1007 lines
38 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use back::{link};
use llvm::{ValueRef, CallConv, Linkage, get_param};
use llvm;
rustc: Add official support for weak failure This commit is part of the ongoing libstd facade efforts (cc #13851). The compiler now recognizes some language items as "extern { fn foo(...); }" and will automatically perform the following actions: 1. The foreign function has a pre-defined name. 2. The crate and downstream crates can only be built as rlibs until a crate defines the lang item itself. 3. The actual lang item has a pre-defined name. This is essentially nicer compiler support for the hokey core-depends-on-std-failure scheme today, but it is implemented the same way. The details are a little more hidden under the covers. In addition to failure, this commit promotes the eh_personality and rust_stack_exhausted functions to official lang items. The compiler can generate calls to these functions, causing linkage errors if they are left undefined. The checking for these items is not as precise as it could be. Crates compiling with `-Z no-landing-pads` will not need the eh_personality lang item, and crates compiling with no split stacks won't need the stack exhausted lang item. For ease, however, these items are checked for presence in all final outputs of the compiler. It is quite easy to define dummy versions of the functions necessary: #[lang = "stack_exhausted"] extern fn stack_exhausted() { /* ... */ } #[lang = "eh_personality"] extern fn eh_personality() { /* ... */ } cc #11922, rust_stack_exhausted is now a lang item cc #13851, libcollections is blocked on eh_personality becoming weak
2014-05-19 09:30:09 -07:00
use middle::weak_lang_items;
use middle::trans::base::push_ctxt;
use middle::trans::base;
use middle::trans::build::*;
use middle::trans::cabi;
use middle::trans::common::*;
use middle::trans::machine;
use middle::trans::type_::Type;
use middle::trans::type_of::*;
use middle::trans::type_of;
2013-04-26 19:13:38 -07:00
use middle::ty::FnSig;
use middle::ty;
use middle::subst::Subst;
use std::cmp;
2014-02-26 12:58:41 -05:00
use libc::c_uint;
use syntax::abi::{Cdecl, Aapcs, C, Win64, Abi};
use syntax::abi::{RustIntrinsic, Rust, RustCall, Stdcall, Fastcall, System};
use syntax::codemap::Span;
use syntax::parse::token::{InternedString, special_idents};
use syntax::parse::token;
use syntax::{ast};
use syntax::{attr, ast_map};
use util::ppaux::{Repr, UserString};
///////////////////////////////////////////////////////////////////////////
// Type definitions
struct ForeignTypes {
/// Rust signature of the function
fn_sig: ty::FnSig,
/// Adapter object for handling native ABI rules (trust me, you
/// don't want to know)
fn_ty: cabi::FnType,
/// LLVM types that will appear on the foreign function
llsig: LlvmSignature,
/// True if there is a return value (not bottom, not unit)
ret_def: bool,
}
struct LlvmSignature {
// LLVM versions of the types of this function's arguments.
llarg_tys: Vec<Type> ,
// LLVM version of the type that this function returns. Note that
// this *may not be* the declared return type of the foreign
// function, because the foreign function may opt to return via an
// out pointer.
llret_ty: Type,
}
2012-02-13 16:06:56 -08:00
///////////////////////////////////////////////////////////////////////////
// Calls to external functions
2012-02-13 16:06:56 -08:00
2013-12-19 16:47:15 -08:00
pub fn llvm_calling_convention(ccx: &CrateContext,
abi: Abi) -> Option<CallConv> {
2014-03-05 16:36:01 +02:00
let os = ccx.sess().targ_cfg.os;
let arch = ccx.sess().targ_cfg.arch;
abi.for_target(os, arch).map(|abi| {
match abi {
RustIntrinsic => {
// Intrinsics are emitted at the call site
ccx.sess().bug("asked to register intrinsic fn");
}
2012-02-13 16:06:56 -08:00
Rust => {
// FIXME(#3678) Implement linking to foreign fns with Rust ABI
ccx.sess().unimpl("foreign functions with Rust ABI");
}
RustCall => {
// FIXME(#3678) Implement linking to foreign fns with Rust ABI
ccx.sess().unimpl("foreign functions with RustCall ABI");
}
// It's the ABI's job to select this, not us.
2014-03-05 16:36:01 +02:00
System => ccx.sess().bug("system abi should be selected elsewhere"),
Stdcall => llvm::X86StdcallCallConv,
Fastcall => llvm::X86FastcallCallConv,
C => llvm::CCallConv,
Win64 => llvm::X86_64_Win64,
2012-02-13 16:06:56 -08:00
2013-11-28 12:22:53 -08:00
// These API constants ought to be more specific...
Cdecl => llvm::CCallConv,
Aapcs => llvm::CCallConv,
}
})
}
2012-02-13 16:06:56 -08:00
pub fn llvm_linkage_by_name(name: &str) -> Option<Linkage> {
// Use the names from src/llvm/docs/LangRef.rst here. Most types are only
// applicable to variable declarations and may not really make sense for
// Rust code in the first place but whitelist them anyway and trust that
// the user knows what s/he's doing. Who knows, unanticipated use cases
// may pop up in the future.
//
// ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
// and don't have to be, LLVM treats them as no-ops.
match name {
"appending" => Some(llvm::AppendingLinkage),
"available_externally" => Some(llvm::AvailableExternallyLinkage),
"common" => Some(llvm::CommonLinkage),
"extern_weak" => Some(llvm::ExternalWeakLinkage),
"external" => Some(llvm::ExternalLinkage),
"internal" => Some(llvm::InternalLinkage),
"linkonce" => Some(llvm::LinkOnceAnyLinkage),
"linkonce_odr" => Some(llvm::LinkOnceODRLinkage),
"private" => Some(llvm::PrivateLinkage),
"weak" => Some(llvm::WeakAnyLinkage),
"weak_odr" => Some(llvm::WeakODRLinkage),
_ => None,
}
}
2014-03-06 18:47:24 +02:00
pub fn register_static(ccx: &CrateContext,
foreign_item: &ast::ForeignItem) -> ValueRef {
let ty = ty::node_id_to_type(ccx.tcx(), foreign_item.id);
let llty = type_of::type_of(ccx, ty);
let ident = link_name(foreign_item);
match attr::first_attr_value_str_by_name(foreign_item.attrs.as_slice(),
"linkage") {
// If this is a static with a linkage specified, then we need to handle
// it a little specially. The typesystem prevents things like &T and
// extern "C" fn() from being non-null, so we can't just declare a
// static and call it a day. Some linkages (like weak) will make it such
// that the static actually has a null value.
Some(name) => {
let linkage = match llvm_linkage_by_name(name.get()) {
Some(linkage) => linkage,
None => {
2014-03-06 18:47:24 +02:00
ccx.sess().span_fatal(foreign_item.span,
"invalid linkage specified");
}
};
let llty2 = match ty::get(ty).sty {
ty::ty_ptr(ref mt) => type_of::type_of(ccx, mt.ty),
_ => {
2014-03-06 18:47:24 +02:00
ccx.sess().span_fatal(foreign_item.span,
"must have type `*T` or `*mut T`");
}
};
unsafe {
let g1 = ident.get().with_c_str(|buf| {
llvm::LLVMAddGlobal(ccx.llmod, llty2.to_ref(), buf)
});
llvm::SetLinkage(g1, linkage);
let mut real_name = "_rust_extern_with_linkage_".to_string();
real_name.push_str(ident.get());
let g2 = real_name.with_c_str(|buf| {
llvm::LLVMAddGlobal(ccx.llmod, llty.to_ref(), buf)
});
llvm::SetLinkage(g2, llvm::InternalLinkage);
llvm::LLVMSetInitializer(g2, g1);
g2
}
}
None => unsafe {
ident.get().with_c_str(|buf| {
llvm::LLVMAddGlobal(ccx.llmod, llty.to_ref(), buf)
})
}
}
}
2013-06-16 23:11:17 +12:00
pub fn register_foreign_item_fn(ccx: &CrateContext, abi: Abi, fty: ty::t,
name: &str, span: Option<Span>) -> ValueRef {
/*!
* Registers a foreign function found in a library.
* Just adds a LLVM global.
*/
2012-02-13 16:06:56 -08:00
debug!("register_foreign_item_fn(abi={}, \
ty={}, \
name={})",
abi.repr(ccx.tcx()),
fty.repr(ccx.tcx()),
name);
let cc = match llvm_calling_convention(ccx, abi) {
Some(cc) => cc,
None => {
match span {
Some(s) => {
ccx.sess().span_fatal(s,
format!("ABI `{}` has no suitable calling convention \
for target architecture",
abi.user_string(ccx.tcx())).as_slice())
}
None => {
ccx.sess().fatal(
format!("ABI `{}` has no suitable calling convention \
for target architecture",
abi.user_string(ccx.tcx())).as_slice())
}
}
}
};
// Register the function as a C extern fn
let tys = foreign_types_for_fn_ty(ccx, fty);
// Make sure the calling convention is right for variadic functions
// (should've been caught if not in typeck)
if tys.fn_sig.variadic {
assert!(cc == llvm::CCallConv);
}
// Create the LLVM value for the C extern fn
let llfn_ty = lltype_for_fn_from_foreign_types(ccx, &tys);
let llfn = base::get_extern_fn(ccx,
&mut *ccx.externs.borrow_mut(),
name,
cc,
llfn_ty,
fty);
add_argument_attributes(&tys, llfn);
llfn
}
pub fn trans_native_call<'a>(
bcx: &'a Block<'a>,
callee_ty: ty::t,
llfn: ValueRef,
llretptr: ValueRef,
llargs_rust: &[ValueRef],
passed_arg_tys: Vec<ty::t> )
-> &'a Block<'a> {
/*!
* Prepares a call to a native function. This requires adapting
* from the Rust argument passing rules to the native rules.
*
* # Parameters
*
* - `callee_ty`: Rust type for the function we are calling
* - `llfn`: the function pointer we are calling
* - `llretptr`: where to store the return value of the function
* - `llargs_rust`: a list of the argument values, prepared
* as they would be if calling a Rust function
* - `passed_arg_tys`: Rust type for the arguments. Normally we
* can derive these from callee_ty but in the case of variadic
* functions passed_arg_tys will include the Rust type of all
* the arguments including the ones not specified in the fn's signature.
*/
let ccx = bcx.ccx();
let tcx = bcx.tcx();
debug!("trans_native_call(callee_ty={}, \
2013-09-27 22:38:08 -07:00
llfn={}, \
llretptr={})",
callee_ty.repr(tcx),
ccx.tn.val_to_string(llfn),
ccx.tn.val_to_string(llretptr));
let (fn_abi, fn_sig) = match ty::get(callee_ty).sty {
ty::ty_bare_fn(ref fn_ty) => (fn_ty.abi, fn_ty.sig.clone()),
2014-03-05 16:36:01 +02:00
_ => ccx.sess().bug("trans_native_call called on non-function type")
};
let llsig = foreign_signature(ccx, &fn_sig, passed_arg_tys.as_slice());
let ret_def = !return_type_is_void(bcx.ccx(), fn_sig.output);
let fn_type = cabi::compute_abi_info(ccx,
llsig.llarg_tys.as_slice(),
llsig.llret_ty,
ret_def);
let arg_tys: &[cabi::ArgType] = fn_type.arg_tys.as_slice();
let mut llargs_foreign = Vec::new();
// If the foreign ABI expects return value by pointer, supply the
// pointer that Rust gave us. Sometimes we have to bitcast
// because foreign fns return slightly different (but equivalent)
// views on the same type (e.g., i64 in place of {i32,i32}).
if fn_type.ret_ty.is_indirect() {
match fn_type.ret_ty.cast {
Some(ty) => {
let llcastedretptr =
BitCast(bcx, llretptr, ty.ptr_to());
llargs_foreign.push(llcastedretptr);
}
None => {
llargs_foreign.push(llretptr);
}
}
}
for (i, &llarg_rust) in llargs_rust.iter().enumerate() {
let mut llarg_rust = llarg_rust;
if arg_tys[i].is_ignore() {
continue;
}
// Does Rust pass this argument by pointer?
let rust_indirect = type_of::arg_is_indirect(ccx,
*passed_arg_tys.get(i));
debug!("argument {}, llarg_rust={}, rust_indirect={}, arg_ty={}",
i,
ccx.tn.val_to_string(llarg_rust),
rust_indirect,
ccx.tn.type_to_string(arg_tys[i].ty));
// Ensure that we always have the Rust value indirectly,
// because it makes bitcasting easier.
if !rust_indirect {
let scratch =
base::alloca(bcx,
type_of::type_of(ccx, *passed_arg_tys.get(i)),
"__arg");
base::store_ty(bcx, llarg_rust, scratch, *passed_arg_tys.get(i));
llarg_rust = scratch;
2012-02-13 16:06:56 -08:00
}
debug!("llarg_rust={} (after indirection)",
ccx.tn.val_to_string(llarg_rust));
// Check whether we need to do any casting
match arg_tys[i].cast {
Some(ty) => llarg_rust = BitCast(bcx, llarg_rust, ty.ptr_to()),
None => ()
}
debug!("llarg_rust={} (after casting)",
ccx.tn.val_to_string(llarg_rust));
// Finally, load the value if needed for the foreign ABI
let foreign_indirect = arg_tys[i].is_indirect();
let llarg_foreign = if foreign_indirect {
llarg_rust
} else {
if ty::type_is_bool(*passed_arg_tys.get(i)) {
let val = LoadRangeAssert(bcx, llarg_rust, 0, 2, llvm::False);
Trunc(bcx, val, Type::i1(bcx.ccx()))
} else {
Load(bcx, llarg_rust)
}
};
debug!("argument {}, llarg_foreign={}",
i, ccx.tn.val_to_string(llarg_foreign));
// fill padding with undef value
match arg_tys[i].pad {
Some(ty) => llargs_foreign.push(C_undef(ty)),
None => ()
}
llargs_foreign.push(llarg_foreign);
}
let cc = match llvm_calling_convention(ccx, fn_abi) {
Some(cc) => cc,
None => {
// FIXME(#8357) We really ought to report a span here
2014-03-05 16:36:01 +02:00
ccx.sess().fatal(
2013-09-27 22:38:08 -07:00
format!("ABI string `{}` has no suitable ABI \
for target architecture",
fn_abi.user_string(ccx.tcx())).as_slice());
}
};
// A function pointer is called without the declaration available, so we have to apply
// any attributes with ABI implications directly to the call instruction.
let mut attrs = llvm::AttrBuilder::new();
// Add attributes that are always applicable, independent of the concrete foreign ABI
if fn_type.ret_ty.is_indirect() {
let llret_sz = machine::llsize_of_real(ccx, fn_type.ret_ty.ty);
// The outptr can be noalias and nocapture because it's entirely
// invisible to the program. We also know it's nonnull as well
// as how many bytes we can dereference
attrs.arg(1, llvm::NoAliasAttribute)
.arg(1, llvm::NoCaptureAttribute)
.arg(1, llvm::DereferenceableAttribute(llret_sz));
};
// Add attributes that depend on the concrete foreign ABI
let mut arg_idx = if fn_type.ret_ty.is_indirect() { 1 } else { 0 };
match fn_type.ret_ty.attr {
Some(attr) => { attrs.arg(arg_idx, attr); },
_ => ()
}
arg_idx += 1;
for arg_ty in fn_type.arg_tys.iter() {
if arg_ty.is_ignore() {
continue;
}
// skip padding
if arg_ty.pad.is_some() { arg_idx += 1; }
match arg_ty.attr {
Some(attr) => { attrs.arg(arg_idx, attr); },
_ => {}
}
arg_idx += 1;
}
let llforeign_retval = CallWithConv(bcx,
llfn,
llargs_foreign.as_slice(),
cc,
Some(attrs));
// If the function we just called does not use an outpointer,
// store the result into the rust outpointer. Cast the outpointer
// type to match because some ABIs will use a different type than
// the Rust type. e.g., a {u32,u32} struct could be returned as
// u64.
if ret_def && !fn_type.ret_ty.is_indirect() {
let llrust_ret_ty = llsig.llret_ty;
let llforeign_ret_ty = match fn_type.ret_ty.cast {
Some(ty) => ty,
None => fn_type.ret_ty.ty
};
debug!("llretptr={}", ccx.tn.val_to_string(llretptr));
debug!("llforeign_retval={}", ccx.tn.val_to_string(llforeign_retval));
debug!("llrust_ret_ty={}", ccx.tn.type_to_string(llrust_ret_ty));
debug!("llforeign_ret_ty={}", ccx.tn.type_to_string(llforeign_ret_ty));
if llrust_ret_ty == llforeign_ret_ty {
base::store_ty(bcx, llforeign_retval, llretptr, fn_sig.output)
} else {
// The actual return type is a struct, but the ABI
// adaptation code has cast it into some scalar type. The
// code that follows is the only reliable way I have
// found to do a transform like i64 -> {i32,i32}.
// Basically we dump the data onto the stack then memcpy it.
//
// Other approaches I tried:
// - Casting rust ret pointer to the foreign type and using Store
// is (a) unsafe if size of foreign type > size of rust type and
// (b) runs afoul of strict aliasing rules, yielding invalid
// assembly under -O (specifically, the store gets removed).
// - Truncating foreign type to correct integral type and then
// bitcasting to the struct type yields invalid cast errors.
let llscratch = base::alloca(bcx, llforeign_ret_ty, "__cast");
Store(bcx, llforeign_retval, llscratch);
let llscratch_i8 = BitCast(bcx, llscratch, Type::i8(ccx).ptr_to());
let llretptr_i8 = BitCast(bcx, llretptr, Type::i8(ccx).ptr_to());
let llrust_size = machine::llsize_of_store(ccx, llrust_ret_ty);
let llforeign_align = machine::llalign_of_min(ccx, llforeign_ret_ty);
let llrust_align = machine::llalign_of_min(ccx, llrust_ret_ty);
let llalign = cmp::min(llforeign_align, llrust_align);
debug!("llrust_size={:?}", llrust_size);
base::call_memcpy(bcx, llretptr_i8, llscratch_i8,
C_uint(ccx, llrust_size as uint), llalign as u32);
}
}
return bcx;
}
2014-03-06 18:47:24 +02:00
pub fn trans_foreign_mod(ccx: &CrateContext, foreign_mod: &ast::ForeignMod) {
let _icx = push_ctxt("foreign::trans_foreign_mod");
2014-05-16 10:15:33 -07:00
for foreign_item in foreign_mod.items.iter() {
let lname = link_name(&**foreign_item);
match foreign_item.node {
ast::ForeignItemFn(..) => {
match foreign_mod.abi {
Rust | RustIntrinsic => {}
abi => {
let ty = ty::node_id_to_type(ccx.tcx(), foreign_item.id);
register_foreign_item_fn(ccx, abi, ty,
lname.get().as_slice(),
Some(foreign_item.span));
}
}
}
_ => {}
}
2014-03-20 19:49:20 -07:00
ccx.item_symbols.borrow_mut().insert(foreign_item.id,
lname.get().to_string());
}
}
///////////////////////////////////////////////////////////////////////////
// Rust functions with foreign ABIs
//
// These are normal Rust functions defined with foreign ABIs. For
// now, and perhaps forever, we translate these using a "layer of
// indirection". That is, given a Rust declaration like:
//
// extern "C" fn foo(i: u32) -> u32 { ... }
//
// we will generate a function like:
//
// S foo(T i) {
// S r;
// foo0(&r, NULL, i);
// return r;
// }
//
// #[inline_always]
// void foo0(uint32_t *r, void *env, uint32_t i) { ... }
//
// Here the (internal) `foo0` function follows the Rust ABI as normal,
// where the `foo` function follows the C ABI. We rely on LLVM to
// inline the one into the other. Of course we could just generate the
// correct code in the first place, but this is much simpler.
pub fn decl_rust_fn_with_foreign_abi(ccx: &CrateContext,
t: ty::t,
name: &str)
-> ValueRef {
let tys = foreign_types_for_fn_ty(ccx, t);
let llfn_ty = lltype_for_fn_from_foreign_types(ccx, &tys);
let cconv = match ty::get(t).sty {
ty::ty_bare_fn(ref fn_ty) => {
let c = llvm_calling_convention(ccx, fn_ty.abi);
c.unwrap_or(llvm::CCallConv)
}
_ => fail!("expected bare fn in decl_rust_fn_with_foreign_abi")
};
let llfn = base::decl_fn(ccx, name, cconv, llfn_ty, ty::mk_nil());
add_argument_attributes(&tys, llfn);
debug!("decl_rust_fn_with_foreign_abi(llfn_ty={}, llfn={})",
ccx.tn.type_to_string(llfn_ty), ccx.tn.val_to_string(llfn));
llfn
}
2014-03-06 18:47:24 +02:00
pub fn register_rust_fn_with_foreign_abi(ccx: &CrateContext,
sp: Span,
sym: String,
node_id: ast::NodeId)
-> ValueRef {
let _icx = push_ctxt("foreign::register_foreign_fn");
let tys = foreign_types_for_id(ccx, node_id);
let llfn_ty = lltype_for_fn_from_foreign_types(ccx, &tys);
let t = ty::node_id_to_type(ccx.tcx(), node_id);
let cconv = match ty::get(t).sty {
ty::ty_bare_fn(ref fn_ty) => {
let c = llvm_calling_convention(ccx, fn_ty.abi);
c.unwrap_or(llvm::CCallConv)
}
_ => fail!("expected bare fn in register_rust_fn_with_foreign_abi")
};
let llfn = base::register_fn_llvmty(ccx, sp, sym, node_id, cconv, llfn_ty);
add_argument_attributes(&tys, llfn);
debug!("register_rust_fn_with_foreign_abi(node_id={:?}, llfn_ty={}, llfn={})",
node_id, ccx.tn.type_to_string(llfn_ty), ccx.tn.val_to_string(llfn));
llfn
}
2014-03-06 18:47:24 +02:00
pub fn trans_rust_fn_with_foreign_abi(ccx: &CrateContext,
decl: &ast::FnDecl,
body: &ast::Block,
attrs: &[ast::Attribute],
llwrapfn: ValueRef,
param_substs: &param_substs,
id: ast::NodeId,
hash: Option<&str>) {
let _icx = push_ctxt("foreign::build_foreign_fn");
let fnty = ty::node_id_to_type(ccx.tcx(), id);
let mty = fnty.subst(ccx.tcx(), &param_substs.substs);
let tys = foreign_types_for_fn_ty(ccx, mty);
unsafe { // unsafe because we call LLVM operations
// Build up the Rust function (`foo0` above).
let llrustfn = build_rust_fn(ccx, decl, body, param_substs, attrs, id, hash);
// Build up the foreign wrapper (`foo` above).
return build_wrap_fn(ccx, llrustfn, llwrapfn, &tys, mty);
}
2014-03-06 18:47:24 +02:00
fn build_rust_fn(ccx: &CrateContext,
decl: &ast::FnDecl,
body: &ast::Block,
param_substs: &param_substs,
attrs: &[ast::Attribute],
id: ast::NodeId,
hash: Option<&str>)
-> ValueRef {
let _icx = push_ctxt("foreign::foreign::build_rust_fn");
let tcx = ccx.tcx();
let t = ty::node_id_to_type(tcx, id).subst(
ccx.tcx(), &param_substs.substs);
let ps = ccx.tcx.map.with_path(id, |path| {
let abi = Some(ast_map::PathName(special_idents::clownshoe_abi.name));
link::mangle(path.chain(abi.move_iter()), hash)
});
// Compute the type that the function would have if it were just a
// normal Rust function. This will be the type of the wrappee fn.
match ty::get(t).sty {
ty::ty_bare_fn(ref f) => {
assert!(f.abi != Rust && f.abi != RustIntrinsic);
}
_ => {
2014-03-05 16:36:01 +02:00
ccx.sess().bug(format!("build_rust_fn: extern fn {} has ty {}, \
expected a bare fn ty",
ccx.tcx.map.path_to_string(id),
t.repr(tcx)).as_slice());
}
};
debug!("build_rust_fn: path={} id={} t={}",
ccx.tcx.map.path_to_string(id),
id, t.repr(tcx));
let llfn = base::decl_internal_rust_fn(ccx, t, ps.as_slice());
base::set_llvm_fn_attrs(attrs, llfn);
base::trans_fn(ccx, decl, body, llfn, param_substs, id, [], TranslateItems);
llfn
2012-02-13 16:06:56 -08:00
}
2014-03-06 18:47:24 +02:00
unsafe fn build_wrap_fn(ccx: &CrateContext,
llrustfn: ValueRef,
llwrapfn: ValueRef,
tys: &ForeignTypes,
t: ty::t) {
let _icx = push_ctxt(
"foreign::trans_rust_fn_with_foreign_abi::build_wrap_fn");
let tcx = ccx.tcx();
debug!("build_wrap_fn(llrustfn={}, llwrapfn={}, t={})",
ccx.tn.val_to_string(llrustfn),
ccx.tn.val_to_string(llwrapfn),
t.repr(ccx.tcx()));
// Avoid all the Rust generation stuff and just generate raw
// LLVM here.
//
// We want to generate code like this:
//
// S foo(T i) {
// S r;
// foo0(&r, NULL, i);
// return r;
// }
let the_block =
"the block".with_c_str(
|s| llvm::LLVMAppendBasicBlockInContext(ccx.llcx, llwrapfn, s));
let builder = ccx.builder();
builder.position_at_end(the_block);
// Array for the arguments we will pass to the rust function.
let mut llrust_args = Vec::new();
let mut next_foreign_arg_counter: c_uint = 0;
let next_foreign_arg: |pad: bool| -> c_uint = |pad: bool| {
next_foreign_arg_counter += if pad {
2
} else {
1
};
next_foreign_arg_counter - 1
};
// If there is an out pointer on the foreign function
let foreign_outptr = {
if tys.fn_ty.ret_ty.is_indirect() {
Some(get_param(llwrapfn, next_foreign_arg(false)))
} else {
None
}
};
// Push Rust return pointer, using null if it will be unused.
let rust_uses_outptr =
type_of::return_uses_outptr(ccx, tys.fn_sig.output);
let return_alloca: Option<ValueRef>;
let llrust_ret_ty = tys.llsig.llret_ty;
let llrust_retptr_ty = llrust_ret_ty.ptr_to();
if rust_uses_outptr {
// Rust expects to use an outpointer. If the foreign fn
// also uses an outpointer, we can reuse it, but the types
// may vary, so cast first to the Rust type. If the
// foreign fn does NOT use an outpointer, we will have to
// alloca some scratch space on the stack.
match foreign_outptr {
Some(llforeign_outptr) => {
debug!("out pointer, foreign={}",
ccx.tn.val_to_string(llforeign_outptr));
let llrust_retptr =
builder.bitcast(llforeign_outptr, llrust_ret_ty.ptr_to());
debug!("out pointer, foreign={} (casted)",
ccx.tn.val_to_string(llrust_retptr));
llrust_args.push(llrust_retptr);
return_alloca = None;
}
None => {
let slot = builder.alloca(llrust_ret_ty, "return_alloca");
debug!("out pointer, \
2013-09-27 22:38:08 -07:00
allocad={}, \
llrust_ret_ty={}, \
return_ty={}",
ccx.tn.val_to_string(slot),
ccx.tn.type_to_string(llrust_ret_ty),
tys.fn_sig.output.repr(tcx));
llrust_args.push(slot);
return_alloca = Some(slot);
}
}
} else {
// Rust does not expect an outpointer. If the foreign fn
// does use an outpointer, then we will do a store of the
// value that the Rust fn returns.
return_alloca = None;
};
// Build up the arguments to the call to the rust function.
// Careful to adapt for cases where the native convention uses
// a pointer and Rust does not or vice versa.
for i in range(0, tys.fn_sig.inputs.len()) {
let rust_ty = *tys.fn_sig.inputs.get(i);
let llrust_ty = *tys.llsig.llarg_tys.get(i);
let rust_indirect = type_of::arg_is_indirect(ccx, rust_ty);
let llforeign_arg_ty = *tys.fn_ty.arg_tys.get(i);
let foreign_indirect = llforeign_arg_ty.is_indirect();
// skip padding
let foreign_index = next_foreign_arg(llforeign_arg_ty.pad.is_some());
let mut llforeign_arg = get_param(llwrapfn, foreign_index);
debug!("llforeign_arg {}{}: {}", "#",
i, ccx.tn.val_to_string(llforeign_arg));
debug!("rust_indirect = {}, foreign_indirect = {}",
rust_indirect, foreign_indirect);
// Ensure that the foreign argument is indirect (by
// pointer). It makes adapting types easier, since we can
// always just bitcast pointers.
if !foreign_indirect {
llforeign_arg = if ty::type_is_bool(rust_ty) {
let lltemp = builder.alloca(Type::bool(ccx), "");
builder.store(builder.zext(llforeign_arg, Type::bool(ccx)), lltemp);
lltemp
} else {
let lltemp = builder.alloca(val_ty(llforeign_arg), "");
builder.store(llforeign_arg, lltemp);
lltemp
}
}
// If the types in the ABI and the Rust types don't match,
// bitcast the llforeign_arg pointer so it matches the types
// Rust expects.
if llforeign_arg_ty.cast.is_some() {
assert!(!foreign_indirect);
llforeign_arg = builder.bitcast(llforeign_arg, llrust_ty.ptr_to());
2012-02-13 16:06:56 -08:00
}
let llrust_arg = if rust_indirect {
llforeign_arg
} else {
if ty::type_is_bool(rust_ty) {
let tmp = builder.load_range_assert(llforeign_arg, 0, 2, llvm::False);
builder.trunc(tmp, Type::i1(ccx))
} else {
builder.load(llforeign_arg)
}
};
debug!("llrust_arg {}{}: {}", "#",
i, ccx.tn.val_to_string(llrust_arg));
llrust_args.push(llrust_arg);
}
// Perform the call itself
debug!("calling llrustfn = {}, t = {}", ccx.tn.val_to_string(llrustfn), t.repr(ccx.tcx()));
let attributes = base::get_fn_llvm_attributes(ccx, t);
let llrust_ret_val = builder.call(llrustfn, llrust_args.as_slice(), Some(attributes));
// Get the return value where the foreign fn expects it.
let llforeign_ret_ty = match tys.fn_ty.ret_ty.cast {
Some(ty) => ty,
None => tys.fn_ty.ret_ty.ty
};
match foreign_outptr {
None if !tys.ret_def => {
// Function returns `()` or `bot`, which in Rust is the LLVM
// type "{}" but in foreign ABIs is "Void".
builder.ret_void();
}
None if rust_uses_outptr => {
// Rust uses an outpointer, but the foreign ABI does not. Load.
let llrust_outptr = return_alloca.unwrap();
let llforeign_outptr_casted =
builder.bitcast(llrust_outptr, llforeign_ret_ty.ptr_to());
let llforeign_retval = builder.load(llforeign_outptr_casted);
builder.ret(llforeign_retval);
}
None if llforeign_ret_ty != llrust_ret_ty => {
// Neither ABI uses an outpointer, but the types don't
// quite match. Must cast. Probably we should try and
// examine the types and use a concrete llvm cast, but
// right now we just use a temp memory location and
// bitcast the pointer, which is the same thing the
// old wrappers used to do.
let lltemp = builder.alloca(llforeign_ret_ty, "");
let lltemp_casted = builder.bitcast(lltemp, llrust_ret_ty.ptr_to());
builder.store(llrust_ret_val, lltemp_casted);
let llforeign_retval = builder.load(lltemp);
builder.ret(llforeign_retval);
}
None => {
// Neither ABI uses an outpointer, and the types
// match. Easy peasy.
builder.ret(llrust_ret_val);
}
Some(llforeign_outptr) if !rust_uses_outptr => {
// Foreign ABI requires an out pointer, but Rust doesn't.
// Store Rust return value.
let llforeign_outptr_casted =
builder.bitcast(llforeign_outptr, llrust_retptr_ty);
builder.store(llrust_ret_val, llforeign_outptr_casted);
builder.ret_void();
}
Some(_) => {
// Both ABIs use outpointers. Easy peasy.
builder.ret_void();
}
2012-02-13 16:06:56 -08:00
}
}
}
2012-02-13 16:06:56 -08:00
///////////////////////////////////////////////////////////////////////////
// General ABI Support
//
// This code is kind of a confused mess and needs to be reworked given
// the massive simplifications that have occurred.
2014-03-06 18:47:24 +02:00
pub fn link_name(i: &ast::ForeignItem) -> InternedString {
rustc: Add official support for weak failure This commit is part of the ongoing libstd facade efforts (cc #13851). The compiler now recognizes some language items as "extern { fn foo(...); }" and will automatically perform the following actions: 1. The foreign function has a pre-defined name. 2. The crate and downstream crates can only be built as rlibs until a crate defines the lang item itself. 3. The actual lang item has a pre-defined name. This is essentially nicer compiler support for the hokey core-depends-on-std-failure scheme today, but it is implemented the same way. The details are a little more hidden under the covers. In addition to failure, this commit promotes the eh_personality and rust_stack_exhausted functions to official lang items. The compiler can generate calls to these functions, causing linkage errors if they are left undefined. The checking for these items is not as precise as it could be. Crates compiling with `-Z no-landing-pads` will not need the eh_personality lang item, and crates compiling with no split stacks won't need the stack exhausted lang item. For ease, however, these items are checked for presence in all final outputs of the compiler. It is quite easy to define dummy versions of the functions necessary: #[lang = "stack_exhausted"] extern fn stack_exhausted() { /* ... */ } #[lang = "eh_personality"] extern fn eh_personality() { /* ... */ } cc #11922, rust_stack_exhausted is now a lang item cc #13851, libcollections is blocked on eh_personality becoming weak
2014-05-19 09:30:09 -07:00
match attr::first_attr_value_str_by_name(i.attrs.as_slice(), "link_name") {
Some(ln) => ln.clone(),
rustc: Add official support for weak failure This commit is part of the ongoing libstd facade efforts (cc #13851). The compiler now recognizes some language items as "extern { fn foo(...); }" and will automatically perform the following actions: 1. The foreign function has a pre-defined name. 2. The crate and downstream crates can only be built as rlibs until a crate defines the lang item itself. 3. The actual lang item has a pre-defined name. This is essentially nicer compiler support for the hokey core-depends-on-std-failure scheme today, but it is implemented the same way. The details are a little more hidden under the covers. In addition to failure, this commit promotes the eh_personality and rust_stack_exhausted functions to official lang items. The compiler can generate calls to these functions, causing linkage errors if they are left undefined. The checking for these items is not as precise as it could be. Crates compiling with `-Z no-landing-pads` will not need the eh_personality lang item, and crates compiling with no split stacks won't need the stack exhausted lang item. For ease, however, these items are checked for presence in all final outputs of the compiler. It is quite easy to define dummy versions of the functions necessary: #[lang = "stack_exhausted"] extern fn stack_exhausted() { /* ... */ } #[lang = "eh_personality"] extern fn eh_personality() { /* ... */ } cc #11922, rust_stack_exhausted is now a lang item cc #13851, libcollections is blocked on eh_personality becoming weak
2014-05-19 09:30:09 -07:00
None => match weak_lang_items::link_name(i.attrs.as_slice()) {
Some(name) => name,
None => token::get_ident(i.ident),
}
2012-02-13 16:06:56 -08:00
}
}
2012-02-13 16:06:56 -08:00
2013-12-19 16:47:15 -08:00
fn foreign_signature(ccx: &CrateContext, fn_sig: &ty::FnSig, arg_tys: &[ty::t])
-> LlvmSignature {
/*!
* The ForeignSignature is the LLVM types of the arguments/return type
* of a function. Note that these LLVM types are not quite the same
* as the LLVM types would be for a native Rust function because foreign
* functions just plain ignore modes. They also don't pass aggregate
* values by pointer like we do.
*/
2012-02-13 16:06:56 -08:00
let llarg_tys = arg_tys.iter().map(|&arg| arg_type_of(ccx, arg)).collect();
let llret_ty = type_of::arg_type_of(ccx, fn_sig.output);
LlvmSignature {
llarg_tys: llarg_tys,
llret_ty: llret_ty
2012-02-13 16:06:56 -08:00
}
}
2012-02-13 16:06:56 -08:00
2013-12-19 16:47:15 -08:00
fn foreign_types_for_id(ccx: &CrateContext,
id: ast::NodeId) -> ForeignTypes {
foreign_types_for_fn_ty(ccx, ty::node_id_to_type(ccx.tcx(), id))
2012-02-13 16:06:56 -08:00
}
2013-12-19 16:47:15 -08:00
fn foreign_types_for_fn_ty(ccx: &CrateContext,
ty: ty::t) -> ForeignTypes {
let fn_sig = match ty::get(ty).sty {
ty::ty_bare_fn(ref fn_ty) => fn_ty.sig.clone(),
2014-03-05 16:36:01 +02:00
_ => ccx.sess().bug("foreign_types_for_fn_ty called on non-function type")
};
let llsig = foreign_signature(ccx, &fn_sig, fn_sig.inputs.as_slice());
let ret_def = !return_type_is_void(ccx, fn_sig.output);
let fn_ty = cabi::compute_abi_info(ccx,
llsig.llarg_tys.as_slice(),
llsig.llret_ty,
ret_def);
debug!("foreign_types_for_fn_ty(\
2013-09-27 22:38:08 -07:00
ty={}, \
llsig={} -> {}, \
fn_ty={} -> {}, \
ret_def={}",
ty.repr(ccx.tcx()),
ccx.tn.types_to_str(llsig.llarg_tys.as_slice()),
ccx.tn.type_to_string(llsig.llret_ty),
ccx.tn.types_to_str(fn_ty.arg_tys.iter().map(|t| t.ty).collect::<Vec<_>>().as_slice()),
ccx.tn.type_to_string(fn_ty.ret_ty.ty),
ret_def);
ForeignTypes {
fn_sig: fn_sig,
llsig: llsig,
ret_def: ret_def,
fn_ty: fn_ty
}
}
fn lltype_for_fn_from_foreign_types(ccx: &CrateContext, tys: &ForeignTypes) -> Type {
let mut llargument_tys = Vec::new();
let ret_ty = tys.fn_ty.ret_ty;
let llreturn_ty = if ret_ty.is_indirect() {
llargument_tys.push(ret_ty.ty.ptr_to());
Type::void(ccx)
} else {
match ret_ty.cast {
Some(ty) => ty,
None => ret_ty.ty
}
};
for &arg_ty in tys.fn_ty.arg_tys.iter() {
if arg_ty.is_ignore() {
continue;
}
// add padding
match arg_ty.pad {
Some(ty) => llargument_tys.push(ty),
None => ()
}
let llarg_ty = if arg_ty.is_indirect() {
arg_ty.ty.ptr_to()
} else {
match arg_ty.cast {
Some(ty) => ty,
None => arg_ty.ty
}
};
llargument_tys.push(llarg_ty);
}
if tys.fn_sig.variadic {
Type::variadic_func(llargument_tys.as_slice(), &llreturn_ty)
} else {
Type::func(llargument_tys.as_slice(), &llreturn_ty)
}
}
2013-12-19 16:47:15 -08:00
pub fn lltype_for_foreign_fn(ccx: &CrateContext, ty: ty::t) -> Type {
lltype_for_fn_from_foreign_types(ccx, &foreign_types_for_fn_ty(ccx, ty))
}
fn add_argument_attributes(tys: &ForeignTypes,
llfn: ValueRef) {
let mut i = if tys.fn_ty.ret_ty.is_indirect() {
1i
} else {
0i
};
match tys.fn_ty.ret_ty.attr {
Some(attr) => unsafe {
llvm::LLVMAddFunctionAttribute(llfn, i as c_uint, attr as u64);
},
None => {}
}
i += 1;
for &arg_ty in tys.fn_ty.arg_tys.iter() {
if arg_ty.is_ignore() {
continue;
}
// skip padding
if arg_ty.pad.is_some() { i += 1; }
match arg_ty.attr {
Some(attr) => unsafe {
llvm::LLVMAddFunctionAttribute(llfn, i as c_uint, attr as u64);
},
None => ()
}
i += 1;
}
}