have an environment containing the given named values only.
*/
env: Option<&'self [(~str, ~str)]>,
/**
* If this is None then the new process will use the same initial working
* directory as the parent process.
*
* If this is Some(path) then the new process will use the given path
* for its initial working directory.
*/
dir: Option<&'self Path>,
/**
* If this is None then a new pipe will be created for the new process's
* input and Process.input() will provide a Writer to write to this pipe.
*
* If this is Some(file-descriptor) then the new process will read its input
* from the given file descriptor, Process.input_redirected() will return
* true, and Process.input() will fail.
*/
in_fd: Option<c_int>,
/**
* If this is None then a new pipe will be created for the new progam's
* output and Process.output() will provide a Reader to read from this pipe.
*
* If this is Some(file-descriptor) then the new process will write its output
* to the given file descriptor, Process.output_redirected() will return
* true, and Process.output() will fail.
*/
out_fd: Option<c_int>,
/**
* If this is None then a new pipe will be created for the new progam's
* error stream and Process.error() will provide a Reader to read from this pipe.
*
* If this is Some(file-descriptor) then the new process will write its error output
* to the given file descriptor, Process.error_redirected() will return true, and
* and Process.error() will fail.
*/
err_fd: Option<c_int>,
}
impl <'self> ProcessOptions<'self> {
/// Return a ProcessOptions that has None in every field.
pub fn new<'a>() -> ProcessOptions<'a> {
ProcessOptions {
env: None,
dir: None,
in_fd: None,
out_fd: None,
err_fd: None,
}
}
}
/// The output of a finished process.
pub struct ProcessOutput {
/// The status (exit code) of the process.
status: int,
/// The data that the process wrote to stdout.
output: ~[u8],
/// The data that the process wrote to stderr.
error: ~[u8],
}
impl Process {
/**
* Spawns a new Process.
*
* # Arguments
*
* * prog - The path to an executable.
* * args - Vector of arguments to pass to the child process.
* * options - Options to configure the environment of the process,
* the working directory and the standard IO streams.
*/
pub fn new(prog: &str, args: &[~str], options: ProcessOptions)
-> Process {
let (in_pipe, in_fd) = match options.in_fd {
None => {
let pipe = os::pipe();
(Some(pipe), pipe.input)
},
Some(fd) => (None, fd)
};
let (out_pipe, out_fd) = match options.out_fd {
None => {
let pipe = os::pipe();
(Some(pipe), pipe.out)
},
Some(fd) => (None, fd)
};
let (err_pipe, err_fd) = match options.err_fd {
None => {
let pipe = os::pipe();
(Some(pipe), pipe.out)
},
Some(fd) => (None, fd)
};
let res = spawn_process_os(prog, args, options.env, options.dir,
in_fd, out_fd, err_fd);
unsafe {
for pipe in in_pipe.iter() { libc::close(pipe.input); }
for pipe in out_pipe.iter() { libc::close(pipe.out); }
for pipe in err_pipe.iter() { libc::close(pipe.out); }
}
Process {
pid: res.pid,
handle: res.handle,
input: in_pipe.map(|pipe| pipe.out),
output: out_pipe.map(|pipe| os::fdopen(pipe.input)),
error: err_pipe.map(|pipe| os::fdopen(pipe.input)),
exit_code: None,
}
}
/// Returns the unique id of the process
pub fn get_id(&self) -> pid_t { self.pid }
fn input_fd(&mut self) -> c_int {
match self.input {
Some(fd) => fd,
None => fail!("This Process's stdin was redirected to an \
existing file descriptor.")
}
}
fn output_file(&mut self) -> *libc::FILE {
match self.output {
Some(file) => file,
None => fail!("This Process's stdout was redirected to an \
existing file descriptor.")
}
}
fn error_file(&mut self) -> *libc::FILE {
match self.error {
Some(file) => file,
None => fail!("This Process's stderr was redirected to an \
existing file descriptor.")
}
}
/**
* Returns whether this process is reading its stdin from an existing file
* descriptor rather than a pipe that was created specifically for this
* process.
*
* If this method returns true then self.input() will fail.
*/
pub fn input_redirected(&self) -> bool {
self.input.is_none()
}
/**
* Returns whether this process is writing its stdout to an existing file
* descriptor rather than a pipe that was created specifically for this
* process.
*
* If this method returns true then self.output() will fail.
*/
pub fn output_redirected(&self) -> bool {
self.output.is_none()
}
/**
* Returns whether this process is writing its stderr to an existing file
* descriptor rather than a pipe that was created specifically for this
* process.
*
* If this method returns true then self.error() will fail.
*/
pub fn error_redirected(&self) -> bool {
self.error.is_none()
}
/**
* Returns an io::Writer that can be used to write to this Process's stdin.
*
* Fails if this Process's stdin was redirected to an existing file descriptor.
*/
pub fn input(&mut self) -> @io::Writer {
// FIXME: the Writer can still be used after self is destroyed: #2625
io::fd_writer(self.input_fd(), false)
}
/**
* Returns an io::Reader that can be used to read from this Process's stdout.
*
* Fails if this Process's stdout was redirected to an existing file descriptor.
*/
pub fn output(&mut self) -> @io::Reader {
// FIXME: the Reader can still be used after self is destroyed: #2625
io::FILE_reader(self.output_file(), false)
}
/**
* Returns an io::Reader that can be used to read from this Process's stderr.
*
* Fails if this Process's stderr was redirected to an existing file descriptor.
*/
pub fn error(&mut self) -> @io::Reader {
// FIXME: the Reader can still be used after self is destroyed: #2625
io::FILE_reader(self.error_file(), false)
}
/**
* Closes the handle to the child process's stdin.
*
* If this process is reading its stdin from an existing file descriptor, then this
* method does nothing.
*/
pub fn close_input(&mut self) {
match self.input {
Some(-1) | None => (),
Some(fd) => {
unsafe {
libc::close(fd);
}
self.input = Some(-1);
}
}
}
fn close_outputs(&mut self) {
fclose_and_null(&mut self.output);
fclose_and_null(&mut self.error);
fn fclose_and_null(f_opt: &mut Option<*libc::FILE>) {
match *f_opt {
Some(f) if !f.is_null() => {
unsafe {
libc::fclose(f);
*f_opt = Some(0 as *libc::FILE);
}
},
_ => ()
}
}
}
/**
* Closes the handle to stdin, waits for the child process to terminate,
* and returns the exit code.
*
* If the child has already been finished then the exit code is returned.
*/
pub fn finish(&mut self) -> int {
for &code in self.exit_code.iter() {
return code;
}
self.close_input();
let code = waitpid(self.pid);
self.exit_code = Some(code);
return code;
}
/**
* Closes the handle to stdin, waits for the child process to terminate, and reads
* and returns all remaining output of stdout and stderr, along with the exit code.
*
* If the child has already been finished then the exit code and any remaining
* unread output of stdout and stderr will be returned.
*
* This method will fail if the child process's stdout or stderr streams were
* redirected to existing file descriptors.
*/
pub fn finish_with_output(&mut self) -> ProcessOutput {
let output_file = self.output_file();
let error_file = self.error_file();
// Spawn two entire schedulers to read both stdout and sterr
// in parallel so we don't deadlock while blocking on one
// or the other. FIXME (#2625): Surely there's a much more
// clever way to do this.
let (p, ch) = stream();
let ch = SharedChan::new(ch);
let ch_clone = ch.clone();
do task::spawn_sched(task::SingleThreaded) {
let errput = io::FILE_reader(error_file, false);
ch.send((2, errput.read_whole_stream()));
}
do task::spawn_sched(task::SingleThreaded) {
let output = io::FILE_reader(output_file, false);
ch_clone.send((1, output.read_whole_stream()));
}
let status = self.finish();
let (errs, outs) = match (p.recv(), p.recv()) {
((1, o), (2, e)) => (e, o),
((2, e), (1, o)) => (e, o),
((x, _), (y, _)) => {
fail!("unexpected file numbers: %u, %u", x, y);
}
};
return ProcessOutput {status: status,
output: outs,
error: errs};
}
fn destroy_internal(&mut self, force: bool) {
// if the process has finished, and therefore had waitpid called,
// and we kill it, then on unix we might ending up killing a
// newer process that happens to have the same (re-used) id
if self.exit_code.is_none() {
killpid(self.pid, force);
self.finish();
}
#[cfg(windows)]
fn killpid(pid: pid_t, _force: bool) {
unsafe {
libc::funcs::extra::kernel32::TerminateProcess(
cast::transmute(pid), 1);
}
}
#[cfg(unix)]
fn killpid(pid: pid_t, force: bool) {
let signal = if force {
libc::consts::os::posix88::SIGKILL
} else {
libc::consts::os::posix88::SIGTERM
};
unsafe {
libc::funcs::posix88::signal::kill(pid, signal as c_int);
}
}
}
2011-10-26 18:24:31 -05:00
/**
* Terminates the process, giving it a chance to clean itself up if
* this is supported by the operating system.
*
* On Posix OSs SIGTERM will be sent to the process. On Win32
* TerminateProcess(..) will be called.
*/
pub fn destroy(&mut self) { self.destroy_internal(false); }
/**
* Terminates the process as soon as possible without giving it a
* chance to clean itself up.
*
* On Posix OSs SIGKILL will be sent to the process. On Win32
* TerminateProcess(..) will be called.
*/
pub fn force_destroy(&mut self) { self.destroy_internal(true); }
2012-01-11 06:27:46 -06:00
}
2011-10-26 18:24:31 -05:00
impl Drop for Process {
2013-06-20 20:06:13 -05:00
fn drop(&self) {
// FIXME(#4330) Need self by value to get mutability.
let mut_self: &mut Process = unsafe { cast::transmute(self) };
2011-10-26 18:24:31 -05:00
mut_self.finish();
mut_self.close_outputs();
free_handle(self.handle);
}
}
struct SpawnProcessResult {
pid: pid_t,
handle: *(),
}
#[cfg(windows)]
fn spawn_process_os(prog: &str, args: &[~str],
env: Option<&[(~str, ~str)]>,
dir: Option<&Path>,
in_fd: c_int, out_fd: c_int, err_fd: c_int) -> SpawnProcessResult {
use libc::types::os::arch::extra::{DWORD, HANDLE, STARTUPINFO};
use libc::consts::os::extra::{
TRUE, FALSE,
STARTF_USESTDHANDLES,
INVALID_HANDLE_VALUE,
DUPLICATE_SAME_ACCESS
};
use libc::funcs::extra::kernel32::{
GetCurrentProcess,
DuplicateHandle,
CloseHandle,
CreateProcessA
};
use libc::funcs::extra::msvcrt::get_osfhandle;
use sys;
unsafe {
let mut si = zeroed_startupinfo();
si.cb = sys::size_of::<STARTUPINFO>() as DWORD;
si.dwFlags = STARTF_USESTDHANDLES;
let cur_proc = GetCurrentProcess();
let orig_std_in = get_osfhandle(in_fd) as HANDLE;
if orig_std_in == INVALID_HANDLE_VALUE as HANDLE {
fail!("failure in get_osfhandle: %s", os::last_os_error());
}
if DuplicateHandle(cur_proc, orig_std_in, cur_proc, &mut si.hStdInput,
0, TRUE, DUPLICATE_SAME_ACCESS) == FALSE {
fail!("failure in DuplicateHandle: %s", os::last_os_error());
}
let orig_std_out = get_osfhandle(out_fd) as HANDLE;
if orig_std_out == INVALID_HANDLE_VALUE as HANDLE {
fail!("failure in get_osfhandle: %s", os::last_os_error());
}
if DuplicateHandle(cur_proc, orig_std_out, cur_proc, &mut si.hStdOutput,
0, TRUE, DUPLICATE_SAME_ACCESS) == FALSE {
fail!("failure in DuplicateHandle: %s", os::last_os_error());
}
let orig_std_err = get_osfhandle(err_fd) as HANDLE;
if orig_std_err == INVALID_HANDLE_VALUE as HANDLE {
fail!("failure in get_osfhandle: %s", os::last_os_error());
}
if DuplicateHandle(cur_proc, orig_std_err, cur_proc, &mut si.hStdError,
0, TRUE, DUPLICATE_SAME_ACCESS) == FALSE {
fail!("failure in DuplicateHandle: %s", os::last_os_error());
}
let cmd = make_command_line(prog, args);
let mut pi = zeroed_process_information();
let mut create_err = None;
do with_envp(env) |envp| {
do with_dirp(dir) |dirp| {
do cmd.to_c_str().with_ref |cmdp| {
let created = CreateProcessA(ptr::null(), cast::transmute(cmdp),
ptr::mut_null(), ptr::mut_null(), TRUE,
0, envp, dirp, &mut si, &mut pi);
if created == FALSE {
create_err = Some(os::last_os_error());
}
}
}
}
CloseHandle(si.hStdInput);
CloseHandle(si.hStdOutput);
CloseHandle(si.hStdError);
for msg in create_err.iter() {
fail!("failure in CreateProcess: %s", *msg);
}
// We close the thread handle because we don't care about keeping the thread id valid,
// and we aren't keeping the thread handle around to be able to close it later. We don't
// close the process handle however because we want the process id to stay valid at least
// until the calling code closes the process handle.
CloseHandle(pi.hThread);
SpawnProcessResult {
pid: pi.dwProcessId as pid_t,
handle: pi.hProcess as *()
}
}
}
#[cfg(windows)]
fn zeroed_startupinfo() -> libc::types::os::arch::extra::STARTUPINFO {
libc::types::os::arch::extra::STARTUPINFO {
cb: 0,
lpReserved: ptr::mut_null(),
lpDesktop: ptr::mut_null(),
lpTitle: ptr::mut_null(),
dwX: 0,
dwY: 0,
dwXSize: 0,
dwYSize: 0,
dwXCountChars: 0,
dwYCountCharts: 0,
dwFillAttribute: 0,
dwFlags: 0,
wShowWindow: 0,
cbReserved2: 0,
lpReserved2: ptr::mut_null(),
hStdInput: ptr::mut_null(),
hStdOutput: ptr::mut_null(),
hStdError: ptr::mut_null()
}
}
#[cfg(windows)]
fn zeroed_process_information() -> libc::types::os::arch::extra::PROCESS_INFORMATION {
libc::types::os::arch::extra::PROCESS_INFORMATION {
hProcess: ptr::mut_null(),
hThread: ptr::mut_null(),
dwProcessId: 0,
dwThreadId: 0
}
}
// FIXME: this is only pub so it can be tested (see issue #4536)
#[cfg(windows)]
pub fn make_command_line(prog: &str, args: &[~str]) -> ~str {
let mut cmd = ~"";
append_arg(&mut cmd, prog);
for arg in args.iter() {
cmd.push_char(' ');
append_arg(&mut cmd, *arg);
}
return cmd;
fn append_arg(cmd: &mut ~str, arg: &str) {
2013-07-04 21:13:26 -05:00
let quote = arg.iter().any(|c| c == ' ' || c == '\t');
if quote {
cmd.push_char('"');
}
for i in range(0u, arg.len()) {
append_char_at(cmd, arg, i);
}
if quote {
cmd.push_char('"');
}
}
fn append_char_at(cmd: &mut ~str, arg: &str, i: uint) {
match arg[i] as char {
'"' => {
// Escape quotes.
cmd.push_str("\\\"");
}
'\\' => {
if backslash_run_ends_in_quote(arg, i) {
// Double all backslashes that are in runs before quotes.
cmd.push_str("\\\\");
} else {
// Pass other backslashes through unescaped.
cmd.push_char('\\');
}
}
c => {
cmd.push_char(c);
}
}
}
fn backslash_run_ends_in_quote(s: &str, mut i: uint) -> bool {
while i < s.len() && s[i] as char == '\\' {
i += 1;
}
return i < s.len() && s[i] as char == '"';
}
}
#[cfg(unix)]
fn spawn_process_os(prog: &str, args: &[~str],
env: Option<&[(~str, ~str)]>,
dir: Option<&Path>,
in_fd: c_int, out_fd: c_int, err_fd: c_int) -> SpawnProcessResult {
use libc::funcs::posix88::unistd::{fork, dup2, close, chdir, execvp};
use libc::funcs::bsd44::getdtablesize;
use int;
mod rustrt {
use libc::c_void;
#[abi = "cdecl"]
extern {
pub fn rust_unset_sigprocmask();
pub fn rust_set_environ(envp: *c_void);
}
}
2013-05-01 16:20:26 -05:00
unsafe {
let pid = fork();
if pid < 0 {
fail!("failure in fork: %s", os::last_os_error());
} else if pid > 0 {
return SpawnProcessResult {pid: pid, handle: ptr::null()};
}
rustrt::rust_unset_sigprocmask();
if dup2(in_fd, 0) == -1 {
fail!("failure in dup2(in_fd, 0): %s", os::last_os_error());
}
if dup2(out_fd, 1) == -1 {
fail!("failure in dup2(out_fd, 1): %s", os::last_os_error());
}
if dup2(err_fd, 2) == -1 {
fail!("failure in dup3(err_fd, 2): %s", os::last_os_error());
}
// close all other fds
do int::range_rev(getdtablesize() as int, 3) |fd| {
close(fd as c_int);
true
};
do with_dirp(dir) |dirp| {
if !dirp.is_null() && chdir(dirp) == -1 {
fail!("failure in chdir: %s", os::last_os_error());
}
}
do with_envp(env) |envp| {
if !envp.is_null() {
rustrt::rust_set_environ(envp);
}
do with_argv(prog, args) |argv| {
execvp(*argv, argv);
// execvp only returns if an error occurred
fail!("failure in execvp: %s", os::last_os_error());
}
}
}
}
#[cfg(unix)]
fn with_argv<T>(prog: &str, args: &[~str], cb: &fn(**libc::c_char) -> T) -> T {
// We can't directly convert `str`s into `*char`s, as someone needs to hold
// a reference to the intermediary byte buffers. So first build an array to
// hold all the ~[u8] byte strings.
let mut tmps = vec::with_capacity(args.len() + 1);
tmps.push(prog.to_c_str());
for arg in args.iter() {
tmps.push(arg.to_c_str());
}
// Next, convert each of the byte strings into a pointer. This is
// technically unsafe as the caller could leak these pointers out of our
// scope.
let mut ptrs = do tmps.map |tmp| {
tmp.with_ref(|buf| buf)
};
// Finally, make sure we add a null pointer.
ptrs.push(ptr::null());
ptrs.as_imm_buf(|buf, _| cb(buf))
}
#[cfg(unix)]
fn with_envp<T>(env: Option<&[(~str, ~str)]>, cb: &fn(*c_void) -> T) -> T {
// On posixy systems we can pass a char** for envp, which is a
// null-terminated array of "k=v\n" strings. Like `with_argv`, we have to
// have a temporary buffer to hold the intermediary `~[u8]` byte strings.
match env {
Some(env) => {
let mut tmps = vec::with_capacity(env.len());
for pair in env.iter() {
// Use of match here is just to workaround limitations
// in the stage0 irrefutable pattern impl.
let kv = fmt!("%s=%s", pair.first(), pair.second());
tmps.push(kv.to_c_str());
}
// Once again, this is unsafe.
let mut ptrs = do tmps.map |tmp| {
tmp.with_ref(|buf| buf)
};
ptrs.push(ptr::null());
do ptrs.as_imm_buf |buf, _| {
unsafe { cb(cast::transmute(buf)) }
}
}
_ => cb(ptr::null())
}
}
#[cfg(windows)]
fn with_envp<T>(env: Option<&[(~str, ~str)]>, cb: &fn(*mut c_void) -> T) -> T {
// On win32 we pass an "environment block" which is not a char**, but
// rather a concatenation of null-terminated k=v\0 sequences, with a final
// \0 to terminate.
match env {
Some(env) => {
let mut blk = ~[];
for pair in env.iter() {
let kv = fmt!("%s=%s", pair.first(), pair.second());
2013-08-04 15:22:56 -05:00
blk.push_all(kv.as_bytes());
blk.push(0);
}
blk.push(0);
do blk.as_imm_buf |p, _len| {
unsafe { cb(cast::transmute(p)) }
}
}
_ => cb(ptr::mut_null())
}
}
fn with_dirp<T>(d: Option<&Path>, cb: &fn(*libc::c_char) -> T) -> T {
match d {
Some(dir) => dir.to_c_str().with_ref(|buf| cb(buf)),
2012-08-20 14:23:37 -05:00
None => cb(ptr::null())
}
2011-07-18 23:07:33 -05:00
}
#[cfg(windows)]
priv fn free_handle(handle: *()) {
unsafe {
libc::funcs::extra::kernel32::CloseHandle(cast::transmute(handle));
}
}
#[cfg(unix)]
priv fn free_handle(_handle: *()) {
// unix has no process handle object, just a pid
}
/**
* Spawns a process and waits for it to terminate. The process will
* inherit the current stdin/stdout/stderr file descriptors.
*
* # Arguments
*
* * prog - The path to an executable
* * args - Vector of arguments to pass to the child process
*
* # Return value
*
* The process's exit code
*/
pub fn process_status(prog: &str, args: &[~str]) -> int {
let mut prog = Process::new(prog, args, ProcessOptions {
env: None,
dir: None,
in_fd: Some(0),
out_fd: Some(1),
err_fd: Some(2)
});
prog.finish()
2011-07-28 23:15:56 -05:00
}
/**
* Spawns a process, records all its output, and waits for it to terminate.
*
* # Arguments
*
* * prog - The path to an executable
* * args - Vector of arguments to pass to the child process
*
* # Return value
*
* The process's stdout/stderr output and exit code.
*/
pub fn process_output(prog: &str, args: &[~str]) -> ProcessOutput {
let mut prog = Process::new(prog, args, ProcessOptions::new());
prog.finish_with_output()
}
/**
* Waits for a process to exit and returns the exit code, failing
* if there is no process with the specified id.
*
* Note that this is private to avoid race conditions on unix where if
* a user calls waitpid(some_process.get_id()) then some_process.finish()
* and some_process.destroy() and some_process.finalize() will then either
* operate on a none-existant process or, even worse, on a newer process
* with the same id.
*/
priv fn waitpid(pid: pid_t) -> int {
2012-08-01 19:30:05 -05:00
return waitpid_os(pid);
#[cfg(windows)]
fn waitpid_os(pid: pid_t) -> int {
use libc::types::os::arch::extra::DWORD;
use libc::consts::os::extra::{
SYNCHRONIZE,
PROCESS_QUERY_INFORMATION,
FALSE,
STILL_ACTIVE,
INFINITE,
WAIT_FAILED
};
use libc::funcs::extra::kernel32::{
OpenProcess,
GetExitCodeProcess,
CloseHandle,
WaitForSingleObject
};
unsafe {
let proc = OpenProcess(SYNCHRONIZE | PROCESS_QUERY_INFORMATION, FALSE, pid as DWORD);
if proc.is_null() {
fail!("failure in OpenProcess: %s", os::last_os_error());
}
loop {
let mut status = 0;
if GetExitCodeProcess(proc, &mut status) == FALSE {
CloseHandle(proc);
fail!("failure in GetExitCodeProcess: %s", os::last_os_error());
}
if status != STILL_ACTIVE {
CloseHandle(proc);
return status as int;
}
if WaitForSingleObject(proc, INFINITE) == WAIT_FAILED {
CloseHandle(proc);
fail!("failure in WaitForSingleObject: %s", os::last_os_error());
}
}
}
}
#[cfg(unix)]
2011-11-15 00:29:40 -06:00
fn waitpid_os(pid: pid_t) -> int {
use libc::funcs::posix01::wait::*;
2011-10-26 18:24:31 -05:00
#[cfg(target_os = "linux")]
#[cfg(target_os = "android")]
2011-11-15 00:29:40 -06:00
fn WIFEXITED(status: i32) -> bool {
(status & 0xffi32) == 0i32
2011-10-26 18:24:31 -05:00
}
2011-10-26 18:24:31 -05:00
#[cfg(target_os = "macos")]
2011-12-30 02:18:55 -06:00
#[cfg(target_os = "freebsd")]
2011-11-15 00:29:40 -06:00
fn WIFEXITED(status: i32) -> bool {
(status & 0x7fi32) == 0i32
2011-10-26 18:24:31 -05:00
}
#[cfg(target_os = "linux")]
#[cfg(target_os = "android")]
2011-11-15 00:29:40 -06:00
fn WEXITSTATUS(status: i32) -> i32 {
(status >> 8i32) & 0xffi32
2011-10-26 18:24:31 -05:00
}
#[cfg(target_os = "macos")]
2011-12-30 02:18:55 -06:00
#[cfg(target_os = "freebsd")]
2011-11-15 00:29:40 -06:00
fn WEXITSTATUS(status: i32) -> i32 {
status >> 8i32
2011-10-26 18:24:31 -05:00
}
let mut status = 0 as c_int;
if unsafe { waitpid(pid, &mut status, 0) } == -1 {
fail!("failure in waitpid: %s", os::last_os_error());
}
2012-08-01 19:30:05 -05:00
return if WIFEXITED(status) {
2011-11-15 00:29:40 -06:00
WEXITSTATUS(status) as int
2011-10-26 18:24:31 -05:00
} else {
1
};
}
}
2012-01-17 21:05:07 -06:00
#[cfg(test)]
mod tests {
use io;
use libc::{c_int, uintptr_t};
use option::{Option, None, Some};
use os;
use path::Path;
use run;
use str;
2012-01-17 21:05:07 -06:00
#[test]
#[cfg(windows)]
fn test_make_command_line() {
assert_eq!(
run::make_command_line("prog", [~"aaa", ~"bbb", ~"ccc"]),
~"prog aaa bbb ccc"
);
assert_eq!(
run::make_command_line("C:\\Program Files\\blah\\blah.exe", [~"aaa"]),
~"\"C:\\Program Files\\blah\\blah.exe\" aaa"
);
assert_eq!(
run::make_command_line("C:\\Program Files\\test", [~"aa\"bb"]),
~"\"C:\\Program Files\\test\" aa\\\"bb"
);
assert_eq!(
run::make_command_line("echo", [~"a b c"]),
~"echo \"a b c\""
);
}
#[test]
2013-06-28 05:02:39 -05:00
#[cfg(not(target_os="android"))]
fn test_process_status() {
assert_eq!(run::process_status("false", []), 1);
assert_eq!(run::process_status("true", []), 0);
}
2013-06-28 05:02:39 -05:00
#[test]
#[cfg(target_os="android")]
fn test_process_status() {
assert_eq!(run::process_status("/system/bin/sh", [~"-c",~"false"]), 1);
assert_eq!(run::process_status("/system/bin/sh", [~"-c",~"true"]), 0);
}
#[test]
2013-06-28 05:02:39 -05:00
#[cfg(not(target_os="android"))]
fn test_process_output_output() {
let run::ProcessOutput {status, output, error}
= run::process_output("echo", [~"hello"]);
let output_str = str::from_bytes(output);
assert_eq!(status, 0);
assert_eq!(output_str.trim().to_owned(), ~"hello");
// FIXME #7224
if !running_on_valgrind() {
assert_eq!(error, ~[]);
}
}
2013-06-28 05:02:39 -05:00
#[test]
#[cfg(target_os="android")]
fn test_process_output_output() {
let run::ProcessOutput {status, output, error}
= run::process_output("/system/bin/sh", [~"-c",~"echo hello"]);
let output_str = str::from_bytes(output);
assert_eq!(status, 0);
assert_eq!(output_str.trim().to_owned(), ~"hello");
// FIXME #7224
if !running_on_valgrind() {
assert_eq!(error, ~[]);
}
}
#[test]
2013-06-28 05:02:39 -05:00
#[cfg(not(target_os="android"))]
fn test_process_output_error() {
let run::ProcessOutput {status, output, error}
= run::process_output("mkdir", [~"."]);
assert_eq!(status, 1);
assert_eq!(output, ~[]);
assert!(!error.is_empty());
2012-01-17 21:05:07 -06:00
}
2013-06-28 05:02:39 -05:00
#[test]
#[cfg(target_os="android")]
fn test_process_output_error() {
let run::ProcessOutput {status, output, error}
= run::process_output("/system/bin/mkdir", [~"."]);
assert_eq!(status, 255);
assert_eq!(output, ~[]);
assert!(!error.is_empty());
}
2012-01-17 21:05:07 -06:00
#[test]
fn test_pipes() {
2012-01-17 21:05:07 -06:00
let pipe_in = os::pipe();
let pipe_out = os::pipe();
let pipe_err = os::pipe();
let mut proc = run::Process::new("cat", [], run::ProcessOptions {
dir: None,
env: None,
in_fd: Some(pipe_in.input),
out_fd: Some(pipe_out.out),
err_fd: Some(pipe_err.out)
});
assert!(proc.input_redirected());
assert!(proc.output_redirected());
assert!(proc.error_redirected());
os::close(pipe_in.input);
2012-01-17 21:05:07 -06:00
os::close(pipe_out.out);
os::close(pipe_err.out);
let expected = ~"test";
writeclose(pipe_in.out, expected);
let actual = readclose(pipe_out.input);
readclose(pipe_err.input);
proc.finish();
2012-01-17 21:05:07 -06:00
assert_eq!(expected, actual);
2012-01-17 21:05:07 -06:00
}
fn writeclose(fd: c_int, s: &str) {
let writer = io::fd_writer(fd, false);
writer.write_str(s);
os::close(fd);
}
fn readclose(fd: c_int) -> ~str {
unsafe {
let file = os::fdopen(fd);
let reader = io::FILE_reader(file, false);
let buf = reader.read_whole_stream();
os::fclose(file);
str::from_bytes(buf)
}
}
2012-01-17 21:05:07 -06:00
#[test]
2013-06-28 05:02:39 -05:00
#[cfg(not(target_os="android"))]
fn test_finish_once() {
let mut prog = run::Process::new("false", [], run::ProcessOptions::new());
assert_eq!(prog.finish(), 1);
}
2013-06-28 05:02:39 -05:00
#[test]
#[cfg(target_os="android")]
fn test_finish_once() {
let mut prog = run::Process::new("/system/bin/sh", [~"-c",~"false"],
run::ProcessOptions::new());
assert_eq!(prog.finish(), 1);
}
#[test]
2013-06-28 05:02:39 -05:00
#[cfg(not(target_os="android"))]
fn test_finish_twice() {
let mut prog = run::Process::new("false", [], run::ProcessOptions::new());
assert_eq!(prog.finish(), 1);
assert_eq!(prog.finish(), 1);
}
2013-06-28 05:02:39 -05:00
#[test]
#[cfg(target_os="android")]
fn test_finish_twice() {
let mut prog = run::Process::new("/system/bin/sh", [~"-c",~"false"],
run::ProcessOptions::new());
assert_eq!(prog.finish(), 1);
assert_eq!(prog.finish(), 1);
}
#[test]
2013-06-28 05:02:39 -05:00
#[cfg(not(target_os="android"))]
fn test_finish_with_output_once() {
let mut prog = run::Process::new("echo", [~"hello"], run::ProcessOptions::new());
let run::ProcessOutput {status, output, error}
= prog.finish_with_output();
let output_str = str::from_bytes(output);
assert_eq!(status, 0);
assert_eq!(output_str.trim().to_owned(), ~"hello");
// FIXME #7224
if !running_on_valgrind() {
assert_eq!(error, ~[]);
}
}
2013-06-28 05:02:39 -05:00
#[test]
#[cfg(target_os="android")]
fn test_finish_with_output_once() {
let mut prog = run::Process::new("/system/bin/sh", [~"-c",~"echo hello"],
run::ProcessOptions::new());
let run::ProcessOutput {status, output, error}
= prog.finish_with_output();
let output_str = str::from_bytes(output);
assert_eq!(status, 0);
assert_eq!(output_str.trim().to_owned(), ~"hello");
// FIXME #7224
if !running_on_valgrind() {
assert_eq!(error, ~[]);
}
}
#[test]
2013-06-28 05:02:39 -05:00
#[cfg(not(target_os="android"))]
fn test_finish_with_output_twice() {
let mut prog = run::Process::new("echo", [~"hello"], run::ProcessOptions::new());
let run::ProcessOutput {status, output, error}
= prog.finish_with_output();
let output_str = str::from_bytes(output);
assert_eq!(status, 0);
assert_eq!(output_str.trim().to_owned(), ~"hello");
// FIXME #7224
if !running_on_valgrind() {
assert_eq!(error, ~[]);
}
let run::ProcessOutput {status, output, error}
= prog.finish_with_output();
assert_eq!(status, 0);
assert_eq!(output, ~[]);
// FIXME #7224
if !running_on_valgrind() {
assert_eq!(error, ~[]);
}
2012-01-17 21:05:07 -06:00
}
2013-06-28 05:02:39 -05:00
#[test]
#[cfg(target_os="android")]
fn test_finish_with_output_twice() {
let mut prog = run::Process::new("/system/bin/sh", [~"-c",~"echo hello"],
run::ProcessOptions::new());
let run::ProcessOutput {status, output, error}
= prog.finish_with_output();
let output_str = str::from_bytes(output);
assert_eq!(status, 0);
assert_eq!(output_str.trim().to_owned(), ~"hello");
// FIXME #7224
if !running_on_valgrind() {
assert_eq!(error, ~[]);
}
let run::ProcessOutput {status, output, error}
= prog.finish_with_output();
assert_eq!(status, 0);
assert_eq!(output, ~[]);
// FIXME #7224
if !running_on_valgrind() {
assert_eq!(error, ~[]);
}
}
2012-01-17 21:05:07 -06:00
#[test]
#[should_fail]
2013-06-28 05:02:39 -05:00
#[cfg(not(windows),not(target_os="android"))]
fn test_finish_with_output_redirected() {
let mut prog = run::Process::new("echo", [~"hello"], run::ProcessOptions {
env: None,
dir: None,
in_fd: Some(0),
out_fd: Some(1),
err_fd: Some(2)
});
// this should fail because it is not valid to read the output when it was redirected
prog.finish_with_output();
}
2013-06-28 05:02:39 -05:00
#[test]
#[should_fail]
#[cfg(not(windows),target_os="android")]
fn test_finish_with_output_redirected() {
let mut prog = run::Process::new("/system/bin/sh", [~"-c",~"echo hello"],
run::ProcessOptions {
env: None,
dir: None,
in_fd: Some(0),
out_fd: Some(1),
err_fd: Some(2)
});
// this should fail because it is not valid to read the output when it was redirected
prog.finish_with_output();
}
2013-06-28 05:02:39 -05:00
#[cfg(unix,not(target_os="android"))]
fn run_pwd(dir: Option<&Path>) -> run::Process {
run::Process::new("pwd", [], run::ProcessOptions {
dir: dir,
.. run::ProcessOptions::new()
})
}
2013-06-28 05:02:39 -05:00
#[cfg(unix,target_os="android")]
fn run_pwd(dir: Option<&Path>) -> run::Process {
run::Process::new("/system/bin/sh", [~"-c",~"pwd"], run::ProcessOptions {
dir: dir,
.. run::ProcessOptions::new()
})
}
#[cfg(windows)]
fn run_pwd(dir: Option<&Path>) -> run::Process {
run::Process::new("cmd", [~"/c", ~"cd"], run::ProcessOptions {
dir: dir,
.. run::ProcessOptions::new()
})
}
#[test]
fn test_keep_current_working_dir() {
let mut prog = run_pwd(None);
let output = str::from_bytes(prog.finish_with_output().output);
let parent_dir = os::getcwd().normalize();
let child_dir = Path(output.trim()).normalize();
let parent_stat = parent_dir.stat().unwrap();
let child_stat = child_dir.stat().unwrap();
assert_eq!(parent_stat.st_dev, child_stat.st_dev);
assert_eq!(parent_stat.st_ino, child_stat.st_ino);
}
#[test]
fn test_change_working_directory() {
// test changing to the parent of os::getcwd() because we know
// the path exists (and os::getcwd() is not expected to be root)
let parent_dir = os::getcwd().dir_path().normalize();
let mut prog = run_pwd(Some(&parent_dir));
let output = str::from_bytes(prog.finish_with_output().output);
let child_dir = Path(output.trim()).normalize();
let parent_stat = parent_dir.stat().unwrap();
let child_stat = child_dir.stat().unwrap();
assert_eq!(parent_stat.st_dev, child_stat.st_dev);
assert_eq!(parent_stat.st_ino, child_stat.st_ino);
}
2013-06-28 05:02:39 -05:00
#[cfg(unix,not(target_os="android"))]
fn run_env(env: Option<&[(~str, ~str)]>) -> run::Process {
run::Process::new("env", [], run::ProcessOptions {
env: env,
.. run::ProcessOptions::new()
})
}
2013-06-28 05:02:39 -05:00
#[cfg(unix,target_os="android")]
fn run_env(env: Option<&[(~str, ~str)]>) -> run::Process {
run::Process::new("/system/bin/sh", [~"-c",~"set"], run::ProcessOptions {
env: env,
.. run::ProcessOptions::new()
})
}
#[cfg(windows)]
fn run_env(env: Option<&[(~str, ~str)]>) -> run::Process {
run::Process::new("cmd", [~"/c", ~"set"], run::ProcessOptions {
env: env,
.. run::ProcessOptions::new()
})
}
#[test]
2013-06-28 05:02:39 -05:00
#[cfg(not(target_os="android"))]
fn test_inherit_env() {
if running_on_valgrind() { return; }
let mut prog = run_env(None);
let output = str::from_bytes(prog.finish_with_output().output);
let r = os::env();
for &(ref k, ref v) in r.iter() {
// don't check windows magical empty-named variables
assert!(k.is_empty() || output.contains(fmt!("%s=%s", *k, *v)));
}
}
2013-06-28 05:02:39 -05:00
#[test]
#[cfg(target_os="android")]
fn test_inherit_env() {
if running_on_valgrind() { return; }
let mut prog = run_env(None);
let output = str::from_bytes(prog.finish_with_output().output);
let r = os::env();
for &(k, v) in r.iter() {
2013-06-28 05:02:39 -05:00
// don't check android RANDOM variables
if k != ~"RANDOM" {
assert!(output.contains(fmt!("%s=%s", k, v)) ||
output.contains(fmt!("%s=\'%s\'", k, v)));
}
}
}
#[test]
fn test_add_to_env() {
let mut new_env = os::env();
new_env.push((~"RUN_TEST_NEW_ENV", ~"123"));
let mut prog = run_env(Some(new_env.slice(0, new_env.len())));
let output = str::from_bytes(prog.finish_with_output().output);
assert!(output.contains("RUN_TEST_NEW_ENV=123"));
}
fn running_on_valgrind() -> bool {
unsafe { rust_running_on_valgrind() != 0 }
}
extern {
fn rust_running_on_valgrind() -> uintptr_t;
}
2012-01-17 21:05:07 -06:00
}