642 lines
22 KiB
Rust
Raw Normal View History

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use cast;
2013-07-02 13:37:19 -04:00
use cell::Cell;
use comm;
use libc;
2013-07-02 13:37:19 -04:00
use ptr;
use option::*;
2013-07-02 14:13:52 -04:00
use either::{Either, Left, Right};
use task;
use unstable::atomics::{AtomicOption,AtomicUint,Acquire,Release,Relaxed,SeqCst};
use unstable::finally::Finally;
use ops::Drop;
use clone::Clone;
use kinds::Send;
use vec;
/// An atomically reference counted pointer.
///
/// Enforces no shared-memory safety.
pub struct UnsafeAtomicRcBox<T> {
data: *mut libc::c_void,
}
struct AtomicRcBoxData<T> {
2013-07-02 13:37:19 -04:00
count: AtomicUint,
// An unwrapper uses this protocol to communicate with the "other" task that
// drops the last refcount on an arc. Unfortunately this can't be a proper
// pipe protocol because the unwrapper has to access both stages at once.
// FIXME(#7544): Maybe use AtomicPtr instead (to avoid xchg in take() later)?
unwrapper: AtomicOption<(comm::ChanOne<()>, comm::PortOne<bool>)>,
// FIXME(#3224) should be able to make this non-option to save memory
data: Option<T>,
}
unsafe fn new_inner<T: Send>(data: T, refcount: uint) -> *mut libc::c_void {
let data = ~AtomicRcBoxData { count: AtomicUint::new(refcount),
unwrapper: AtomicOption::empty(),
data: Some(data) };
cast::transmute(data)
}
impl<T: Send> UnsafeAtomicRcBox<T> {
pub fn new(data: T) -> UnsafeAtomicRcBox<T> {
unsafe { UnsafeAtomicRcBox { data: new_inner(data, 1) } }
}
/// As new(), but returns an extra pre-cloned handle.
pub fn new2(data: T) -> (UnsafeAtomicRcBox<T>, UnsafeAtomicRcBox<T>) {
unsafe {
let ptr = new_inner(data, 2);
(UnsafeAtomicRcBox { data: ptr }, UnsafeAtomicRcBox { data: ptr })
}
}
/// As new(), but returns a vector of as many pre-cloned handles as requested.
pub fn newN(data: T, num_handles: uint) -> ~[UnsafeAtomicRcBox<T>] {
unsafe {
if num_handles == 0 {
~[] // need to free data here
} else {
let ptr = new_inner(data, num_handles);
vec::from_fn(num_handles, |_| UnsafeAtomicRcBox { data: ptr })
}
}
}
/// As newN(), but from an already-existing handle. Uses one xadd.
pub fn cloneN(self, num_handles: uint) -> ~[UnsafeAtomicRcBox<T>] {
if num_handles == 0 {
~[] // The "num_handles - 1" trick (below) fails in the 0 case.
} else {
unsafe {
let mut data: ~AtomicRcBoxData<T> = cast::transmute(self.data);
// Minus one because we are recycling the given handle's refcount.
let old_count = data.count.fetch_add(num_handles - 1, Acquire);
// let old_count = data.count.fetch_add(num_handles, Acquire);
assert!(old_count >= 1);
let ptr = cast::transmute(data);
cast::forget(self); // Don't run the destructor on this handle.
vec::from_fn(num_handles, |_| UnsafeAtomicRcBox { data: ptr })
}
}
}
#[inline]
pub fn get(&self) -> *mut T {
unsafe {
let mut data: ~AtomicRcBoxData<T> = cast::transmute(self.data);
assert!(data.count.load(Relaxed) > 0);
let r: *mut T = data.data.get_mut_ref();
cast::forget(data);
return r;
}
}
#[inline]
pub fn get_immut(&self) -> *T {
unsafe {
let data: ~AtomicRcBoxData<T> = cast::transmute(self.data);
assert!(data.count.load(Relaxed) > 0);
let r: *T = data.data.get_ref();
cast::forget(data);
return r;
}
}
2013-07-02 13:37:19 -04:00
/// Wait until all other handles are dropped, then retrieve the enclosed
/// data. See extra::arc::Arc for specific semantics documentation.
2013-07-02 13:37:19 -04:00
/// If called when the task is already unkillable, unwrap will unkillably
/// block; otherwise, an unwrapping task can be killed by linked failure.
pub fn unwrap(self) -> T {
2013-07-02 13:37:19 -04:00
let this = Cell::new(self); // argh
do task::unkillable {
unsafe {
let mut this = this.take();
let mut data: ~AtomicRcBoxData<T> = cast::transmute(this.data);
// Set up the unwrap protocol.
let (p1,c1) = comm::oneshot(); // ()
let (p2,c2) = comm::oneshot(); // bool
// Try to put our server end in the unwrapper slot.
// This needs no barrier -- it's protected by the release barrier on
// the xadd, and the acquire+release barrier in the destructor's xadd.
if data.unwrapper.fill(~(c1,p2), Relaxed).is_none() {
// Got in. Tell this handle's destructor not to run (we are now it).
this.data = ptr::mut_null();
// Drop our own reference.
let old_count = data.count.fetch_sub(1, Release);
assert!(old_count >= 1);
if old_count == 1 {
// We were the last owner. Can unwrap immediately.
// AtomicOption's destructor will free the server endpoint.
2013-07-02 13:37:19 -04:00
// FIXME(#3224): it should be like this
// let ~AtomicRcBoxData { data: user_data, _ } = data;
// user_data
data.data.take_unwrap()
} else {
// The *next* person who sees the refcount hit 0 will wake us.
let p1 = Cell::new(p1); // argh
// Unlike the above one, this cell is necessary. It will get
// taken either in the do block or in the finally block.
let c2_and_data = Cell::new((c2,data));
do (|| {
do task::rekillable { p1.take().recv(); }
// Got here. Back in the 'unkillable' without getting killed.
2013-07-02 13:37:19 -04:00
let (c2, data) = c2_and_data.take();
c2.send(true);
// FIXME(#3224): it should be like this
// let ~AtomicRcBoxData { data: user_data, _ } = data;
// user_data
let mut data = data;
data.data.take_unwrap()
}).finally {
if task::failing() {
// Killed during wait. Because this might happen while
// someone else still holds a reference, we can't free
// the data now; the "other" last refcount will free it.
let (c2, data) = c2_and_data.take();
c2.send(false);
cast::forget(data);
} else {
assert!(c2_and_data.is_empty());
}
2013-07-02 13:37:19 -04:00
}
}
} else {
// If 'put' returns the server end back to us, we were rejected;
// someone else was trying to unwrap. Avoid guaranteed deadlock.
cast::forget(data);
fail!("Another task is already unwrapping this Arc!");
2013-07-02 13:37:19 -04:00
}
}
}
}
2013-07-02 14:13:52 -04:00
/// As unwrap above, but without blocking. Returns 'Left(self)' if this is
/// not the last reference; 'Right(unwrapped_data)' if so.
pub fn try_unwrap(self) -> Either<UnsafeAtomicRcBox<T>, T> {
unsafe {
let mut this = self; // FIXME(#4330) mutable self
let mut data: ~AtomicRcBoxData<T> = cast::transmute(this.data);
// This can of course race with anybody else who has a handle, but in
// such a case, the returned count will always be at least 2. If we
// see 1, no race was possible. All that matters is 1 or not-1.
let count = data.count.load(Acquire);
assert!(count >= 1);
// The more interesting race is one with an unwrapper. They may have
// already dropped their count -- but if so, the unwrapper pointer
// will have been set first, which the barriers ensure we will see.
// (Note: using is_empty(), not take(), to not free the unwrapper.)
if count == 1 && data.unwrapper.is_empty(Acquire) {
// Tell this handle's destructor not to run (we are now it).
this.data = ptr::mut_null();
// FIXME(#3224) as above
Right(data.data.take_unwrap())
} else {
cast::forget(data);
Left(this)
}
2013-07-02 14:13:52 -04:00
}
}
}
impl<T: Send> Clone for UnsafeAtomicRcBox<T> {
fn clone(&self) -> UnsafeAtomicRcBox<T> {
unsafe {
let mut data: ~AtomicRcBoxData<T> = cast::transmute(self.data);
2013-07-02 13:37:19 -04:00
// This barrier might be unnecessary, but I'm not sure...
let old_count = data.count.fetch_add(1, Acquire);
assert!(old_count >= 1);
cast::forget(data);
return UnsafeAtomicRcBox { data: self.data };
}
}
}
#[unsafe_destructor]
impl<T> Drop for UnsafeAtomicRcBox<T>{
2013-06-20 21:06:13 -04:00
fn drop(&self) {
unsafe {
2013-07-02 13:37:19 -04:00
if self.data.is_null() {
return; // Happens when destructing an unwrapper's handle.
}
do task::unkillable {
let mut data: ~AtomicRcBoxData<T> = cast::transmute(self.data);
2013-07-02 13:37:19 -04:00
// Must be acquire+release, not just release, to make sure this
// doesn't get reordered to after the unwrapper pointer load.
let old_count = data.count.fetch_sub(1, SeqCst);
assert!(old_count >= 1);
if old_count == 1 {
// Were we really last, or should we hand off to an
// unwrapper? It's safe to not xchg because the unwrapper
// will set the unwrap lock *before* dropping his/her
// reference. In effect, being here means we're the only
// *awake* task with the data.
match data.unwrapper.take(Acquire) {
Some(~(message,response)) => {
// Send 'ready' and wait for a response.
message.send(());
// Unkillable wait. Message guaranteed to come.
if response.recv() {
// Other task got the data.
cast::forget(data);
} else {
// Other task was killed. drop glue takes over.
}
}
None => {
// drop glue takes over.
}
}
} else {
cast::forget(data);
}
}
}
}
}
/****************************************************************************/
/**
* Enables a runtime assertion that no operation in the argument closure shall
* use scheduler operations (yield, recv, spawn, etc). This is for use with
* pthread mutexes, which may block the entire scheduler thread, rather than
* just one task, and is hence prone to deadlocks if mixed with yielding.
*
* NOTE: THIS DOES NOT PROVIDE LOCKING, or any sort of critical-section
* synchronization whatsoever. It only makes sense to use for CPU-local issues.
*/
// FIXME(#8140) should not be pub
pub unsafe fn atomically<U>(f: &fn() -> U) -> U {
use rt::task::Task;
use task::rt;
use rt::local::Local;
use rt::{context, OldTaskContext};
match context() {
OldTaskContext => {
let t = rt::rust_get_task();
do (|| {
rt::rust_task_inhibit_kill(t);
rt::rust_task_inhibit_yield(t);
f()
}).finally {
rt::rust_task_allow_yield(t);
rt::rust_task_allow_kill(t);
}
}
_ => {
let t = Local::try_unsafe_borrow::<Task>();
match t {
Some(t) => {
do (|| {
(*t).death.inhibit_yield();
f()
}).finally {
(*t).death.allow_yield();
}
}
None => {
// FIXME(#3095): As in unkillable().
f()
}
}
}
}
}
2013-07-22 14:43:30 -07:00
#[allow(non_camel_case_types)] // runtime type
type rust_little_lock = *libc::c_void;
pub struct LittleLock {
2013-07-22 14:43:30 -07:00
l: rust_little_lock,
}
impl Drop for LittleLock {
2013-06-20 21:06:13 -04:00
fn drop(&self) {
unsafe {
rust_destroy_little_lock(self.l);
}
}
}
impl LittleLock {
pub fn new() -> LittleLock {
unsafe {
LittleLock {
l: rust_create_little_lock()
}
}
}
#[inline]
pub unsafe fn lock<T>(&self, f: &fn() -> T) -> T {
do atomically {
rust_lock_little_lock(self.l);
do (|| {
f()
}).finally {
rust_unlock_little_lock(self.l);
}
}
}
}
struct ExData<T> {
lock: LittleLock,
failed: bool,
data: T,
}
/**
* An arc over mutable data that is protected by a lock. For library use only.
2013-07-02 13:37:19 -04:00
*
* # Safety note
*
* This uses a pthread mutex, not one that's aware of the userspace scheduler.
* The user of an Exclusive must be careful not to invoke any functions that may
2013-07-02 13:37:19 -04:00
* reschedule the task while holding the lock, or deadlock may result. If you
* need to block or yield while accessing shared state, use extra::sync::RWArc.
*/
pub struct Exclusive<T> {
x: UnsafeAtomicRcBox<ExData<T>>
}
impl<T:Send> Clone for Exclusive<T> {
// Duplicate an Exclusive Arc, as std::arc::clone.
fn clone(&self) -> Exclusive<T> {
Exclusive { x: self.x.clone() }
}
}
impl<T:Send> Exclusive<T> {
pub fn new(user_data: T) -> Exclusive<T> {
let data = ExData {
lock: LittleLock::new(),
failed: false,
data: user_data
};
Exclusive {
x: UnsafeAtomicRcBox::new(data)
}
}
// Exactly like std::arc::MutexArc,access(), but with the LittleLock
// instead of a proper mutex. Same reason for being unsafe.
//
// Currently, scheduling operations (i.e., yielding, receiving on a pipe,
// accessing the provided condition variable) are prohibited while inside
// the Exclusive. Supporting that is a work in progress.
#[inline]
pub unsafe fn with<U>(&self, f: &fn(x: &mut T) -> U) -> U {
let rec = self.x.get();
do (*rec).lock.lock {
if (*rec).failed {
fail!("Poisoned Exclusive::new - another task failed inside!");
}
(*rec).failed = true;
let result = f(&mut (*rec).data);
(*rec).failed = false;
result
}
}
#[inline]
pub unsafe fn with_imm<U>(&self, f: &fn(x: &T) -> U) -> U {
do self.with |x| {
f(cast::transmute_immut(x))
}
}
2013-07-02 13:37:19 -04:00
pub fn unwrap(self) -> T {
let Exclusive { x: x } = self;
// Someday we might need to unkillably unwrap an Exclusive, but not today.
let inner = x.unwrap();
2013-07-02 13:37:19 -04:00
let ExData { data: user_data, _ } = inner; // will destroy the LittleLock
user_data
}
}
extern {
2013-07-22 14:43:30 -07:00
fn rust_create_little_lock() -> rust_little_lock;
fn rust_destroy_little_lock(lock: rust_little_lock);
fn rust_lock_little_lock(lock: rust_little_lock);
fn rust_unlock_little_lock(lock: rust_little_lock);
}
#[cfg(test)]
mod tests {
2013-07-02 13:37:19 -04:00
use cell::Cell;
use comm;
2013-07-02 13:37:19 -04:00
use option::*;
use prelude::*;
use super::{Exclusive, UnsafeAtomicRcBox, atomically};
use task;
2013-07-02 13:37:19 -04:00
use util;
#[test]
fn test_atomically() {
// NB. The whole runtime will abort on an 'atomic-sleep' violation,
// so we can't really test for the converse behaviour.
unsafe { do atomically { } } task::yield(); // oughtn't fail
}
#[test]
fn exclusive_new_arc() {
unsafe {
let mut futures = ~[];
let num_tasks = 10;
let count = 10;
let total = Exclusive::new(~0);
for _ in range(0u, num_tasks) {
let total = total.clone();
let (port, chan) = comm::stream();
futures.push(port);
do task::spawn || {
for _ in range(0u, count) {
do total.with |count| {
**count += 1;
}
}
chan.send(());
}
};
for f in futures.iter() { f.recv() }
do total.with |total| {
assert!(**total == num_tasks * count)
};
}
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn exclusive_new_poison() {
unsafe {
// Tests that if one task fails inside of an Exclusive::new, subsequent
// accesses will also fail.
let x = Exclusive::new(1);
let x2 = x.clone();
do task::try || {
do x2.with |one| {
assert_eq!(*one, 2);
}
};
do x.with |one| {
assert_eq!(*one, 1);
}
}
}
2013-07-02 13:37:19 -04:00
2013-07-19 20:45:54 -04:00
#[test]
fn arclike_newN() {
// Tests that the many-refcounts-at-once constructors don't leak.
let _ = UnsafeAtomicRcBox::new2(~~"hello");
let x = UnsafeAtomicRcBox::newN(~~"hello", 0);
assert_eq!(x.len(), 0)
let x = UnsafeAtomicRcBox::newN(~~"hello", 1);
assert_eq!(x.len(), 1)
let x = UnsafeAtomicRcBox::newN(~~"hello", 10);
assert_eq!(x.len(), 10)
}
#[test]
fn arclike_cloneN() {
// Tests that the many-refcounts-at-once special-clone doesn't leak.
let x = UnsafeAtomicRcBox::new(~~"hello");
let x = x.cloneN(0);
assert_eq!(x.len(), 0);
let x = UnsafeAtomicRcBox::new(~~"hello");
let x = x.cloneN(1);
assert_eq!(x.len(), 1);
let x = UnsafeAtomicRcBox::new(~~"hello");
let x = x.cloneN(10);
assert_eq!(x.len(), 10);
}
2013-07-02 13:37:19 -04:00
#[test]
2013-07-02 14:13:52 -04:00
fn arclike_unwrap_basic() {
let x = UnsafeAtomicRcBox::new(~~"hello");
assert!(x.unwrap() == ~~"hello");
2013-07-02 13:37:19 -04:00
}
2013-07-02 14:13:52 -04:00
#[test]
fn arclike_try_unwrap() {
let x = UnsafeAtomicRcBox::new(~~"hello");
assert!(x.try_unwrap().expect_right("try_unwrap failed") == ~~"hello");
2013-07-02 14:13:52 -04:00
}
#[test]
fn arclike_try_unwrap_fail() {
let x = UnsafeAtomicRcBox::new(~~"hello");
let x2 = x.clone();
let left_x = x.try_unwrap();
assert!(left_x.is_left());
util::ignore(left_x);
assert!(x2.try_unwrap().expect_right("try_unwrap none") == ~~"hello");
2013-07-02 14:13:52 -04:00
}
#[test]
fn arclike_try_unwrap_unwrap_race() {
// When an unwrap and a try_unwrap race, the unwrapper should always win.
let x = UnsafeAtomicRcBox::new(~~"hello");
let x2 = Cell::new(x.clone());
let (p,c) = comm::stream();
do task::spawn {
c.send(());
assert!(x2.take().unwrap() == ~~"hello");
c.send(());
2013-07-02 14:13:52 -04:00
}
p.recv();
task::yield(); // Try to make the unwrapper get blocked first.
let left_x = x.try_unwrap();
assert!(left_x.is_left());
util::ignore(left_x);
p.recv();
2013-07-02 14:13:52 -04:00
}
2013-07-02 13:37:19 -04:00
#[test]
fn exclusive_new_unwrap_basic() {
2013-07-02 13:37:19 -04:00
// Unlike the above, also tests no double-freeing of the LittleLock.
let x = Exclusive::new(~~"hello");
2013-07-02 13:37:19 -04:00
assert!(x.unwrap() == ~~"hello");
}
#[test]
fn exclusive_new_unwrap_contended() {
let x = Exclusive::new(~~"hello");
2013-07-02 13:37:19 -04:00
let x2 = Cell::new(x.clone());
do task::spawn {
let x2 = x2.take();
unsafe { do x2.with |_hello| { } }
task::yield();
}
assert!(x.unwrap() == ~~"hello");
// Now try the same thing, but with the child task blocking.
let x = Exclusive::new(~~"hello");
2013-07-02 13:37:19 -04:00
let x2 = Cell::new(x.clone());
let mut res = None;
let mut builder = task::task();
builder.future_result(|r| res = Some(r));
do builder.spawn {
let x2 = x2.take();
assert!(x2.unwrap() == ~~"hello");
}
// Have to get rid of our reference before blocking.
util::ignore(x);
res.unwrap().recv();
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn exclusive_new_unwrap_conflict() {
let x = Exclusive::new(~~"hello");
2013-07-02 13:37:19 -04:00
let x2 = Cell::new(x.clone());
let mut res = None;
let mut builder = task::task();
builder.future_result(|r| res = Some(r));
do builder.spawn {
let x2 = x2.take();
assert!(x2.unwrap() == ~~"hello");
}
assert!(x.unwrap() == ~~"hello");
// See #4689 for why this can't be just "res.recv()".
assert!(res.unwrap().recv() == task::Success);
}
#[test] #[ignore(cfg(windows))]
fn exclusive_new_unwrap_deadlock() {
2013-07-02 13:37:19 -04:00
// This is not guaranteed to get to the deadlock before being killed,
// but it will show up sometimes, and if the deadlock were not there,
// the test would nondeterministically fail.
let result = do task::try {
// a task that has two references to the same Exclusive::new will
2013-07-02 13:37:19 -04:00
// deadlock when it unwraps. nothing to be done about that.
let x = Exclusive::new(~~"hello");
2013-07-02 13:37:19 -04:00
let x2 = x.clone();
do task::spawn {
do 10.times { task::yield(); } // try to let the unwrapper go
2013-07-02 13:37:19 -04:00
fail!(); // punt it awake from its deadlock
}
let _z = x.unwrap();
unsafe { do x2.with |_hello| { } }
};
assert!(result.is_err());
}
}