rust/src/librustc_lint/builtin.rs

2607 lines
93 KiB
Rust
Raw Normal View History

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Lints in the Rust compiler.
//!
//! This contains lints which can feasibly be implemented as their own
//! AST visitor. Also see `rustc::lint::builtin`, which contains the
//! definitions of lints that are emitted directly inside the main
//! compiler.
//!
//! To add a new lint to rustc, declare it here using `declare_lint!()`.
//! Then add code to emit the new lint in the appropriate circumstances.
//! You can do that in an existing `LintPass` if it makes sense, or in a
//! new `LintPass`, or using `Session::add_lint` elsewhere in the
//! compiler. Only do the latter if the check can't be written cleanly as a
//! `LintPass` (also, note that such lints will need to be defined in
//! `rustc::lint::builtin`, not here).
//!
//! If you define a new `LintPass`, you will also need to add it to the
//! `add_builtin!` or `add_builtin_with_new!` invocation in `lib.rs`.
//! Use the former for unit-like structs and the latter for structs with
//! a `pub fn new()`.
use metadata::{csearch, decoder};
use middle::{cfg, def, infer, pat_util, stability, traits};
use middle::def_id::DefId;
use middle::subst::Substs;
use middle::ty::{self, Ty};
use middle::const_eval::{eval_const_expr_partial, ConstVal};
use middle::const_eval::EvalHint::ExprTypeChecked;
2015-06-09 18:40:45 -05:00
use rustc::ast_map;
use util::nodemap::{FnvHashMap, FnvHashSet, NodeSet};
use lint::{Level, Context, LintPass, LintArray, Lint};
use std::collections::HashSet;
use std::collections::hash_map::Entry::{Occupied, Vacant};
use std::{cmp, slice};
use std::{i8, i16, i32, i64, u8, u16, u32, u64, f32, f64};
2015-06-09 18:40:45 -05:00
use syntax::{abi, ast};
2015-08-16 05:32:28 -05:00
use syntax::ast_util::is_shift_binop;
use syntax::attr::{self, AttrMetaMethods};
use syntax::codemap::{self, Span};
use syntax::feature_gate::{KNOWN_ATTRIBUTES, AttributeType};
use syntax::ast::{TyIs, TyUs, TyI8, TyU8, TyI16, TyU16, TyI32, TyU32, TyI64, TyU64};
use syntax::ptr::P;
use syntax::visit::{self, Visitor};
// hardwired lints from librustc
pub use lint::builtin::*;
declare_lint! {
WHILE_TRUE,
Warn,
"suggest using `loop { }` instead of `while true { }`"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct WhileTrue;
impl LintPass for WhileTrue {
fn get_lints(&self) -> LintArray {
lint_array!(WHILE_TRUE)
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
if let ast::ExprWhile(ref cond, _, _) = e.node {
if let ast::ExprLit(ref lit) = cond.node {
if let ast::LitBool(true) = lit.node {
cx.span_lint(WHILE_TRUE, e.span,
"denote infinite loops with loop { ... }");
}
}
}
}
}
declare_lint! {
UNUSED_COMPARISONS,
Warn,
"comparisons made useless by limits of the types involved"
}
declare_lint! {
OVERFLOWING_LITERALS,
Warn,
"literal out of range for its type"
}
declare_lint! {
EXCEEDING_BITSHIFTS,
Deny,
"shift exceeds the type's number of bits"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct TypeLimits {
/// Id of the last visited negated expression
negated_expr_id: ast::NodeId,
}
impl TypeLimits {
pub fn new() -> TypeLimits {
TypeLimits {
2015-04-01 12:53:32 -05:00
negated_expr_id: !0,
}
}
}
impl LintPass for TypeLimits {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_COMPARISONS, OVERFLOWING_LITERALS, EXCEEDING_BITSHIFTS)
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
match e.node {
ast::ExprUnary(ast::UnNeg, ref expr) => {
match expr.node {
ast::ExprLit(ref lit) => {
match lit.node {
ast::LitInt(_, ast::UnsignedIntLit(_)) => {
check_unsigned_negation_feature(cx, e.span);
},
ast::LitInt(_, ast::UnsuffixedIntLit(_)) => {
if let ty::TyUint(_) = cx.tcx.expr_ty(e).sty {
check_unsigned_negation_feature(cx, e.span);
}
},
_ => ()
}
},
_ => {
let t = cx.tcx.expr_ty(&**expr);
match t.sty {
ty::TyUint(_) => {
check_unsigned_negation_feature(cx, e.span);
},
_ => ()
}
}
};
// propagate negation, if the negation itself isn't negated
if self.negated_expr_id != e.id {
self.negated_expr_id = expr.id;
}
},
ast::ExprParen(ref expr) if self.negated_expr_id == e.id => {
self.negated_expr_id = expr.id;
},
ast::ExprBinary(binop, ref l, ref r) => {
if is_comparison(binop) && !check_limits(cx.tcx, binop, &**l, &**r) {
cx.span_lint(UNUSED_COMPARISONS, e.span,
"comparison is useless due to type limits");
}
if is_shift_binop(binop.node) {
let opt_ty_bits = match cx.tcx.expr_ty(&**l).sty {
ty::TyInt(t) => Some(int_ty_bits(t, cx.sess().target.int_type)),
ty::TyUint(t) => Some(uint_ty_bits(t, cx.sess().target.uint_type)),
_ => None
};
if let Some(bits) = opt_ty_bits {
let exceeding = if let ast::ExprLit(ref lit) = r.node {
if let ast::LitInt(shift, _) = lit.node { shift >= bits }
else { false }
} else {
match eval_const_expr_partial(cx.tcx, &**r, ExprTypeChecked) {
Ok(ConstVal::Int(shift)) => { shift as u64 >= bits },
Ok(ConstVal::Uint(shift)) => { shift >= bits },
_ => { false }
}
};
if exceeding {
cx.span_lint(EXCEEDING_BITSHIFTS, e.span,
"bitshift exceeds the type's number of bits");
}
};
}
},
ast::ExprLit(ref lit) => {
match cx.tcx.expr_ty(e).sty {
ty::TyInt(t) => {
match lit.node {
ast::LitInt(v, ast::SignedIntLit(_, ast::Plus)) |
ast::LitInt(v, ast::UnsuffixedIntLit(ast::Plus)) => {
let int_type = if let ast::TyIs = t {
cx.sess().target.int_type
2015-02-28 06:31:14 -06:00
} else {
t
};
let (_, max) = int_ty_range(int_type);
let negative = self.negated_expr_id == e.id;
// Detect literal value out of range [min, max] inclusive
// avoiding use of -min to prevent overflow/panic
if (negative && v > max as u64 + 1) ||
(!negative && v > max as u64) {
cx.span_lint(OVERFLOWING_LITERALS, e.span,
&*format!("literal out of range for {:?}", t));
return;
}
}
_ => panic!()
};
},
ty::TyUint(t) => {
let uint_type = if let ast::TyUs = t {
cx.sess().target.uint_type
2015-02-28 06:31:14 -06:00
} else {
t
};
let (min, max) = uint_ty_range(uint_type);
let lit_val: u64 = match lit.node {
ast::LitByte(_v) => return, // _v is u8, within range by definition
ast::LitInt(v, _) => v,
_ => panic!()
};
2015-02-28 06:31:14 -06:00
if lit_val < min || lit_val > max {
cx.span_lint(OVERFLOWING_LITERALS, e.span,
&*format!("literal out of range for {:?}", t));
}
},
ty::TyFloat(t) => {
let (min, max) = float_ty_range(t);
let lit_val: f64 = match lit.node {
ast::LitFloat(ref v, _) |
ast::LitFloatUnsuffixed(ref v) => {
2015-02-28 06:31:14 -06:00
match v.parse() {
Ok(f) => f,
Err(_) => return
}
}
_ => panic!()
};
if lit_val < min || lit_val > max {
cx.span_lint(OVERFLOWING_LITERALS, e.span,
&*format!("literal out of range for {:?}", t));
}
},
_ => ()
};
},
_ => ()
};
fn is_valid<T:cmp::PartialOrd>(binop: ast::BinOp, v: T,
min: T, max: T) -> bool {
match binop.node {
ast::BiLt => v > min && v <= max,
ast::BiLe => v >= min && v < max,
ast::BiGt => v >= min && v < max,
ast::BiGe => v > min && v <= max,
ast::BiEq | ast::BiNe => v >= min && v <= max,
_ => panic!()
}
}
fn rev_binop(binop: ast::BinOp) -> ast::BinOp {
codemap::respan(binop.span, match binop.node {
ast::BiLt => ast::BiGt,
ast::BiLe => ast::BiGe,
ast::BiGt => ast::BiLt,
ast::BiGe => ast::BiLe,
_ => return binop
})
}
2015-02-28 06:31:14 -06:00
// for isize & usize, be conservative with the warnings, so that the
// warnings are consistent between 32- and 64-bit platforms
fn int_ty_range(int_ty: ast::IntTy) -> (i64, i64) {
match int_ty {
ast::TyIs => (i64::MIN, i64::MAX),
2015-02-28 06:31:14 -06:00
ast::TyI8 => (i8::MIN as i64, i8::MAX as i64),
ast::TyI16 => (i16::MIN as i64, i16::MAX as i64),
ast::TyI32 => (i32::MIN as i64, i32::MAX as i64),
ast::TyI64 => (i64::MIN, i64::MAX)
}
}
fn uint_ty_range(uint_ty: ast::UintTy) -> (u64, u64) {
match uint_ty {
ast::TyUs => (u64::MIN, u64::MAX),
2015-02-28 06:31:14 -06:00
ast::TyU8 => (u8::MIN as u64, u8::MAX as u64),
ast::TyU16 => (u16::MIN as u64, u16::MAX as u64),
ast::TyU32 => (u32::MIN as u64, u32::MAX as u64),
ast::TyU64 => (u64::MIN, u64::MAX)
}
}
fn float_ty_range(float_ty: ast::FloatTy) -> (f64, f64) {
match float_ty {
2015-02-28 06:31:14 -06:00
ast::TyF32 => (f32::MIN as f64, f32::MAX as f64),
ast::TyF64 => (f64::MIN, f64::MAX)
}
}
fn int_ty_bits(int_ty: ast::IntTy, target_int_ty: ast::IntTy) -> u64 {
match int_ty {
ast::TyIs => int_ty_bits(target_int_ty, target_int_ty),
2015-02-28 06:31:14 -06:00
ast::TyI8 => i8::BITS as u64,
ast::TyI16 => i16::BITS as u64,
ast::TyI32 => i32::BITS as u64,
ast::TyI64 => i64::BITS as u64
}
}
fn uint_ty_bits(uint_ty: ast::UintTy, target_uint_ty: ast::UintTy) -> u64 {
match uint_ty {
ast::TyUs => uint_ty_bits(target_uint_ty, target_uint_ty),
2015-02-28 06:31:14 -06:00
ast::TyU8 => u8::BITS as u64,
ast::TyU16 => u16::BITS as u64,
ast::TyU32 => u32::BITS as u64,
ast::TyU64 => u64::BITS as u64
}
}
fn check_limits(tcx: &ty::ctxt, binop: ast::BinOp,
l: &ast::Expr, r: &ast::Expr) -> bool {
let (lit, expr, swap) = match (&l.node, &r.node) {
(&ast::ExprLit(_), _) => (l, r, true),
(_, &ast::ExprLit(_)) => (r, l, false),
_ => return true
};
// Normalize the binop so that the literal is always on the RHS in
// the comparison
2015-02-28 06:31:14 -06:00
let norm_binop = if swap {
rev_binop(binop)
} else {
binop
};
match tcx.expr_ty(expr).sty {
ty::TyInt(int_ty) => {
let (min, max) = int_ty_range(int_ty);
let lit_val: i64 = match lit.node {
ast::ExprLit(ref li) => match li.node {
ast::LitInt(v, ast::SignedIntLit(_, ast::Plus)) |
ast::LitInt(v, ast::UnsuffixedIntLit(ast::Plus)) => v as i64,
ast::LitInt(v, ast::SignedIntLit(_, ast::Minus)) |
ast::LitInt(v, ast::UnsuffixedIntLit(ast::Minus)) => -(v as i64),
_ => return true
},
_ => panic!()
};
is_valid(norm_binop, lit_val, min, max)
}
ty::TyUint(uint_ty) => {
let (min, max): (u64, u64) = uint_ty_range(uint_ty);
let lit_val: u64 = match lit.node {
ast::ExprLit(ref li) => match li.node {
ast::LitInt(v, _) => v,
_ => return true
},
_ => panic!()
};
is_valid(norm_binop, lit_val, min, max)
}
_ => true
}
}
fn is_comparison(binop: ast::BinOp) -> bool {
match binop.node {
ast::BiEq | ast::BiLt | ast::BiLe |
ast::BiNe | ast::BiGe | ast::BiGt => true,
_ => false
}
}
fn check_unsigned_negation_feature(cx: &Context, span: Span) {
if !cx.sess().features.borrow().negate_unsigned {
// FIXME(#27141): change this to syntax::feature_gate::emit_feature_err…
cx.sess().span_warn(span,
"unary negation of unsigned integers will be feature gated in the future");
// …and remove following two expressions.
if option_env!("CFG_DISABLE_UNSTABLE_FEATURES").is_some() { return; }
cx.sess().fileline_help(span, "add #![feature(negate_unsigned)] to the \
crate attributes to enable the gate in advance");
}
}
}
}
declare_lint! {
IMPROPER_CTYPES,
Warn,
"proper use of libc types in foreign modules"
}
struct ImproperCTypesVisitor<'a, 'tcx: 'a> {
cx: &'a Context<'a, 'tcx>
}
enum FfiResult {
FfiSafe,
FfiUnsafe(&'static str),
2015-08-16 05:32:28 -05:00
FfiBadStruct(DefId, &'static str),
FfiBadEnum(DefId, &'static str)
}
/// Check if this enum can be safely exported based on the
/// "nullable pointer optimization". Currently restricted
/// to function pointers and references, but could be
/// expanded to cover NonZero raw pointers and newtypes.
/// FIXME: This duplicates code in trans.
fn is_repr_nullable_ptr<'tcx>(tcx: &ty::ctxt<'tcx>,
2015-08-07 06:41:33 -05:00
def: ty::AdtDef<'tcx>,
substs: &Substs<'tcx>)
-> bool {
if def.variants.len() == 2 {
let data_idx;
if def.variants[0].fields.is_empty() {
data_idx = 1;
} else if def.variants[1].fields.is_empty() {
data_idx = 0;
} else {
return false;
}
if def.variants[data_idx].fields.len() == 1 {
match def.variants[data_idx].fields[0].ty(tcx, substs).sty {
ty::TyBareFn(None, _) => { return true; }
ty::TyRef(..) => { return true; }
_ => { }
}
}
}
false
}
fn ast_ty_to_normalized<'tcx>(tcx: &ty::ctxt<'tcx>,
id: ast::NodeId)
-> Ty<'tcx> {
let tty = match tcx.ast_ty_to_ty_cache.borrow().get(&id) {
Some(&t) => t,
None => panic!("ast_ty_to_ty_cache was incomplete after typeck!")
};
infer::normalize_associated_type(tcx, &tty)
}
impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
/// Check if the given type is "ffi-safe" (has a stable, well-defined
/// representation which can be exported to C code).
fn check_type_for_ffi(&self,
cache: &mut FnvHashSet<Ty<'tcx>>,
ty: Ty<'tcx>)
-> FfiResult {
use self::FfiResult::*;
let cx = &self.cx.tcx;
// Protect against infinite recursion, for example
// `struct S(*mut S);`.
// FIXME: A recursion limit is necessary as well, for irregular
// recusive types.
if !cache.insert(ty) {
return FfiSafe;
}
match ty.sty {
ty::TyStruct(def, substs) => {
if !cx.lookup_repr_hints(def.did).contains(&attr::ReprExtern) {
return FfiUnsafe(
"found struct without foreign-function-safe \
representation annotation in foreign module, \
consider adding a #[repr(C)] attribute to \
the type");
}
// We can't completely trust repr(C) markings; make sure the
// fields are actually safe.
if def.struct_variant().fields.is_empty() {
return FfiUnsafe(
"found zero-size struct in foreign module, consider \
adding a member to this struct");
}
for field in &def.struct_variant().fields {
let field_ty = infer::normalize_associated_type(cx, &field.ty(cx, substs));
let r = self.check_type_for_ffi(cache, field_ty);
match r {
FfiSafe => {}
FfiBadStruct(..) | FfiBadEnum(..) => { return r; }
FfiUnsafe(s) => { return FfiBadStruct(def.did, s); }
}
}
FfiSafe
}
ty::TyEnum(def, substs) => {
if def.variants.is_empty() {
// Empty enums are okay... although sort of useless.
return FfiSafe
}
// Check for a repr() attribute to specify the size of the
// discriminant.
let repr_hints = cx.lookup_repr_hints(def.did);
match &**repr_hints {
[] => {
// Special-case types like `Option<extern fn()>`.
if !is_repr_nullable_ptr(cx, def, substs) {
return FfiUnsafe(
"found enum without foreign-function-safe \
representation annotation in foreign module, \
consider adding a #[repr(...)] attribute to \
the type")
}
}
[ref hint] => {
if !hint.is_ffi_safe() {
// FIXME: This shouldn't be reachable: we should check
// this earlier.
return FfiUnsafe(
"enum has unexpected #[repr(...)] attribute")
}
// Enum with an explicitly sized discriminant; either
// a C-style enum or a discriminated union.
// The layout of enum variants is implicitly repr(C).
// FIXME: Is that correct?
}
_ => {
// FIXME: This shouldn't be reachable: we should check
// this earlier.
return FfiUnsafe(
"enum has too many #[repr(...)] attributes");
}
}
// Check the contained variants.
for variant in &def.variants {
for field in &variant.fields {
let arg = infer::normalize_associated_type(cx, &field.ty(cx, substs));
let r = self.check_type_for_ffi(cache, arg);
match r {
FfiSafe => {}
FfiBadStruct(..) | FfiBadEnum(..) => { return r; }
FfiUnsafe(s) => { return FfiBadEnum(def.did, s); }
}
}
}
FfiSafe
}
ty::TyInt(ast::TyIs) => {
FfiUnsafe("found Rust type `isize` in foreign module, while \
`libc::c_int` or `libc::c_long` should be used")
}
ty::TyUint(ast::TyUs) => {
FfiUnsafe("found Rust type `usize` in foreign module, while \
`libc::c_uint` or `libc::c_ulong` should be used")
}
ty::TyChar => {
FfiUnsafe("found Rust type `char` in foreign module, while \
`u32` or `libc::wchar_t` should be used")
}
// Primitive types with a stable representation.
ty::TyBool | ty::TyInt(..) | ty::TyUint(..) |
ty::TyFloat(..) => FfiSafe,
ty::TyBox(..) => {
FfiUnsafe("found Rust type Box<_> in foreign module, \
consider using a raw pointer instead")
}
ty::TySlice(_) => {
FfiUnsafe("found Rust slice type in foreign module, \
consider using a raw pointer instead")
}
ty::TyTrait(..) => {
FfiUnsafe("found Rust trait type in foreign module, \
consider using a raw pointer instead")
}
ty::TyStr => {
FfiUnsafe("found Rust type `str` in foreign module; \
consider using a `*const libc::c_char`")
}
ty::TyTuple(_) => {
FfiUnsafe("found Rust tuple type in foreign module; \
consider using a struct instead`")
}
ty::TyRawPtr(ref m) | ty::TyRef(_, ref m) => {
self.check_type_for_ffi(cache, m.ty)
}
ty::TyArray(ty, _) => {
self.check_type_for_ffi(cache, ty)
}
ty::TyBareFn(None, bare_fn) => {
match bare_fn.abi {
abi::Rust |
abi::RustIntrinsic |
abi::PlatformIntrinsic |
abi::RustCall => {
return FfiUnsafe(
"found function pointer with Rust calling \
convention in foreign module; consider using an \
`extern` function pointer")
}
_ => {}
}
let sig = cx.erase_late_bound_regions(&bare_fn.sig);
match sig.output {
ty::FnDiverging => {}
ty::FnConverging(output) => {
if !output.is_nil() {
let r = self.check_type_for_ffi(cache, output);
match r {
FfiSafe => {}
_ => { return r; }
}
}
}
}
for arg in sig.inputs {
let r = self.check_type_for_ffi(cache, arg);
match r {
FfiSafe => {}
_ => { return r; }
}
}
FfiSafe
}
ty::TyParam(..) | ty::TyInfer(..) | ty::TyError |
ty::TyClosure(..) | ty::TyProjection(..) |
ty::TyBareFn(Some(_), _) => {
panic!("Unexpected type in foreign function")
}
}
}
fn check_def(&mut self, sp: Span, id: ast::NodeId) {
let tty = ast_ty_to_normalized(self.cx.tcx, id);
match ImproperCTypesVisitor::check_type_for_ffi(self, &mut FnvHashSet(), tty) {
FfiResult::FfiSafe => {}
FfiResult::FfiUnsafe(s) => {
self.cx.span_lint(IMPROPER_CTYPES, sp, s);
}
FfiResult::FfiBadStruct(_, s) => {
// FIXME: This diagnostic is difficult to read, and doesn't
// point at the relevant field.
self.cx.span_lint(IMPROPER_CTYPES, sp,
&format!("found non-foreign-function-safe member in \
struct marked #[repr(C)]: {}", s));
}
FfiResult::FfiBadEnum(_, s) => {
// FIXME: This diagnostic is difficult to read, and doesn't
// point at the relevant variant.
self.cx.span_lint(IMPROPER_CTYPES, sp,
&format!("found non-foreign-function-safe member in \
enum: {}", s));
}
}
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for ImproperCTypesVisitor<'a, 'tcx> {
fn visit_ty(&mut self, ty: &ast::Ty) {
match ty.node {
ast::TyPath(..) |
ast::TyBareFn(..) => self.check_def(ty.span, ty.id),
ast::TyVec(..) => {
self.cx.span_lint(IMPROPER_CTYPES, ty.span,
"found Rust slice type in foreign module, consider \
using a raw pointer instead");
}
ast::TyFixedLengthVec(ref ty, _) => self.visit_ty(ty),
ast::TyTup(..) => {
self.cx.span_lint(IMPROPER_CTYPES, ty.span,
"found Rust tuple type in foreign module; \
consider using a struct instead`")
}
_ => visit::walk_ty(self, ty)
}
}
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct ImproperCTypes;
impl LintPass for ImproperCTypes {
fn get_lints(&self) -> LintArray {
lint_array!(IMPROPER_CTYPES)
}
fn check_item(&mut self, cx: &Context, it: &ast::Item) {
fn check_ty(cx: &Context, ty: &ast::Ty) {
let mut vis = ImproperCTypesVisitor { cx: cx };
vis.visit_ty(ty);
}
fn check_foreign_fn(cx: &Context, decl: &ast::FnDecl) {
for input in &decl.inputs {
check_ty(cx, &*input.ty);
}
if let ast::Return(ref ret_ty) = decl.output {
let tty = ast_ty_to_normalized(cx.tcx, ret_ty.id);
if !tty.is_nil() {
check_ty(cx, &ret_ty);
}
}
}
match it.node {
ast::ItemForeignMod(ref nmod)
if nmod.abi != abi::RustIntrinsic &&
nmod.abi != abi::PlatformIntrinsic => {
for ni in &nmod.items {
match ni.node {
ast::ForeignItemFn(ref decl, _) => check_foreign_fn(cx, &**decl),
ast::ForeignItemStatic(ref t, _) => check_ty(cx, &**t)
}
}
}
_ => (),
}
}
}
declare_lint! {
BOX_POINTERS,
Allow,
"use of owned (Box type) heap memory"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct BoxPointers;
impl BoxPointers {
fn check_heap_type<'a, 'tcx>(&self, cx: &Context<'a, 'tcx>,
span: Span, ty: Ty<'tcx>) {
for leaf_ty in ty.walk() {
if let ty::TyBox(_) = leaf_ty.sty {
let m = format!("type uses owned (Box type) pointers: {}", ty);
cx.span_lint(BOX_POINTERS, span, &m);
}
}
}
}
impl LintPass for BoxPointers {
fn get_lints(&self) -> LintArray {
lint_array!(BOX_POINTERS)
}
fn check_item(&mut self, cx: &Context, it: &ast::Item) {
match it.node {
ast::ItemFn(..) |
ast::ItemTy(..) |
ast::ItemEnum(..) |
ast::ItemStruct(..) =>
self.check_heap_type(cx, it.span,
cx.tcx.node_id_to_type(it.id)),
_ => ()
}
// If it's a struct, we also have to check the fields' types
match it.node {
ast::ItemStruct(ref struct_def, _) => {
for struct_field in &struct_def.fields {
self.check_heap_type(cx, struct_field.span,
cx.tcx.node_id_to_type(struct_field.node.id));
}
}
_ => ()
}
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
let ty = cx.tcx.expr_ty(e);
self.check_heap_type(cx, e.span, ty);
}
}
declare_lint! {
RAW_POINTER_DERIVE,
Warn,
"uses of #[derive] with raw pointers are rarely correct"
}
struct RawPtrDeriveVisitor<'a, 'tcx: 'a> {
cx: &'a Context<'a, 'tcx>
}
impl<'a, 'tcx, 'v> Visitor<'v> for RawPtrDeriveVisitor<'a, 'tcx> {
fn visit_ty(&mut self, ty: &ast::Ty) {
const MSG: &'static str = "use of `#[derive]` with a raw pointer";
if let ast::TyPtr(..) = ty.node {
self.cx.span_lint(RAW_POINTER_DERIVE, ty.span, MSG);
}
visit::walk_ty(self, ty);
}
// explicit override to a no-op to reduce code bloat
fn visit_expr(&mut self, _: &ast::Expr) {}
fn visit_block(&mut self, _: &ast::Block) {}
}
pub struct RawPointerDerive {
checked_raw_pointers: NodeSet,
}
impl RawPointerDerive {
pub fn new() -> RawPointerDerive {
RawPointerDerive {
checked_raw_pointers: NodeSet(),
}
}
}
impl LintPass for RawPointerDerive {
fn get_lints(&self) -> LintArray {
lint_array!(RAW_POINTER_DERIVE)
}
fn check_item(&mut self, cx: &Context, item: &ast::Item) {
if !attr::contains_name(&item.attrs, "automatically_derived") {
2015-02-28 06:31:14 -06:00
return;
}
let did = match item.node {
ast::ItemImpl(_, _, _, ref t_ref_opt, _, _) => {
// Deriving the Copy trait does not cause a warning
if let &Some(ref trait_ref) = t_ref_opt {
let def_id = cx.tcx.trait_ref_to_def_id(trait_ref);
if Some(def_id) == cx.tcx.lang_items.copy_trait() {
2015-02-28 06:31:14 -06:00
return;
}
}
match cx.tcx.node_id_to_type(item.id).sty {
ty::TyEnum(def, _) => def.did,
ty::TyStruct(def, _) => def.did,
_ => return,
}
}
_ => return,
};
2015-08-16 05:32:28 -05:00
if !did.is_local() {
2015-02-28 06:31:14 -06:00
return;
}
let item = match cx.tcx.map.find(did.node) {
Some(ast_map::NodeItem(item)) => item,
_ => return,
};
2015-02-28 06:31:14 -06:00
if !self.checked_raw_pointers.insert(item.id) {
return;
}
match item.node {
ast::ItemStruct(..) | ast::ItemEnum(..) => {
let mut visitor = RawPtrDeriveVisitor { cx: cx };
visit::walk_item(&mut visitor, &*item);
}
_ => {}
}
}
}
declare_lint! {
UNUSED_ATTRIBUTES,
Warn,
"detects attributes that were not used by the compiler"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct UnusedAttributes;
impl LintPass for UnusedAttributes {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_ATTRIBUTES)
}
fn check_attribute(&mut self, cx: &Context, attr: &ast::Attribute) {
// Note that check_name() marks the attribute as used if it matches.
for &(ref name, ty) in KNOWN_ATTRIBUTES {
match ty {
AttributeType::Whitelisted
| AttributeType::Gated(_, _) if attr.check_name(name) => {
break;
},
_ => ()
}
}
let plugin_attributes = cx.sess().plugin_attributes.borrow_mut();
for &(ref name, ty) in plugin_attributes.iter() {
2015-05-13 01:53:43 -05:00
if ty == AttributeType::Whitelisted && attr.check_name(&*name) {
break;
}
}
if !attr::is_used(attr) {
cx.span_lint(UNUSED_ATTRIBUTES, attr.span, "unused attribute");
2015-05-07 05:01:20 -05:00
// Is it a builtin attribute that must be used at the crate level?
let known_crate = KNOWN_ATTRIBUTES.contains(&(&attr.name(),
AttributeType::CrateLevel));
// Has a plugin registered this attribute as one which must be used at
// the crate level?
let plugin_crate = plugin_attributes.iter()
.find(|&&(ref x, t)| {
&*attr.name() == &*x &&
AttributeType::CrateLevel == t
}).is_some();
if known_crate || plugin_crate {
let msg = match attr.node.style {
ast::AttrOuter => "crate-level attribute should be an inner \
attribute: add an exclamation mark: #![foo]",
ast::AttrInner => "crate-level attribute should be in the \
root module",
};
cx.span_lint(UNUSED_ATTRIBUTES, attr.span, msg);
}
}
}
}
declare_lint! {
pub PATH_STATEMENTS,
Warn,
"path statements with no effect"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct PathStatements;
impl LintPass for PathStatements {
fn get_lints(&self) -> LintArray {
lint_array!(PATH_STATEMENTS)
}
fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) {
match s.node {
ast::StmtSemi(ref expr, _) => {
match expr.node {
ast::ExprPath(..) => cx.span_lint(PATH_STATEMENTS, s.span,
"path statement with no effect"),
_ => ()
}
}
_ => ()
}
}
}
declare_lint! {
pub UNUSED_MUST_USE,
Warn,
"unused result of a type flagged as #[must_use]"
}
declare_lint! {
pub UNUSED_RESULTS,
Allow,
"unused result of an expression in a statement"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct UnusedResults;
impl LintPass for UnusedResults {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_MUST_USE, UNUSED_RESULTS)
}
fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) {
let expr = match s.node {
ast::StmtSemi(ref expr, _) => &**expr,
_ => return
};
if let ast::ExprRet(..) = expr.node {
return;
}
let t = cx.tcx.expr_ty(expr);
let warned = match t.sty {
ty::TyTuple(ref tys) if tys.is_empty() => return,
ty::TyBool => return,
ty::TyStruct(def, _) |
ty::TyEnum(def, _) => {
2015-08-16 05:32:28 -05:00
if def.did.is_local() {
if let ast_map::NodeItem(it) = cx.tcx.map.get(def.did.node) {
check_must_use(cx, &it.attrs, s.span)
} else {
false
}
} else {
let attrs = csearch::get_item_attrs(&cx.sess().cstore, def.did);
check_must_use(cx, &attrs[..], s.span)
}
}
_ => false,
};
if !warned {
cx.span_lint(UNUSED_RESULTS, s.span, "unused result");
}
fn check_must_use(cx: &Context, attrs: &[ast::Attribute], sp: Span) -> bool {
for attr in attrs {
if attr.check_name("must_use") {
let mut msg = "unused result which must be used".to_string();
// check for #[must_use="..."]
match attr.value_str() {
None => {}
Some(s) => {
msg.push_str(": ");
msg.push_str(&s);
}
}
cx.span_lint(UNUSED_MUST_USE, sp, &msg);
return true;
}
}
false
}
}
}
declare_lint! {
pub NON_CAMEL_CASE_TYPES,
Warn,
"types, variants, traits and type parameters should have camel case names"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct NonCamelCaseTypes;
impl NonCamelCaseTypes {
fn check_case(&self, cx: &Context, sort: &str, ident: ast::Ident, span: Span) {
fn is_camel_case(ident: ast::Ident) -> bool {
let ident = ident.name.as_str();
2015-02-28 06:31:14 -06:00
if ident.is_empty() {
return true;
}
let ident = ident.trim_matches('_');
// start with a non-lowercase letter rather than non-uppercase
// ones (some scripts don't have a concept of upper/lowercase)
!ident.is_empty() && !ident.char_at(0).is_lowercase() && !ident.contains('_')
}
fn to_camel_case(s: &str) -> String {
s.split('_').flat_map(|word| word.chars().enumerate().map(|(i, c)|
2015-02-28 06:31:14 -06:00
if i == 0 {
c.to_uppercase().collect::<String>()
2015-02-28 06:31:14 -06:00
} else {
2015-03-14 00:40:33 -05:00
c.to_lowercase().collect()
2015-02-28 06:31:14 -06:00
}
)).collect::<Vec<_>>().concat()
}
let s = ident.name.as_str();
if !is_camel_case(ident) {
let c = to_camel_case(&s);
let m = if c.is_empty() {
format!("{} `{}` should have a camel case name such as `CamelCase`", sort, s)
} else {
format!("{} `{}` should have a camel case name such as `{}`", sort, s, c)
};
cx.span_lint(NON_CAMEL_CASE_TYPES, span, &m[..]);
}
}
}
impl LintPass for NonCamelCaseTypes {
fn get_lints(&self) -> LintArray {
lint_array!(NON_CAMEL_CASE_TYPES)
}
fn check_item(&mut self, cx: &Context, it: &ast::Item) {
let extern_repr_count = it.attrs.iter().filter(|attr| {
attr::find_repr_attrs(cx.tcx.sess.diagnostic(), attr).iter()
.any(|r| r == &attr::ReprExtern)
}).count();
let has_extern_repr = extern_repr_count > 0;
2015-02-28 06:31:14 -06:00
if has_extern_repr {
return;
}
match it.node {
ast::ItemTy(..) | ast::ItemStruct(..) => {
self.check_case(cx, "type", it.ident, it.span)
}
ast::ItemTrait(..) => {
self.check_case(cx, "trait", it.ident, it.span)
}
ast::ItemEnum(ref enum_definition, _) => {
2015-02-28 06:31:14 -06:00
if has_extern_repr {
return;
}
self.check_case(cx, "type", it.ident, it.span);
for variant in &enum_definition.variants {
self.check_case(cx, "variant", variant.node.name, variant.span);
}
}
_ => ()
}
}
fn check_generics(&mut self, cx: &Context, it: &ast::Generics) {
for gen in it.ty_params.iter() {
self.check_case(cx, "type parameter", gen.ident, gen.span);
}
}
}
#[derive(PartialEq)]
enum MethodContext {
TraitDefaultImpl,
TraitImpl,
PlainImpl
}
fn method_context(cx: &Context, id: ast::NodeId, span: Span) -> MethodContext {
2015-08-16 05:32:28 -05:00
match cx.tcx.impl_or_trait_items.borrow().get(&DefId::local(id)) {
None => cx.sess().span_bug(span, "missing method descriptor?!"),
Some(item) => match item.container() {
ty::TraitContainer(..) => MethodContext::TraitDefaultImpl,
ty::ImplContainer(cid) => {
match cx.tcx.impl_trait_ref(cid) {
Some(_) => MethodContext::TraitImpl,
None => MethodContext::PlainImpl
}
}
}
}
}
declare_lint! {
pub NON_SNAKE_CASE,
Warn,
"methods, functions, lifetime parameters and modules should have snake case names"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct NonSnakeCase;
impl NonSnakeCase {
fn to_snake_case(mut str: &str) -> String {
let mut words = vec![];
// Preserve leading underscores
str = str.trim_left_matches(|c: char| {
if c == '_' {
words.push(String::new());
true
2015-02-28 06:31:14 -06:00
} else {
false
}
});
for s in str.split('_') {
let mut last_upper = false;
let mut buf = String::new();
2015-02-28 06:31:14 -06:00
if s.is_empty() {
continue;
}
for ch in s.chars() {
if !buf.is_empty() && buf != "'"
&& ch.is_uppercase()
&& !last_upper {
words.push(buf);
buf = String::new();
}
last_upper = ch.is_uppercase();
buf.extend(ch.to_lowercase());
}
words.push(buf);
}
words.join("_")
}
fn check_snake_case(&self, cx: &Context, sort: &str, name: &str, span: Option<Span>) {
fn is_snake_case(ident: &str) -> bool {
2015-02-28 06:31:14 -06:00
if ident.is_empty() {
return true;
}
let ident = ident.trim_left_matches('\'');
let ident = ident.trim_matches('_');
let mut allow_underscore = true;
ident.chars().all(|c| {
allow_underscore = match c {
'_' if !allow_underscore => return false,
'_' => false,
// It would be more obvious to use `c.is_lowercase()`,
// but some characters do not have a lowercase form
c if !c.is_uppercase() => true,
_ => return false,
};
true
})
}
if !is_snake_case(name) {
let sc = NonSnakeCase::to_snake_case(name);
let msg = if sc != name {
format!("{} `{}` should have a snake case name such as `{}`",
sort, name, sc)
} else {
format!("{} `{}` should have a snake case name",
sort, name)
};
match span {
Some(span) => cx.span_lint(NON_SNAKE_CASE, span, &msg),
None => cx.lint(NON_SNAKE_CASE, &msg),
}
}
}
}
impl LintPass for NonSnakeCase {
fn get_lints(&self) -> LintArray {
lint_array!(NON_SNAKE_CASE)
}
fn check_crate(&mut self, cx: &Context, cr: &ast::Crate) {
let attr_crate_name = cr.attrs.iter().find(|at| at.check_name("crate_name"))
.and_then(|at| at.value_str().map(|s| (at, s)));
if let Some(ref name) = cx.tcx.sess.opts.crate_name {
self.check_snake_case(cx, "crate", name, None);
} else if let Some((attr, ref name)) = attr_crate_name {
self.check_snake_case(cx, "crate", name, Some(attr.span));
}
}
fn check_fn(&mut self, cx: &Context,
fk: visit::FnKind, _: &ast::FnDecl,
_: &ast::Block, span: Span, id: ast::NodeId) {
match fk {
visit::FkMethod(ident, _, _) => match method_context(cx, id, span) {
2015-02-28 06:31:14 -06:00
MethodContext::PlainImpl => {
self.check_snake_case(cx, "method", &ident.name.as_str(), Some(span))
2015-02-28 06:31:14 -06:00
},
MethodContext::TraitDefaultImpl => {
self.check_snake_case(cx, "trait method", &ident.name.as_str(), Some(span))
2015-02-28 06:31:14 -06:00
},
_ => (),
},
visit::FkItemFn(ident, _, _, _, _, _) => {
self.check_snake_case(cx, "function", &ident.name.as_str(), Some(span))
2015-02-28 06:31:14 -06:00
},
_ => (),
}
}
fn check_item(&mut self, cx: &Context, it: &ast::Item) {
if let ast::ItemMod(_) = it.node {
self.check_snake_case(cx, "module", &it.ident.name.as_str(), Some(it.span));
}
}
fn check_trait_item(&mut self, cx: &Context, trait_item: &ast::TraitItem) {
if let ast::MethodTraitItem(_, None) = trait_item.node {
self.check_snake_case(cx, "trait method", &trait_item.ident.name.as_str(),
Some(trait_item.span));
}
}
fn check_lifetime_def(&mut self, cx: &Context, t: &ast::LifetimeDef) {
self.check_snake_case(cx, "lifetime", &t.lifetime.name.as_str(),
Some(t.lifetime.span));
}
fn check_pat(&mut self, cx: &Context, p: &ast::Pat) {
if let &ast::PatIdent(_, ref path1, _) = &p.node {
let def = cx.tcx.def_map.borrow().get(&p.id).map(|d| d.full_def());
if let Some(def::DefLocal(_)) = def {
self.check_snake_case(cx, "variable", &path1.node.name.as_str(), Some(p.span));
}
}
}
fn check_struct_def(&mut self, cx: &Context, s: &ast::StructDef,
2015-02-28 06:31:14 -06:00
_: ast::Ident, _: &ast::Generics, _: ast::NodeId) {
for sf in &s.fields {
if let ast::StructField_ { kind: ast::NamedField(ident, _), .. } = sf.node {
self.check_snake_case(cx, "structure field", &ident.name.as_str(),
Some(sf.span));
}
}
}
}
declare_lint! {
pub NON_UPPER_CASE_GLOBALS,
Warn,
"static constants should have uppercase identifiers"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct NonUpperCaseGlobals;
impl NonUpperCaseGlobals {
fn check_upper_case(cx: &Context, sort: &str, ident: ast::Ident, span: Span) {
let s = ident.name.as_str();
if s.chars().any(|c| c.is_lowercase()) {
let uc = NonSnakeCase::to_snake_case(&s).to_uppercase();
if uc != &s[..] {
cx.span_lint(NON_UPPER_CASE_GLOBALS, span,
&format!("{} `{}` should have an upper case name such as `{}`",
sort, s, uc));
} else {
cx.span_lint(NON_UPPER_CASE_GLOBALS, span,
&format!("{} `{}` should have an upper case name",
sort, s));
}
}
}
}
impl LintPass for NonUpperCaseGlobals {
fn get_lints(&self) -> LintArray {
lint_array!(NON_UPPER_CASE_GLOBALS)
}
fn check_item(&mut self, cx: &Context, it: &ast::Item) {
match it.node {
// only check static constants
ast::ItemStatic(_, ast::MutImmutable, _) => {
NonUpperCaseGlobals::check_upper_case(cx, "static constant", it.ident, it.span);
}
ast::ItemConst(..) => {
NonUpperCaseGlobals::check_upper_case(cx, "constant", it.ident, it.span);
}
_ => {}
}
}
fn check_trait_item(&mut self, cx: &Context, ti: &ast::TraitItem) {
match ti.node {
ast::ConstTraitItem(..) => {
NonUpperCaseGlobals::check_upper_case(cx, "associated constant",
ti.ident, ti.span);
}
_ => {}
}
}
fn check_impl_item(&mut self, cx: &Context, ii: &ast::ImplItem) {
match ii.node {
ast::ConstImplItem(..) => {
NonUpperCaseGlobals::check_upper_case(cx, "associated constant",
ii.ident, ii.span);
}
_ => {}
}
}
fn check_pat(&mut self, cx: &Context, p: &ast::Pat) {
// Lint for constants that look like binding identifiers (#7526)
match (&p.node, cx.tcx.def_map.borrow().get(&p.id).map(|d| d.full_def())) {
(&ast::PatIdent(_, ref path1, _), Some(def::DefConst(..))) => {
NonUpperCaseGlobals::check_upper_case(cx, "constant in pattern",
path1.node, p.span);
}
_ => {}
}
}
}
declare_lint! {
UNUSED_PARENS,
Warn,
"`if`, `match`, `while` and `return` do not need parentheses"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct UnusedParens;
impl UnusedParens {
fn check_unused_parens_core(&self, cx: &Context, value: &ast::Expr, msg: &str,
2015-02-28 06:31:14 -06:00
struct_lit_needs_parens: bool) {
if let ast::ExprParen(ref inner) = value.node {
let necessary = struct_lit_needs_parens && contains_exterior_struct_lit(&**inner);
if !necessary {
cx.span_lint(UNUSED_PARENS, value.span,
2015-02-28 06:31:14 -06:00
&format!("unnecessary parentheses around {}", msg))
}
}
/// Expressions that syntactically contain an "exterior" struct
/// literal i.e. not surrounded by any parens or other
/// delimiters, e.g. `X { y: 1 }`, `X { y: 1 }.method()`, `foo
/// == X { y: 1 }` and `X { y: 1 } == foo` all do, but `(X {
/// y: 1 }) == foo` does not.
fn contains_exterior_struct_lit(value: &ast::Expr) -> bool {
match value.node {
ast::ExprStruct(..) => true,
ast::ExprAssign(ref lhs, ref rhs) |
ast::ExprAssignOp(_, ref lhs, ref rhs) |
ast::ExprBinary(_, ref lhs, ref rhs) => {
// X { y: 1 } + X { y: 2 }
contains_exterior_struct_lit(&**lhs) ||
contains_exterior_struct_lit(&**rhs)
}
ast::ExprUnary(_, ref x) |
ast::ExprCast(ref x, _) |
ast::ExprField(ref x, _) |
ast::ExprTupField(ref x, _) |
ast::ExprIndex(ref x, _) => {
// &X { y: 1 }, X { y: 1 }.y
contains_exterior_struct_lit(&**x)
}
ast::ExprMethodCall(_, _, ref exprs) => {
// X { y: 1 }.bar(...)
contains_exterior_struct_lit(&*exprs[0])
}
_ => false
}
}
}
}
impl LintPass for UnusedParens {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_PARENS)
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
let (value, msg, struct_lit_needs_parens) = match e.node {
ast::ExprIf(ref cond, _, _) => (cond, "`if` condition", true),
ast::ExprWhile(ref cond, _, _) => (cond, "`while` condition", true),
ast::ExprMatch(ref head, _, source) => match source {
ast::MatchSource::Normal => (head, "`match` head expression", true),
ast::MatchSource::IfLetDesugar { .. } => (head, "`if let` head expression", true),
ast::MatchSource::WhileLetDesugar => (head, "`while let` head expression", true),
ast::MatchSource::ForLoopDesugar => (head, "`for` head expression", true),
},
ast::ExprRet(Some(ref value)) => (value, "`return` value", false),
ast::ExprAssign(_, ref value) => (value, "assigned value", false),
ast::ExprAssignOp(_, _, ref value) => (value, "assigned value", false),
_ => return
};
self.check_unused_parens_core(cx, &**value, msg, struct_lit_needs_parens);
}
fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) {
let (value, msg) = match s.node {
ast::StmtDecl(ref decl, _) => match decl.node {
ast::DeclLocal(ref local) => match local.init {
Some(ref value) => (value, "assigned value"),
None => return
},
_ => return
},
_ => return
};
self.check_unused_parens_core(cx, &**value, msg, false);
}
}
declare_lint! {
UNUSED_IMPORT_BRACES,
Allow,
"unnecessary braces around an imported item"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct UnusedImportBraces;
impl LintPass for UnusedImportBraces {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_IMPORT_BRACES)
}
fn check_item(&mut self, cx: &Context, item: &ast::Item) {
2015-02-28 06:32:34 -06:00
if let ast::ItemUse(ref view_path) = item.node {
if let ast::ViewPathList(_, ref items) = view_path.node {
if items.len() == 1 {
if let ast::PathListIdent {ref name, ..} = items[0].node {
let m = format!("braces around {} is unnecessary",
name);
2015-02-28 06:32:34 -06:00
cx.span_lint(UNUSED_IMPORT_BRACES, item.span,
&m[..]);
}
}
2015-02-28 06:32:34 -06:00
}
}
}
}
declare_lint! {
NON_SHORTHAND_FIELD_PATTERNS,
Warn,
"using `Struct { x: x }` instead of `Struct { x }`"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct NonShorthandFieldPatterns;
impl LintPass for NonShorthandFieldPatterns {
fn get_lints(&self) -> LintArray {
lint_array!(NON_SHORTHAND_FIELD_PATTERNS)
}
fn check_pat(&mut self, cx: &Context, pat: &ast::Pat) {
let def_map = cx.tcx.def_map.borrow();
if let ast::PatStruct(_, ref v, _) = pat.node {
2015-02-28 06:31:14 -06:00
let field_pats = v.iter().filter(|fieldpat| {
if fieldpat.node.is_shorthand {
return false;
}
let def = def_map.get(&fieldpat.node.pat.id).map(|d| d.full_def());
def == Some(def::DefLocal(fieldpat.node.pat.id))
});
for fieldpat in field_pats {
if let ast::PatIdent(_, ident, None) = fieldpat.node.pat.node {
if ident.node.name == fieldpat.node.ident.name {
// FIXME: should this comparison really be done on the name?
// doing it on the ident will fail during compilation of libcore
cx.span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span,
&format!("the `{}:` in this pattern is redundant and can \
be removed", ident.node))
}
}
}
}
}
}
declare_lint! {
pub UNUSED_UNSAFE,
Warn,
"unnecessary use of an `unsafe` block"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct UnusedUnsafe;
impl LintPass for UnusedUnsafe {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_UNSAFE)
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
if let ast::ExprBlock(ref blk) = e.node {
// Don't warn about generated blocks, that'll just pollute the output.
if blk.rules == ast::UnsafeBlock(ast::UserProvided) &&
!cx.tcx.used_unsafe.borrow().contains(&blk.id) {
cx.span_lint(UNUSED_UNSAFE, blk.span, "unnecessary `unsafe` block");
}
}
}
}
declare_lint! {
UNSAFE_CODE,
Allow,
"usage of `unsafe` code"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct UnsafeCode;
impl LintPass for UnsafeCode {
fn get_lints(&self) -> LintArray {
lint_array!(UNSAFE_CODE)
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
if let ast::ExprBlock(ref blk) = e.node {
// Don't warn about generated blocks, that'll just pollute the output.
if blk.rules == ast::UnsafeBlock(ast::UserProvided) {
cx.span_lint(UNSAFE_CODE, blk.span, "usage of an `unsafe` block");
}
}
}
fn check_item(&mut self, cx: &Context, it: &ast::Item) {
match it.node {
ast::ItemTrait(ast::Unsafety::Unsafe, _, _, _) =>
cx.span_lint(UNSAFE_CODE, it.span, "declaration of an `unsafe` trait"),
ast::ItemImpl(ast::Unsafety::Unsafe, _, _, _, _, _) =>
cx.span_lint(UNSAFE_CODE, it.span, "implementation of an `unsafe` trait"),
_ => return,
}
}
fn check_fn(&mut self, cx: &Context, fk: visit::FnKind, _: &ast::FnDecl,
_: &ast::Block, span: Span, _: ast::NodeId) {
match fk {
visit::FkItemFn(_, _, ast::Unsafety::Unsafe, _, _, _) =>
cx.span_lint(UNSAFE_CODE, span, "declaration of an `unsafe` function"),
visit::FkMethod(_, sig, _) => {
if sig.unsafety == ast::Unsafety::Unsafe {
cx.span_lint(UNSAFE_CODE, span, "implementation of an `unsafe` method")
}
},
_ => (),
}
}
fn check_trait_item(&mut self, cx: &Context, trait_item: &ast::TraitItem) {
if let ast::MethodTraitItem(ref sig, None) = trait_item.node {
if sig.unsafety == ast::Unsafety::Unsafe {
cx.span_lint(UNSAFE_CODE, trait_item.span,
"declaration of an `unsafe` method")
}
}
}
}
declare_lint! {
pub UNUSED_MUT,
Warn,
"detect mut variables which don't need to be mutable"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct UnusedMut;
impl UnusedMut {
fn check_unused_mut_pat(&self, cx: &Context, pats: &[P<ast::Pat>]) {
// collect all mutable pattern and group their NodeIDs by their Identifier to
// avoid false warnings in match arms with multiple patterns
let mut mutables = FnvHashMap();
for p in pats {
pat_util::pat_bindings(&cx.tcx.def_map, &**p, |mode, id, _, path1| {
let ident = path1.node;
if let ast::BindByValue(ast::MutMutable) = mode {
if !ident.name.as_str().starts_with("_") {
match mutables.entry(ident.name.usize()) {
Vacant(entry) => { entry.insert(vec![id]); },
Occupied(mut entry) => { entry.get_mut().push(id); },
}
}
}
});
}
let used_mutables = cx.tcx.used_mut_nodes.borrow();
for (_, v) in &mutables {
if !v.iter().any(|e| used_mutables.contains(e)) {
cx.span_lint(UNUSED_MUT, cx.tcx.map.span(v[0]),
"variable does not need to be mutable");
}
}
}
}
impl LintPass for UnusedMut {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_MUT)
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
if let ast::ExprMatch(_, ref arms, _) = e.node {
for a in arms {
self.check_unused_mut_pat(cx, &a.pats)
}
}
}
fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) {
if let ast::StmtDecl(ref d, _) = s.node {
if let ast::DeclLocal(ref l) = d.node {
self.check_unused_mut_pat(cx, slice::ref_slice(&l.pat));
}
}
}
fn check_fn(&mut self, cx: &Context,
_: visit::FnKind, decl: &ast::FnDecl,
_: &ast::Block, _: Span, _: ast::NodeId) {
for a in &decl.inputs {
self.check_unused_mut_pat(cx, slice::ref_slice(&a.pat));
}
}
}
declare_lint! {
UNUSED_ALLOCATION,
Warn,
"detects unnecessary allocations that can be eliminated"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct UnusedAllocation;
impl LintPass for UnusedAllocation {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_ALLOCATION)
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
match e.node {
ast::ExprUnary(ast::UnUniq, _) => (),
_ => return
}
if let Some(adjustment) = cx.tcx.tables.borrow().adjustments.get(&e.id) {
if let ty::AdjustDerefRef(ty::AutoDerefRef { ref autoref, .. }) = *adjustment {
match autoref {
&Some(ty::AutoPtr(_, ast::MutImmutable)) => {
cx.span_lint(UNUSED_ALLOCATION, e.span,
"unnecessary allocation, use & instead");
}
&Some(ty::AutoPtr(_, ast::MutMutable)) => {
cx.span_lint(UNUSED_ALLOCATION, e.span,
"unnecessary allocation, use &mut instead");
}
_ => ()
}
}
}
}
}
declare_lint! {
MISSING_DOCS,
Allow,
"detects missing documentation for public members"
}
pub struct MissingDoc {
/// Stack of IDs of struct definitions.
struct_def_stack: Vec<ast::NodeId>,
/// True if inside variant definition
in_variant: bool,
/// Stack of whether #[doc(hidden)] is set
/// at each level which has lint attributes.
doc_hidden_stack: Vec<bool>,
/// Private traits or trait items that leaked through. Don't check their methods.
private_traits: HashSet<ast::NodeId>,
}
impl MissingDoc {
pub fn new() -> MissingDoc {
MissingDoc {
struct_def_stack: vec!(),
in_variant: false,
doc_hidden_stack: vec!(false),
private_traits: HashSet::new(),
}
}
fn doc_hidden(&self) -> bool {
*self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
}
fn check_missing_docs_attrs(&self,
cx: &Context,
id: Option<ast::NodeId>,
attrs: &[ast::Attribute],
sp: Span,
desc: &'static str) {
// If we're building a test harness, then warning about
// documentation is probably not really relevant right now.
2015-02-28 06:31:14 -06:00
if cx.sess().opts.test {
return;
}
// `#[doc(hidden)]` disables missing_docs check.
2015-02-28 06:31:14 -06:00
if self.doc_hidden() {
return;
}
// Only check publicly-visible items, using the result from the privacy pass.
// It's an option so the crate root can also use this function (it doesn't
// have a NodeId).
if let Some(ref id) = id {
if !cx.exported_items.contains(id) {
return;
}
}
let has_doc = attrs.iter().any(|a| {
match a.node.value.node {
ast::MetaNameValue(ref name, _) if *name == "doc" => true,
_ => false
}
});
if !has_doc {
cx.span_lint(MISSING_DOCS, sp,
2015-02-28 06:31:14 -06:00
&format!("missing documentation for {}", desc));
}
}
}
impl LintPass for MissingDoc {
fn get_lints(&self) -> LintArray {
lint_array!(MISSING_DOCS)
}
fn enter_lint_attrs(&mut self, _: &Context, attrs: &[ast::Attribute]) {
let doc_hidden = self.doc_hidden() || attrs.iter().any(|attr| {
attr.check_name("doc") && match attr.meta_item_list() {
None => false,
Some(l) => attr::contains_name(&l[..], "hidden"),
}
});
self.doc_hidden_stack.push(doc_hidden);
}
fn exit_lint_attrs(&mut self, _: &Context, _: &[ast::Attribute]) {
self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
}
2015-02-28 06:31:14 -06:00
fn check_struct_def(&mut self, _: &Context, _: &ast::StructDef,
_: ast::Ident, _: &ast::Generics, id: ast::NodeId) {
self.struct_def_stack.push(id);
}
2015-02-28 06:31:14 -06:00
fn check_struct_def_post(&mut self, _: &Context, _: &ast::StructDef,
_: ast::Ident, _: &ast::Generics, id: ast::NodeId) {
let popped = self.struct_def_stack.pop().expect("empty struct_def_stack");
assert!(popped == id);
}
fn check_crate(&mut self, cx: &Context, krate: &ast::Crate) {
2015-02-28 06:31:14 -06:00
self.check_missing_docs_attrs(cx, None, &krate.attrs, krate.span, "crate");
}
fn check_item(&mut self, cx: &Context, it: &ast::Item) {
let desc = match it.node {
ast::ItemFn(..) => "a function",
ast::ItemMod(..) => "a module",
ast::ItemEnum(..) => "an enum",
ast::ItemStruct(..) => "a struct",
ast::ItemTrait(_, _, _, ref items) => {
// Issue #11592, traits are always considered exported, even when private.
if it.vis == ast::Visibility::Inherited {
self.private_traits.insert(it.id);
for itm in items {
self.private_traits.insert(itm.id);
}
return
}
"a trait"
},
ast::ItemTy(..) => "a type alias",
ast::ItemImpl(_, _, _, Some(ref trait_ref), _, ref impl_items) => {
// If the trait is private, add the impl items to private_traits so they don't get
// reported for missing docs.
let real_trait = cx.tcx.trait_ref_to_def_id(trait_ref);
match cx.tcx.map.find(real_trait.node) {
Some(ast_map::NodeItem(item)) => if item.vis == ast::Visibility::Inherited {
for itm in impl_items {
self.private_traits.insert(itm.id);
}
},
_ => { }
}
return
},
ast::ItemConst(..) => "a constant",
ast::ItemStatic(..) => "a static",
_ => return
};
2015-02-28 06:31:14 -06:00
self.check_missing_docs_attrs(cx, Some(it.id), &it.attrs, it.span, desc);
}
fn check_trait_item(&mut self, cx: &Context, trait_item: &ast::TraitItem) {
if self.private_traits.contains(&trait_item.id) { return }
let desc = match trait_item.node {
ast::ConstTraitItem(..) => "an associated constant",
ast::MethodTraitItem(..) => "a trait method",
ast::TypeTraitItem(..) => "an associated type",
};
self.check_missing_docs_attrs(cx, Some(trait_item.id),
&trait_item.attrs,
trait_item.span, desc);
}
fn check_impl_item(&mut self, cx: &Context, impl_item: &ast::ImplItem) {
// If the method is an impl for a trait, don't doc.
if method_context(cx, impl_item.id, impl_item.span) == MethodContext::TraitImpl {
return;
}
let desc = match impl_item.node {
ast::ConstImplItem(..) => "an associated constant",
ast::MethodImplItem(..) => "a method",
ast::TypeImplItem(_) => "an associated type",
ast::MacImplItem(_) => "an impl item macro",
};
self.check_missing_docs_attrs(cx, Some(impl_item.id),
&impl_item.attrs,
impl_item.span, desc);
}
fn check_struct_field(&mut self, cx: &Context, sf: &ast::StructField) {
if let ast::NamedField(_, vis) = sf.node.kind {
if vis == ast::Public || self.in_variant {
let cur_struct_def = *self.struct_def_stack.last()
.expect("empty struct_def_stack");
self.check_missing_docs_attrs(cx, Some(cur_struct_def),
&sf.node.attrs, sf.span,
"a struct field")
}
}
}
fn check_variant(&mut self, cx: &Context, v: &ast::Variant, _: &ast::Generics) {
2015-02-28 06:31:14 -06:00
self.check_missing_docs_attrs(cx, Some(v.node.id), &v.node.attrs, v.span, "a variant");
assert!(!self.in_variant);
self.in_variant = true;
}
fn check_variant_post(&mut self, _: &Context, _: &ast::Variant, _: &ast::Generics) {
assert!(self.in_variant);
self.in_variant = false;
}
}
declare_lint! {
pub MISSING_COPY_IMPLEMENTATIONS,
Allow,
"detects potentially-forgotten implementations of `Copy`"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct MissingCopyImplementations;
impl LintPass for MissingCopyImplementations {
fn get_lints(&self) -> LintArray {
lint_array!(MISSING_COPY_IMPLEMENTATIONS)
}
fn check_item(&mut self, cx: &Context, item: &ast::Item) {
if !cx.exported_items.contains(&item.id) {
2015-02-28 06:31:14 -06:00
return;
}
2015-08-16 05:32:28 -05:00
if cx.tcx.destructor_for_type.borrow().contains_key(&DefId::local(item.id)) {
2015-02-28 06:31:14 -06:00
return;
}
let ty = match item.node {
ast::ItemStruct(_, ref ast_generics) => {
if ast_generics.is_parameterized() {
2015-02-28 06:31:14 -06:00
return;
}
2015-08-16 05:32:28 -05:00
cx.tcx.mk_struct(cx.tcx.lookup_adt_def(DefId::local(item.id)),
cx.tcx.mk_substs(Substs::empty()))
}
ast::ItemEnum(_, ref ast_generics) => {
if ast_generics.is_parameterized() {
2015-02-28 06:31:14 -06:00
return;
}
2015-08-16 05:32:28 -05:00
cx.tcx.mk_enum(cx.tcx.lookup_adt_def(DefId::local(item.id)),
cx.tcx.mk_substs(Substs::empty()))
}
_ => return,
};
let parameter_environment = cx.tcx.empty_parameter_environment();
// FIXME (@jroesch) should probably inver this so that the parameter env still impls this
// method
if !ty.moves_by_default(&parameter_environment, item.span) {
2015-02-28 06:31:14 -06:00
return;
}
if parameter_environment.can_type_implement_copy(ty, item.span).is_ok() {
cx.span_lint(MISSING_COPY_IMPLEMENTATIONS,
item.span,
"type could implement `Copy`; consider adding `impl \
Copy`")
}
}
}
declare_lint! {
MISSING_DEBUG_IMPLEMENTATIONS,
Allow,
"detects missing implementations of fmt::Debug"
}
pub struct MissingDebugImplementations {
impling_types: Option<NodeSet>,
}
impl MissingDebugImplementations {
pub fn new() -> MissingDebugImplementations {
MissingDebugImplementations {
impling_types: None,
}
}
}
impl LintPass for MissingDebugImplementations {
fn get_lints(&self) -> LintArray {
lint_array!(MISSING_DEBUG_IMPLEMENTATIONS)
}
fn check_item(&mut self, cx: &Context, item: &ast::Item) {
if !cx.exported_items.contains(&item.id) {
return;
}
match item.node {
ast::ItemStruct(..) | ast::ItemEnum(..) => {},
_ => return,
}
let debug = match cx.tcx.lang_items.debug_trait() {
Some(debug) => debug,
None => return,
};
if self.impling_types.is_none() {
let debug_def = cx.tcx.lookup_trait_def(debug);
let mut impls = NodeSet();
debug_def.for_each_impl(cx.tcx, |d| {
if d.is_local() {
if let Some(ty_def) = cx.tcx.node_id_to_type(d.node).ty_to_def_id() {
impls.insert(ty_def.node);
}
}
});
self.impling_types = Some(impls);
debug!("{:?}", self.impling_types);
}
if !self.impling_types.as_ref().unwrap().contains(&item.id) {
cx.span_lint(MISSING_DEBUG_IMPLEMENTATIONS,
item.span,
"type does not implement `fmt::Debug`; consider adding #[derive(Debug)] \
or a manual implementation")
}
}
}
declare_lint! {
DEPRECATED,
Warn,
"detects use of #[deprecated] items"
}
/// Checks for use of items with `#[deprecated]` attributes
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct Stability;
impl Stability {
2015-08-16 05:32:28 -05:00
fn lint(&self, cx: &Context, _id: DefId,
2015-05-25 18:28:04 -05:00
span: Span, stability: &Option<&attr::Stability>) {
2015-02-28 06:31:14 -06:00
// Deprecated attributes apply in-crate and cross-crate.
let (lint, label) = match *stability {
Some(&attr::Stability { deprecated_since: Some(_), .. }) =>
(DEPRECATED, "deprecated"),
_ => return
};
output(cx, span, stability, lint, label);
fn output(cx: &Context, span: Span, stability: &Option<&attr::Stability>,
lint: &'static Lint, label: &'static str) {
let msg = match *stability {
Some(&attr::Stability { reason: Some(ref s), .. }) => {
format!("use of {} item: {}", label, *s)
}
_ => format!("use of {} item", label)
};
cx.span_lint(lint, span, &msg[..]);
}
}
}
impl LintPass for Stability {
fn get_lints(&self) -> LintArray {
lint_array!(DEPRECATED)
}
fn check_item(&mut self, cx: &Context, item: &ast::Item) {
stability::check_item(cx.tcx, item, false,
&mut |id, sp, stab| self.lint(cx, id, sp, stab));
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
stability::check_expr(cx.tcx, e,
&mut |id, sp, stab| self.lint(cx, id, sp, stab));
}
fn check_path(&mut self, cx: &Context, path: &ast::Path, id: ast::NodeId) {
stability::check_path(cx.tcx, path, id,
&mut |id, sp, stab| self.lint(cx, id, sp, stab));
}
fn check_pat(&mut self, cx: &Context, pat: &ast::Pat) {
stability::check_pat(cx.tcx, pat,
&mut |id, sp, stab| self.lint(cx, id, sp, stab))
}
}
declare_lint! {
pub UNCONDITIONAL_RECURSION,
Warn,
"functions that cannot return without calling themselves"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct UnconditionalRecursion;
impl LintPass for UnconditionalRecursion {
fn get_lints(&self) -> LintArray {
lint_array![UNCONDITIONAL_RECURSION]
}
fn check_fn(&mut self, cx: &Context, fn_kind: visit::FnKind, _: &ast::FnDecl,
blk: &ast::Block, sp: Span, id: ast::NodeId) {
type F = for<'tcx> fn(&ty::ctxt<'tcx>,
ast::NodeId, ast::NodeId, ast::Ident, ast::NodeId) -> bool;
let method = match fn_kind {
visit::FkItemFn(..) => None,
visit::FkMethod(..) => {
2015-08-16 05:32:28 -05:00
cx.tcx.impl_or_trait_item(DefId::local(id)).as_opt_method()
}
// closures can't recur, so they don't matter.
2015-08-16 07:53:58 -05:00
visit::FkClosure => return
};
// Walk through this function (say `f`) looking to see if
// every possible path references itself, i.e. the function is
// called recursively unconditionally. This is done by trying
// to find a path from the entry node to the exit node that
// *doesn't* call `f` by traversing from the entry while
// pretending that calls of `f` are sinks (i.e. ignoring any
// exit edges from them).
//
// NB. this has an edge case with non-returning statements,
// like `loop {}` or `panic!()`: control flow never reaches
// the exit node through these, so one can have a function
// that never actually calls itselfs but is still picked up by
// this lint:
//
// fn f(cond: bool) {
// if !cond { panic!() } // could come from `assert!(cond)`
// f(false)
// }
//
// In general, functions of that form may be able to call
// itself a finite number of times and then diverge. The lint
// considers this to be an error for two reasons, (a) it is
// easier to implement, and (b) it seems rare to actually want
// to have behaviour like the above, rather than
// e.g. accidentally recurring after an assert.
let cfg = cfg::CFG::new(cx.tcx, blk);
let mut work_queue = vec![cfg.entry];
let mut reached_exit_without_self_call = false;
let mut self_call_spans = vec![];
let mut visited = HashSet::new();
while let Some(idx) = work_queue.pop() {
if idx == cfg.exit {
// found a path!
reached_exit_without_self_call = true;
2015-02-28 06:31:14 -06:00
break;
}
let cfg_id = idx.node_id();
if visited.contains(&cfg_id) {
// already done
2015-02-28 06:31:14 -06:00
continue;
}
visited.insert(cfg_id);
2015-02-28 06:31:14 -06:00
let node_id = cfg.graph.node_data(idx).id();
// is this a recursive call?
let self_recursive = if node_id != ast::DUMMY_NODE_ID {
match method {
Some(ref method) => {
expr_refers_to_this_method(cx.tcx, method, node_id)
}
None => expr_refers_to_this_fn(cx.tcx, id, node_id)
}
} else {
false
};
if self_recursive {
self_call_spans.push(cx.tcx.map.span(node_id));
// this is a self call, so we shouldn't explore past
// this node in the CFG.
2015-02-28 06:31:14 -06:00
continue;
}
// add the successors of this node to explore the graph further.
for (_, edge) in cfg.graph.outgoing_edges(idx) {
let target_idx = edge.target();
let target_cfg_id = target_idx.node_id();
if !visited.contains(&target_cfg_id) {
work_queue.push(target_idx)
}
}
}
2015-02-28 06:31:14 -06:00
// Check the number of self calls because a function that
// doesn't return (e.g. calls a `-> !` function or `loop { /*
// no break */ }`) shouldn't be linted unless it actually
// recurs.
if !reached_exit_without_self_call && !self_call_spans.is_empty() {
cx.span_lint(UNCONDITIONAL_RECURSION, sp,
"function cannot return without recurring");
// FIXME #19668: these could be span_lint_note's instead of this manual guard.
if cx.current_level(UNCONDITIONAL_RECURSION) != Level::Allow {
let sess = cx.sess();
// offer some help to the programmer.
for call in &self_call_spans {
sess.span_note(*call, "recursive call site")
}
sess.fileline_help(sp, "a `loop` may express intention \
better if this is on purpose")
}
}
// all done
return;
// Functions for identifying if the given Expr NodeId `id`
// represents a call to the function `fn_id`/method `method`.
fn expr_refers_to_this_fn(tcx: &ty::ctxt,
fn_id: ast::NodeId,
id: ast::NodeId) -> bool {
match tcx.map.get(id) {
ast_map::NodeExpr(&ast::Expr { node: ast::ExprCall(ref callee, _), .. }) => {
tcx.def_map.borrow().get(&callee.id)
2015-08-16 05:32:28 -05:00
.map_or(false, |def| def.def_id() == DefId::local(fn_id))
}
_ => false
}
}
// Check if the expression `id` performs a call to `method`.
fn expr_refers_to_this_method(tcx: &ty::ctxt,
method: &ty::Method,
id: ast::NodeId) -> bool {
let tables = tcx.tables.borrow();
// Check for method calls and overloaded operators.
if let Some(m) = tables.method_map.get(&ty::MethodCall::expr(id)) {
if method_call_refers_to_method(tcx, method, m.def_id, m.substs, id) {
return true;
}
}
// Check for overloaded autoderef method calls.
if let Some(&ty::AdjustDerefRef(ref adj)) = tables.adjustments.get(&id) {
for i in 0..adj.autoderefs {
let method_call = ty::MethodCall::autoderef(id, i as u32);
if let Some(m) = tables.method_map.get(&method_call) {
if method_call_refers_to_method(tcx, method, m.def_id, m.substs, id) {
return true;
}
}
}
}
// Check for calls to methods via explicit paths (e.g. `T::method()`).
match tcx.map.get(id) {
ast_map::NodeExpr(&ast::Expr { node: ast::ExprCall(ref callee, _), .. }) => {
match tcx.def_map.borrow().get(&callee.id).map(|d| d.full_def()) {
Some(def::DefMethod(def_id)) => {
let no_substs = &ty::ItemSubsts::empty();
let ts = tables.item_substs.get(&callee.id).unwrap_or(no_substs);
method_call_refers_to_method(tcx, method, def_id, &ts.substs, id)
}
_ => false
}
}
_ => false
}
}
// Check if the method call to the method with the ID `callee_id`
// and instantiated with `callee_substs` refers to method `method`.
fn method_call_refers_to_method<'tcx>(tcx: &ty::ctxt<'tcx>,
method: &ty::Method,
2015-08-16 05:32:28 -05:00
callee_id: DefId,
callee_substs: &Substs<'tcx>,
expr_id: ast::NodeId) -> bool {
let callee_item = tcx.impl_or_trait_item(callee_id);
match callee_item.container() {
// This is an inherent method, so the `def_id` refers
// directly to the method definition.
ty::ImplContainer(_) => {
callee_id == method.def_id
}
// A trait method, from any number of possible sources.
// Attempt to select a concrete impl before checking.
ty::TraitContainer(trait_def_id) => {
let trait_substs = callee_substs.clone().method_to_trait();
let trait_substs = tcx.mk_substs(trait_substs);
let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
let trait_ref = ty::Binder(trait_ref);
let span = tcx.map.span(expr_id);
let obligation =
traits::Obligation::new(traits::ObligationCause::misc(span, expr_id),
trait_ref.to_poly_trait_predicate());
let param_env = ty::ParameterEnvironment::for_item(tcx, method.def_id.node);
let infcx = infer::new_infer_ctxt(tcx, &tcx.tables, Some(param_env), false);
let mut selcx = traits::SelectionContext::new(&infcx);
match selcx.select(&obligation) {
// The method comes from a `T: Trait` bound.
// If `T` is `Self`, then this call is inside
// a default method definition.
Ok(Some(traits::VtableParam(_))) => {
let self_ty = callee_substs.self_ty();
let on_self = self_ty.map_or(false, |t| t.is_self());
// We can only be recurring in a default
// method if we're being called literally
// on the `Self` type.
on_self && callee_id == method.def_id
}
// The `impl` is known, so we check that with a
// special case:
Ok(Some(traits::VtableImpl(vtable_impl))) => {
let container = ty::ImplContainer(vtable_impl.impl_def_id);
// It matches if it comes from the same impl,
// and has the same method name.
container == method.container
&& callee_item.name() == method.name
}
// There's no way to know if this call is
// recursive, so we assume it's not.
_ => return false
}
}
}
}
}
}
declare_lint! {
PLUGIN_AS_LIBRARY,
Warn,
"compiler plugin used as ordinary library in non-plugin crate"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct PluginAsLibrary;
impl LintPass for PluginAsLibrary {
fn get_lints(&self) -> LintArray {
lint_array![PLUGIN_AS_LIBRARY]
}
fn check_item(&mut self, cx: &Context, it: &ast::Item) {
if cx.sess().plugin_registrar_fn.get().is_some() {
// We're compiling a plugin; it's fine to link other plugins.
return;
}
match it.node {
ast::ItemExternCrate(..) => (),
_ => return,
};
let md = match cx.sess().cstore.find_extern_mod_stmt_cnum(it.id) {
Some(cnum) => cx.sess().cstore.get_crate_data(cnum),
None => {
// Probably means we aren't linking the crate for some reason.
//
// Not sure if / when this could happen.
return;
}
};
if decoder::get_plugin_registrar_fn(md.data()).is_some() {
cx.span_lint(PLUGIN_AS_LIBRARY, it.span,
2015-02-28 06:31:14 -06:00
"compiler plugin used as an ordinary library");
}
}
}
declare_lint! {
PRIVATE_NO_MANGLE_FNS,
Warn,
"functions marked #[no_mangle] should be exported"
}
declare_lint! {
PRIVATE_NO_MANGLE_STATICS,
Warn,
"statics marked #[no_mangle] should be exported"
}
declare_lint! {
NO_MANGLE_CONST_ITEMS,
Deny,
"const items will not have their symbols exported"
}
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct InvalidNoMangleItems;
impl LintPass for InvalidNoMangleItems {
fn get_lints(&self) -> LintArray {
lint_array!(PRIVATE_NO_MANGLE_FNS,
PRIVATE_NO_MANGLE_STATICS,
NO_MANGLE_CONST_ITEMS)
}
fn check_item(&mut self, cx: &Context, it: &ast::Item) {
match it.node {
ast::ItemFn(..) => {
if attr::contains_name(&it.attrs, "no_mangle") &&
!cx.exported_items.contains(&it.id) {
let msg = format!("function {} is marked #[no_mangle], but not exported",
it.ident);
cx.span_lint(PRIVATE_NO_MANGLE_FNS, it.span, &msg);
}
},
ast::ItemStatic(..) => {
if attr::contains_name(&it.attrs, "no_mangle") &&
!cx.exported_items.contains(&it.id) {
let msg = format!("static {} is marked #[no_mangle], but not exported",
it.ident);
cx.span_lint(PRIVATE_NO_MANGLE_STATICS, it.span, &msg);
}
},
ast::ItemConst(..) => {
if attr::contains_name(&it.attrs, "no_mangle") {
// Const items do not refer to a particular location in memory, and therefore
// don't have anything to attach a symbol to
let msg = "const items should never be #[no_mangle], consider instead using \
2015-02-28 06:31:14 -06:00
`pub static`";
cx.span_lint(NO_MANGLE_CONST_ITEMS, it.span, msg);
}
}
_ => {},
}
}
}
#[derive(Clone, Copy)]
pub struct MutableTransmutes;
declare_lint! {
MUTABLE_TRANSMUTES,
Deny,
"mutating transmuted &mut T from &T may cause undefined behavior"
}
impl LintPass for MutableTransmutes {
fn get_lints(&self) -> LintArray {
lint_array!(MUTABLE_TRANSMUTES)
}
fn check_expr(&mut self, cx: &Context, expr: &ast::Expr) {
use syntax::abi::RustIntrinsic;
let msg = "mutating transmuted &mut T from &T may cause undefined behavior,\
consider instead using an UnsafeCell";
match get_transmute_from_to(cx, expr) {
Some((&ty::TyRef(_, from_mt), &ty::TyRef(_, to_mt))) => {
if to_mt.mutbl == ast::Mutability::MutMutable
&& from_mt.mutbl == ast::Mutability::MutImmutable {
cx.span_lint(MUTABLE_TRANSMUTES, expr.span, msg);
}
}
_ => ()
}
fn get_transmute_from_to<'a, 'tcx>(cx: &Context<'a, 'tcx>, expr: &ast::Expr)
-> Option<(&'tcx ty::TypeVariants<'tcx>, &'tcx ty::TypeVariants<'tcx>)> {
match expr.node {
ast::ExprPath(..) => (),
_ => return None
}
if let def::DefFn(did, _) = cx.tcx.resolve_expr(expr) {
if !def_id_is_transmute(cx, did) {
return None;
}
let typ = cx.tcx.node_id_to_type(expr.id);
match typ.sty {
ty::TyBareFn(_, ref bare_fn) if bare_fn.abi == RustIntrinsic => {
if let ty::FnConverging(to) = bare_fn.sig.0.output {
let from = bare_fn.sig.0.inputs[0];
return Some((&from.sty, &to.sty));
}
},
_ => ()
}
}
None
}
fn def_id_is_transmute(cx: &Context, def_id: DefId) -> bool {
match cx.tcx.lookup_item_type(def_id).ty.sty {
ty::TyBareFn(_, ref bfty) if bfty.abi == RustIntrinsic => (),
_ => return false
}
cx.tcx.with_path(def_id, |path| match path.last() {
Some(ref last) => last.name().as_str() == "transmute",
_ => false
})
}
}
}
/// Forbids using the `#[feature(...)]` attribute
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct UnstableFeatures;
2015-02-28 06:31:14 -06:00
declare_lint! {
UNSTABLE_FEATURES,
Allow,
"enabling unstable features (deprecated. do not use)"
2015-02-28 06:31:14 -06:00
}
impl LintPass for UnstableFeatures {
fn get_lints(&self) -> LintArray {
lint_array!(UNSTABLE_FEATURES)
}
fn check_attribute(&mut self, ctx: &Context, attr: &ast::Attribute) {
if attr::contains_name(&[attr.node.value.clone()], "feature") {
if let Some(items) = attr.node.value.meta_item_list() {
for item in items {
ctx.span_lint(UNSTABLE_FEATURES, item.span, "unstable feature");
}
}
}
}
}
/// Lints for attempts to impl Drop on types that have `#[repr(C)]`
/// attribute (see issue #24585).
#[derive(Copy, Clone)]
pub struct DropWithReprExtern;
declare_lint! {
DROP_WITH_REPR_EXTERN,
Warn,
"use of #[repr(C)] on a type that implements Drop"
}
impl LintPass for DropWithReprExtern {
fn get_lints(&self) -> LintArray {
lint_array!(DROP_WITH_REPR_EXTERN)
}
fn check_crate(&mut self, ctx: &Context, _: &ast::Crate) {
for dtor_did in ctx.tcx.destructors.borrow().iter() {
let (drop_impl_did, dtor_self_type) =
if dtor_did.is_local() {
let impl_did = ctx.tcx.map.get_parent_did(dtor_did.node);
let ty = ctx.tcx.lookup_item_type(impl_did).ty;
(impl_did, ty)
} else {
continue;
};
match dtor_self_type.sty {
ty::TyEnum(self_type_def, _) |
ty::TyStruct(self_type_def, _) => {
let self_type_did = self_type_def.did;
let hints = ctx.tcx.lookup_repr_hints(self_type_did);
if hints.iter().any(|attr| *attr == attr::ReprExtern) &&
ctx.tcx.ty_dtor(self_type_did).has_drop_flag() {
let drop_impl_span = ctx.tcx.map.def_id_span(drop_impl_did,
codemap::DUMMY_SP);
let self_defn_span = ctx.tcx.map.def_id_span(self_type_did,
codemap::DUMMY_SP);
ctx.span_lint(DROP_WITH_REPR_EXTERN,
drop_impl_span,
"implementing Drop adds hidden state to types, \
possibly conflicting with `#[repr(C)]`");
// FIXME #19668: could be span_lint_note instead of manual guard.
if ctx.current_level(DROP_WITH_REPR_EXTERN) != Level::Allow {
ctx.sess().span_note(self_defn_span,
"the `#[repr(C)]` attribute is attached here");
}
}
}
_ => {}
}
}
}
}