// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Lints in the Rust compiler. //! //! This contains lints which can feasibly be implemented as their own //! AST visitor. Also see `rustc::lint::builtin`, which contains the //! definitions of lints that are emitted directly inside the main //! compiler. //! //! To add a new lint to rustc, declare it here using `declare_lint!()`. //! Then add code to emit the new lint in the appropriate circumstances. //! You can do that in an existing `LintPass` if it makes sense, or in a //! new `LintPass`, or using `Session::add_lint` elsewhere in the //! compiler. Only do the latter if the check can't be written cleanly as a //! `LintPass` (also, note that such lints will need to be defined in //! `rustc::lint::builtin`, not here). //! //! If you define a new `LintPass`, you will also need to add it to the //! `add_builtin!` or `add_builtin_with_new!` invocation in `lib.rs`. //! Use the former for unit-like structs and the latter for structs with //! a `pub fn new()`. use metadata::{csearch, decoder}; use middle::{cfg, def, infer, pat_util, stability, traits}; use middle::def_id::DefId; use middle::subst::Substs; use middle::ty::{self, Ty}; use middle::const_eval::{eval_const_expr_partial, ConstVal}; use middle::const_eval::EvalHint::ExprTypeChecked; use rustc::ast_map; use util::nodemap::{FnvHashMap, FnvHashSet, NodeSet}; use lint::{Level, Context, LintPass, LintArray, Lint}; use std::collections::HashSet; use std::collections::hash_map::Entry::{Occupied, Vacant}; use std::{cmp, slice}; use std::{i8, i16, i32, i64, u8, u16, u32, u64, f32, f64}; use syntax::{abi, ast}; use syntax::ast_util::is_shift_binop; use syntax::attr::{self, AttrMetaMethods}; use syntax::codemap::{self, Span}; use syntax::feature_gate::{KNOWN_ATTRIBUTES, AttributeType}; use syntax::ast::{TyIs, TyUs, TyI8, TyU8, TyI16, TyU16, TyI32, TyU32, TyI64, TyU64}; use syntax::ptr::P; use syntax::visit::{self, Visitor}; // hardwired lints from librustc pub use lint::builtin::*; declare_lint! { WHILE_TRUE, Warn, "suggest using `loop { }` instead of `while true { }`" } #[derive(Copy, Clone)] pub struct WhileTrue; impl LintPass for WhileTrue { fn get_lints(&self) -> LintArray { lint_array!(WHILE_TRUE) } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { if let ast::ExprWhile(ref cond, _, _) = e.node { if let ast::ExprLit(ref lit) = cond.node { if let ast::LitBool(true) = lit.node { cx.span_lint(WHILE_TRUE, e.span, "denote infinite loops with loop { ... }"); } } } } } declare_lint! { UNUSED_COMPARISONS, Warn, "comparisons made useless by limits of the types involved" } declare_lint! { OVERFLOWING_LITERALS, Warn, "literal out of range for its type" } declare_lint! { EXCEEDING_BITSHIFTS, Deny, "shift exceeds the type's number of bits" } #[derive(Copy, Clone)] pub struct TypeLimits { /// Id of the last visited negated expression negated_expr_id: ast::NodeId, } impl TypeLimits { pub fn new() -> TypeLimits { TypeLimits { negated_expr_id: !0, } } } impl LintPass for TypeLimits { fn get_lints(&self) -> LintArray { lint_array!(UNUSED_COMPARISONS, OVERFLOWING_LITERALS, EXCEEDING_BITSHIFTS) } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { match e.node { ast::ExprUnary(ast::UnNeg, ref expr) => { match expr.node { ast::ExprLit(ref lit) => { match lit.node { ast::LitInt(_, ast::UnsignedIntLit(_)) => { check_unsigned_negation_feature(cx, e.span); }, ast::LitInt(_, ast::UnsuffixedIntLit(_)) => { if let ty::TyUint(_) = cx.tcx.expr_ty(e).sty { check_unsigned_negation_feature(cx, e.span); } }, _ => () } }, _ => { let t = cx.tcx.expr_ty(&**expr); match t.sty { ty::TyUint(_) => { check_unsigned_negation_feature(cx, e.span); }, _ => () } } }; // propagate negation, if the negation itself isn't negated if self.negated_expr_id != e.id { self.negated_expr_id = expr.id; } }, ast::ExprParen(ref expr) if self.negated_expr_id == e.id => { self.negated_expr_id = expr.id; }, ast::ExprBinary(binop, ref l, ref r) => { if is_comparison(binop) && !check_limits(cx.tcx, binop, &**l, &**r) { cx.span_lint(UNUSED_COMPARISONS, e.span, "comparison is useless due to type limits"); } if is_shift_binop(binop.node) { let opt_ty_bits = match cx.tcx.expr_ty(&**l).sty { ty::TyInt(t) => Some(int_ty_bits(t, cx.sess().target.int_type)), ty::TyUint(t) => Some(uint_ty_bits(t, cx.sess().target.uint_type)), _ => None }; if let Some(bits) = opt_ty_bits { let exceeding = if let ast::ExprLit(ref lit) = r.node { if let ast::LitInt(shift, _) = lit.node { shift >= bits } else { false } } else { match eval_const_expr_partial(cx.tcx, &**r, ExprTypeChecked) { Ok(ConstVal::Int(shift)) => { shift as u64 >= bits }, Ok(ConstVal::Uint(shift)) => { shift >= bits }, _ => { false } } }; if exceeding { cx.span_lint(EXCEEDING_BITSHIFTS, e.span, "bitshift exceeds the type's number of bits"); } }; } }, ast::ExprLit(ref lit) => { match cx.tcx.expr_ty(e).sty { ty::TyInt(t) => { match lit.node { ast::LitInt(v, ast::SignedIntLit(_, ast::Plus)) | ast::LitInt(v, ast::UnsuffixedIntLit(ast::Plus)) => { let int_type = if let ast::TyIs = t { cx.sess().target.int_type } else { t }; let (_, max) = int_ty_range(int_type); let negative = self.negated_expr_id == e.id; // Detect literal value out of range [min, max] inclusive // avoiding use of -min to prevent overflow/panic if (negative && v > max as u64 + 1) || (!negative && v > max as u64) { cx.span_lint(OVERFLOWING_LITERALS, e.span, &*format!("literal out of range for {:?}", t)); return; } } _ => panic!() }; }, ty::TyUint(t) => { let uint_type = if let ast::TyUs = t { cx.sess().target.uint_type } else { t }; let (min, max) = uint_ty_range(uint_type); let lit_val: u64 = match lit.node { ast::LitByte(_v) => return, // _v is u8, within range by definition ast::LitInt(v, _) => v, _ => panic!() }; if lit_val < min || lit_val > max { cx.span_lint(OVERFLOWING_LITERALS, e.span, &*format!("literal out of range for {:?}", t)); } }, ty::TyFloat(t) => { let (min, max) = float_ty_range(t); let lit_val: f64 = match lit.node { ast::LitFloat(ref v, _) | ast::LitFloatUnsuffixed(ref v) => { match v.parse() { Ok(f) => f, Err(_) => return } } _ => panic!() }; if lit_val < min || lit_val > max { cx.span_lint(OVERFLOWING_LITERALS, e.span, &*format!("literal out of range for {:?}", t)); } }, _ => () }; }, _ => () }; fn is_valid(binop: ast::BinOp, v: T, min: T, max: T) -> bool { match binop.node { ast::BiLt => v > min && v <= max, ast::BiLe => v >= min && v < max, ast::BiGt => v >= min && v < max, ast::BiGe => v > min && v <= max, ast::BiEq | ast::BiNe => v >= min && v <= max, _ => panic!() } } fn rev_binop(binop: ast::BinOp) -> ast::BinOp { codemap::respan(binop.span, match binop.node { ast::BiLt => ast::BiGt, ast::BiLe => ast::BiGe, ast::BiGt => ast::BiLt, ast::BiGe => ast::BiLe, _ => return binop }) } // for isize & usize, be conservative with the warnings, so that the // warnings are consistent between 32- and 64-bit platforms fn int_ty_range(int_ty: ast::IntTy) -> (i64, i64) { match int_ty { ast::TyIs => (i64::MIN, i64::MAX), ast::TyI8 => (i8::MIN as i64, i8::MAX as i64), ast::TyI16 => (i16::MIN as i64, i16::MAX as i64), ast::TyI32 => (i32::MIN as i64, i32::MAX as i64), ast::TyI64 => (i64::MIN, i64::MAX) } } fn uint_ty_range(uint_ty: ast::UintTy) -> (u64, u64) { match uint_ty { ast::TyUs => (u64::MIN, u64::MAX), ast::TyU8 => (u8::MIN as u64, u8::MAX as u64), ast::TyU16 => (u16::MIN as u64, u16::MAX as u64), ast::TyU32 => (u32::MIN as u64, u32::MAX as u64), ast::TyU64 => (u64::MIN, u64::MAX) } } fn float_ty_range(float_ty: ast::FloatTy) -> (f64, f64) { match float_ty { ast::TyF32 => (f32::MIN as f64, f32::MAX as f64), ast::TyF64 => (f64::MIN, f64::MAX) } } fn int_ty_bits(int_ty: ast::IntTy, target_int_ty: ast::IntTy) -> u64 { match int_ty { ast::TyIs => int_ty_bits(target_int_ty, target_int_ty), ast::TyI8 => i8::BITS as u64, ast::TyI16 => i16::BITS as u64, ast::TyI32 => i32::BITS as u64, ast::TyI64 => i64::BITS as u64 } } fn uint_ty_bits(uint_ty: ast::UintTy, target_uint_ty: ast::UintTy) -> u64 { match uint_ty { ast::TyUs => uint_ty_bits(target_uint_ty, target_uint_ty), ast::TyU8 => u8::BITS as u64, ast::TyU16 => u16::BITS as u64, ast::TyU32 => u32::BITS as u64, ast::TyU64 => u64::BITS as u64 } } fn check_limits(tcx: &ty::ctxt, binop: ast::BinOp, l: &ast::Expr, r: &ast::Expr) -> bool { let (lit, expr, swap) = match (&l.node, &r.node) { (&ast::ExprLit(_), _) => (l, r, true), (_, &ast::ExprLit(_)) => (r, l, false), _ => return true }; // Normalize the binop so that the literal is always on the RHS in // the comparison let norm_binop = if swap { rev_binop(binop) } else { binop }; match tcx.expr_ty(expr).sty { ty::TyInt(int_ty) => { let (min, max) = int_ty_range(int_ty); let lit_val: i64 = match lit.node { ast::ExprLit(ref li) => match li.node { ast::LitInt(v, ast::SignedIntLit(_, ast::Plus)) | ast::LitInt(v, ast::UnsuffixedIntLit(ast::Plus)) => v as i64, ast::LitInt(v, ast::SignedIntLit(_, ast::Minus)) | ast::LitInt(v, ast::UnsuffixedIntLit(ast::Minus)) => -(v as i64), _ => return true }, _ => panic!() }; is_valid(norm_binop, lit_val, min, max) } ty::TyUint(uint_ty) => { let (min, max): (u64, u64) = uint_ty_range(uint_ty); let lit_val: u64 = match lit.node { ast::ExprLit(ref li) => match li.node { ast::LitInt(v, _) => v, _ => return true }, _ => panic!() }; is_valid(norm_binop, lit_val, min, max) } _ => true } } fn is_comparison(binop: ast::BinOp) -> bool { match binop.node { ast::BiEq | ast::BiLt | ast::BiLe | ast::BiNe | ast::BiGe | ast::BiGt => true, _ => false } } fn check_unsigned_negation_feature(cx: &Context, span: Span) { if !cx.sess().features.borrow().negate_unsigned { // FIXME(#27141): change this to syntax::feature_gate::emit_feature_err… cx.sess().span_warn(span, "unary negation of unsigned integers will be feature gated in the future"); // …and remove following two expressions. if option_env!("CFG_DISABLE_UNSTABLE_FEATURES").is_some() { return; } cx.sess().fileline_help(span, "add #![feature(negate_unsigned)] to the \ crate attributes to enable the gate in advance"); } } } } declare_lint! { IMPROPER_CTYPES, Warn, "proper use of libc types in foreign modules" } struct ImproperCTypesVisitor<'a, 'tcx: 'a> { cx: &'a Context<'a, 'tcx> } enum FfiResult { FfiSafe, FfiUnsafe(&'static str), FfiBadStruct(DefId, &'static str), FfiBadEnum(DefId, &'static str) } /// Check if this enum can be safely exported based on the /// "nullable pointer optimization". Currently restricted /// to function pointers and references, but could be /// expanded to cover NonZero raw pointers and newtypes. /// FIXME: This duplicates code in trans. fn is_repr_nullable_ptr<'tcx>(tcx: &ty::ctxt<'tcx>, def: ty::AdtDef<'tcx>, substs: &Substs<'tcx>) -> bool { if def.variants.len() == 2 { let data_idx; if def.variants[0].fields.is_empty() { data_idx = 1; } else if def.variants[1].fields.is_empty() { data_idx = 0; } else { return false; } if def.variants[data_idx].fields.len() == 1 { match def.variants[data_idx].fields[0].ty(tcx, substs).sty { ty::TyBareFn(None, _) => { return true; } ty::TyRef(..) => { return true; } _ => { } } } } false } fn ast_ty_to_normalized<'tcx>(tcx: &ty::ctxt<'tcx>, id: ast::NodeId) -> Ty<'tcx> { let tty = match tcx.ast_ty_to_ty_cache.borrow().get(&id) { Some(&t) => t, None => panic!("ast_ty_to_ty_cache was incomplete after typeck!") }; infer::normalize_associated_type(tcx, &tty) } impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> { /// Check if the given type is "ffi-safe" (has a stable, well-defined /// representation which can be exported to C code). fn check_type_for_ffi(&self, cache: &mut FnvHashSet>, ty: Ty<'tcx>) -> FfiResult { use self::FfiResult::*; let cx = &self.cx.tcx; // Protect against infinite recursion, for example // `struct S(*mut S);`. // FIXME: A recursion limit is necessary as well, for irregular // recusive types. if !cache.insert(ty) { return FfiSafe; } match ty.sty { ty::TyStruct(def, substs) => { if !cx.lookup_repr_hints(def.did).contains(&attr::ReprExtern) { return FfiUnsafe( "found struct without foreign-function-safe \ representation annotation in foreign module, \ consider adding a #[repr(C)] attribute to \ the type"); } // We can't completely trust repr(C) markings; make sure the // fields are actually safe. if def.struct_variant().fields.is_empty() { return FfiUnsafe( "found zero-size struct in foreign module, consider \ adding a member to this struct"); } for field in &def.struct_variant().fields { let field_ty = infer::normalize_associated_type(cx, &field.ty(cx, substs)); let r = self.check_type_for_ffi(cache, field_ty); match r { FfiSafe => {} FfiBadStruct(..) | FfiBadEnum(..) => { return r; } FfiUnsafe(s) => { return FfiBadStruct(def.did, s); } } } FfiSafe } ty::TyEnum(def, substs) => { if def.variants.is_empty() { // Empty enums are okay... although sort of useless. return FfiSafe } // Check for a repr() attribute to specify the size of the // discriminant. let repr_hints = cx.lookup_repr_hints(def.did); match &**repr_hints { [] => { // Special-case types like `Option`. if !is_repr_nullable_ptr(cx, def, substs) { return FfiUnsafe( "found enum without foreign-function-safe \ representation annotation in foreign module, \ consider adding a #[repr(...)] attribute to \ the type") } } [ref hint] => { if !hint.is_ffi_safe() { // FIXME: This shouldn't be reachable: we should check // this earlier. return FfiUnsafe( "enum has unexpected #[repr(...)] attribute") } // Enum with an explicitly sized discriminant; either // a C-style enum or a discriminated union. // The layout of enum variants is implicitly repr(C). // FIXME: Is that correct? } _ => { // FIXME: This shouldn't be reachable: we should check // this earlier. return FfiUnsafe( "enum has too many #[repr(...)] attributes"); } } // Check the contained variants. for variant in &def.variants { for field in &variant.fields { let arg = infer::normalize_associated_type(cx, &field.ty(cx, substs)); let r = self.check_type_for_ffi(cache, arg); match r { FfiSafe => {} FfiBadStruct(..) | FfiBadEnum(..) => { return r; } FfiUnsafe(s) => { return FfiBadEnum(def.did, s); } } } } FfiSafe } ty::TyInt(ast::TyIs) => { FfiUnsafe("found Rust type `isize` in foreign module, while \ `libc::c_int` or `libc::c_long` should be used") } ty::TyUint(ast::TyUs) => { FfiUnsafe("found Rust type `usize` in foreign module, while \ `libc::c_uint` or `libc::c_ulong` should be used") } ty::TyChar => { FfiUnsafe("found Rust type `char` in foreign module, while \ `u32` or `libc::wchar_t` should be used") } // Primitive types with a stable representation. ty::TyBool | ty::TyInt(..) | ty::TyUint(..) | ty::TyFloat(..) => FfiSafe, ty::TyBox(..) => { FfiUnsafe("found Rust type Box<_> in foreign module, \ consider using a raw pointer instead") } ty::TySlice(_) => { FfiUnsafe("found Rust slice type in foreign module, \ consider using a raw pointer instead") } ty::TyTrait(..) => { FfiUnsafe("found Rust trait type in foreign module, \ consider using a raw pointer instead") } ty::TyStr => { FfiUnsafe("found Rust type `str` in foreign module; \ consider using a `*const libc::c_char`") } ty::TyTuple(_) => { FfiUnsafe("found Rust tuple type in foreign module; \ consider using a struct instead`") } ty::TyRawPtr(ref m) | ty::TyRef(_, ref m) => { self.check_type_for_ffi(cache, m.ty) } ty::TyArray(ty, _) => { self.check_type_for_ffi(cache, ty) } ty::TyBareFn(None, bare_fn) => { match bare_fn.abi { abi::Rust | abi::RustIntrinsic | abi::PlatformIntrinsic | abi::RustCall => { return FfiUnsafe( "found function pointer with Rust calling \ convention in foreign module; consider using an \ `extern` function pointer") } _ => {} } let sig = cx.erase_late_bound_regions(&bare_fn.sig); match sig.output { ty::FnDiverging => {} ty::FnConverging(output) => { if !output.is_nil() { let r = self.check_type_for_ffi(cache, output); match r { FfiSafe => {} _ => { return r; } } } } } for arg in sig.inputs { let r = self.check_type_for_ffi(cache, arg); match r { FfiSafe => {} _ => { return r; } } } FfiSafe } ty::TyParam(..) | ty::TyInfer(..) | ty::TyError | ty::TyClosure(..) | ty::TyProjection(..) | ty::TyBareFn(Some(_), _) => { panic!("Unexpected type in foreign function") } } } fn check_def(&mut self, sp: Span, id: ast::NodeId) { let tty = ast_ty_to_normalized(self.cx.tcx, id); match ImproperCTypesVisitor::check_type_for_ffi(self, &mut FnvHashSet(), tty) { FfiResult::FfiSafe => {} FfiResult::FfiUnsafe(s) => { self.cx.span_lint(IMPROPER_CTYPES, sp, s); } FfiResult::FfiBadStruct(_, s) => { // FIXME: This diagnostic is difficult to read, and doesn't // point at the relevant field. self.cx.span_lint(IMPROPER_CTYPES, sp, &format!("found non-foreign-function-safe member in \ struct marked #[repr(C)]: {}", s)); } FfiResult::FfiBadEnum(_, s) => { // FIXME: This diagnostic is difficult to read, and doesn't // point at the relevant variant. self.cx.span_lint(IMPROPER_CTYPES, sp, &format!("found non-foreign-function-safe member in \ enum: {}", s)); } } } } impl<'a, 'tcx, 'v> Visitor<'v> for ImproperCTypesVisitor<'a, 'tcx> { fn visit_ty(&mut self, ty: &ast::Ty) { match ty.node { ast::TyPath(..) | ast::TyBareFn(..) => self.check_def(ty.span, ty.id), ast::TyVec(..) => { self.cx.span_lint(IMPROPER_CTYPES, ty.span, "found Rust slice type in foreign module, consider \ using a raw pointer instead"); } ast::TyFixedLengthVec(ref ty, _) => self.visit_ty(ty), ast::TyTup(..) => { self.cx.span_lint(IMPROPER_CTYPES, ty.span, "found Rust tuple type in foreign module; \ consider using a struct instead`") } _ => visit::walk_ty(self, ty) } } } #[derive(Copy, Clone)] pub struct ImproperCTypes; impl LintPass for ImproperCTypes { fn get_lints(&self) -> LintArray { lint_array!(IMPROPER_CTYPES) } fn check_item(&mut self, cx: &Context, it: &ast::Item) { fn check_ty(cx: &Context, ty: &ast::Ty) { let mut vis = ImproperCTypesVisitor { cx: cx }; vis.visit_ty(ty); } fn check_foreign_fn(cx: &Context, decl: &ast::FnDecl) { for input in &decl.inputs { check_ty(cx, &*input.ty); } if let ast::Return(ref ret_ty) = decl.output { let tty = ast_ty_to_normalized(cx.tcx, ret_ty.id); if !tty.is_nil() { check_ty(cx, &ret_ty); } } } match it.node { ast::ItemForeignMod(ref nmod) if nmod.abi != abi::RustIntrinsic && nmod.abi != abi::PlatformIntrinsic => { for ni in &nmod.items { match ni.node { ast::ForeignItemFn(ref decl, _) => check_foreign_fn(cx, &**decl), ast::ForeignItemStatic(ref t, _) => check_ty(cx, &**t) } } } _ => (), } } } declare_lint! { BOX_POINTERS, Allow, "use of owned (Box type) heap memory" } #[derive(Copy, Clone)] pub struct BoxPointers; impl BoxPointers { fn check_heap_type<'a, 'tcx>(&self, cx: &Context<'a, 'tcx>, span: Span, ty: Ty<'tcx>) { for leaf_ty in ty.walk() { if let ty::TyBox(_) = leaf_ty.sty { let m = format!("type uses owned (Box type) pointers: {}", ty); cx.span_lint(BOX_POINTERS, span, &m); } } } } impl LintPass for BoxPointers { fn get_lints(&self) -> LintArray { lint_array!(BOX_POINTERS) } fn check_item(&mut self, cx: &Context, it: &ast::Item) { match it.node { ast::ItemFn(..) | ast::ItemTy(..) | ast::ItemEnum(..) | ast::ItemStruct(..) => self.check_heap_type(cx, it.span, cx.tcx.node_id_to_type(it.id)), _ => () } // If it's a struct, we also have to check the fields' types match it.node { ast::ItemStruct(ref struct_def, _) => { for struct_field in &struct_def.fields { self.check_heap_type(cx, struct_field.span, cx.tcx.node_id_to_type(struct_field.node.id)); } } _ => () } } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { let ty = cx.tcx.expr_ty(e); self.check_heap_type(cx, e.span, ty); } } declare_lint! { RAW_POINTER_DERIVE, Warn, "uses of #[derive] with raw pointers are rarely correct" } struct RawPtrDeriveVisitor<'a, 'tcx: 'a> { cx: &'a Context<'a, 'tcx> } impl<'a, 'tcx, 'v> Visitor<'v> for RawPtrDeriveVisitor<'a, 'tcx> { fn visit_ty(&mut self, ty: &ast::Ty) { const MSG: &'static str = "use of `#[derive]` with a raw pointer"; if let ast::TyPtr(..) = ty.node { self.cx.span_lint(RAW_POINTER_DERIVE, ty.span, MSG); } visit::walk_ty(self, ty); } // explicit override to a no-op to reduce code bloat fn visit_expr(&mut self, _: &ast::Expr) {} fn visit_block(&mut self, _: &ast::Block) {} } pub struct RawPointerDerive { checked_raw_pointers: NodeSet, } impl RawPointerDerive { pub fn new() -> RawPointerDerive { RawPointerDerive { checked_raw_pointers: NodeSet(), } } } impl LintPass for RawPointerDerive { fn get_lints(&self) -> LintArray { lint_array!(RAW_POINTER_DERIVE) } fn check_item(&mut self, cx: &Context, item: &ast::Item) { if !attr::contains_name(&item.attrs, "automatically_derived") { return; } let did = match item.node { ast::ItemImpl(_, _, _, ref t_ref_opt, _, _) => { // Deriving the Copy trait does not cause a warning if let &Some(ref trait_ref) = t_ref_opt { let def_id = cx.tcx.trait_ref_to_def_id(trait_ref); if Some(def_id) == cx.tcx.lang_items.copy_trait() { return; } } match cx.tcx.node_id_to_type(item.id).sty { ty::TyEnum(def, _) => def.did, ty::TyStruct(def, _) => def.did, _ => return, } } _ => return, }; if !did.is_local() { return; } let item = match cx.tcx.map.find(did.node) { Some(ast_map::NodeItem(item)) => item, _ => return, }; if !self.checked_raw_pointers.insert(item.id) { return; } match item.node { ast::ItemStruct(..) | ast::ItemEnum(..) => { let mut visitor = RawPtrDeriveVisitor { cx: cx }; visit::walk_item(&mut visitor, &*item); } _ => {} } } } declare_lint! { UNUSED_ATTRIBUTES, Warn, "detects attributes that were not used by the compiler" } #[derive(Copy, Clone)] pub struct UnusedAttributes; impl LintPass for UnusedAttributes { fn get_lints(&self) -> LintArray { lint_array!(UNUSED_ATTRIBUTES) } fn check_attribute(&mut self, cx: &Context, attr: &ast::Attribute) { // Note that check_name() marks the attribute as used if it matches. for &(ref name, ty) in KNOWN_ATTRIBUTES { match ty { AttributeType::Whitelisted | AttributeType::Gated(_, _) if attr.check_name(name) => { break; }, _ => () } } let plugin_attributes = cx.sess().plugin_attributes.borrow_mut(); for &(ref name, ty) in plugin_attributes.iter() { if ty == AttributeType::Whitelisted && attr.check_name(&*name) { break; } } if !attr::is_used(attr) { cx.span_lint(UNUSED_ATTRIBUTES, attr.span, "unused attribute"); // Is it a builtin attribute that must be used at the crate level? let known_crate = KNOWN_ATTRIBUTES.contains(&(&attr.name(), AttributeType::CrateLevel)); // Has a plugin registered this attribute as one which must be used at // the crate level? let plugin_crate = plugin_attributes.iter() .find(|&&(ref x, t)| { &*attr.name() == &*x && AttributeType::CrateLevel == t }).is_some(); if known_crate || plugin_crate { let msg = match attr.node.style { ast::AttrOuter => "crate-level attribute should be an inner \ attribute: add an exclamation mark: #![foo]", ast::AttrInner => "crate-level attribute should be in the \ root module", }; cx.span_lint(UNUSED_ATTRIBUTES, attr.span, msg); } } } } declare_lint! { pub PATH_STATEMENTS, Warn, "path statements with no effect" } #[derive(Copy, Clone)] pub struct PathStatements; impl LintPass for PathStatements { fn get_lints(&self) -> LintArray { lint_array!(PATH_STATEMENTS) } fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) { match s.node { ast::StmtSemi(ref expr, _) => { match expr.node { ast::ExprPath(..) => cx.span_lint(PATH_STATEMENTS, s.span, "path statement with no effect"), _ => () } } _ => () } } } declare_lint! { pub UNUSED_MUST_USE, Warn, "unused result of a type flagged as #[must_use]" } declare_lint! { pub UNUSED_RESULTS, Allow, "unused result of an expression in a statement" } #[derive(Copy, Clone)] pub struct UnusedResults; impl LintPass for UnusedResults { fn get_lints(&self) -> LintArray { lint_array!(UNUSED_MUST_USE, UNUSED_RESULTS) } fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) { let expr = match s.node { ast::StmtSemi(ref expr, _) => &**expr, _ => return }; if let ast::ExprRet(..) = expr.node { return; } let t = cx.tcx.expr_ty(expr); let warned = match t.sty { ty::TyTuple(ref tys) if tys.is_empty() => return, ty::TyBool => return, ty::TyStruct(def, _) | ty::TyEnum(def, _) => { if def.did.is_local() { if let ast_map::NodeItem(it) = cx.tcx.map.get(def.did.node) { check_must_use(cx, &it.attrs, s.span) } else { false } } else { let attrs = csearch::get_item_attrs(&cx.sess().cstore, def.did); check_must_use(cx, &attrs[..], s.span) } } _ => false, }; if !warned { cx.span_lint(UNUSED_RESULTS, s.span, "unused result"); } fn check_must_use(cx: &Context, attrs: &[ast::Attribute], sp: Span) -> bool { for attr in attrs { if attr.check_name("must_use") { let mut msg = "unused result which must be used".to_string(); // check for #[must_use="..."] match attr.value_str() { None => {} Some(s) => { msg.push_str(": "); msg.push_str(&s); } } cx.span_lint(UNUSED_MUST_USE, sp, &msg); return true; } } false } } } declare_lint! { pub NON_CAMEL_CASE_TYPES, Warn, "types, variants, traits and type parameters should have camel case names" } #[derive(Copy, Clone)] pub struct NonCamelCaseTypes; impl NonCamelCaseTypes { fn check_case(&self, cx: &Context, sort: &str, ident: ast::Ident, span: Span) { fn is_camel_case(ident: ast::Ident) -> bool { let ident = ident.name.as_str(); if ident.is_empty() { return true; } let ident = ident.trim_matches('_'); // start with a non-lowercase letter rather than non-uppercase // ones (some scripts don't have a concept of upper/lowercase) !ident.is_empty() && !ident.char_at(0).is_lowercase() && !ident.contains('_') } fn to_camel_case(s: &str) -> String { s.split('_').flat_map(|word| word.chars().enumerate().map(|(i, c)| if i == 0 { c.to_uppercase().collect::() } else { c.to_lowercase().collect() } )).collect::>().concat() } let s = ident.name.as_str(); if !is_camel_case(ident) { let c = to_camel_case(&s); let m = if c.is_empty() { format!("{} `{}` should have a camel case name such as `CamelCase`", sort, s) } else { format!("{} `{}` should have a camel case name such as `{}`", sort, s, c) }; cx.span_lint(NON_CAMEL_CASE_TYPES, span, &m[..]); } } } impl LintPass for NonCamelCaseTypes { fn get_lints(&self) -> LintArray { lint_array!(NON_CAMEL_CASE_TYPES) } fn check_item(&mut self, cx: &Context, it: &ast::Item) { let extern_repr_count = it.attrs.iter().filter(|attr| { attr::find_repr_attrs(cx.tcx.sess.diagnostic(), attr).iter() .any(|r| r == &attr::ReprExtern) }).count(); let has_extern_repr = extern_repr_count > 0; if has_extern_repr { return; } match it.node { ast::ItemTy(..) | ast::ItemStruct(..) => { self.check_case(cx, "type", it.ident, it.span) } ast::ItemTrait(..) => { self.check_case(cx, "trait", it.ident, it.span) } ast::ItemEnum(ref enum_definition, _) => { if has_extern_repr { return; } self.check_case(cx, "type", it.ident, it.span); for variant in &enum_definition.variants { self.check_case(cx, "variant", variant.node.name, variant.span); } } _ => () } } fn check_generics(&mut self, cx: &Context, it: &ast::Generics) { for gen in it.ty_params.iter() { self.check_case(cx, "type parameter", gen.ident, gen.span); } } } #[derive(PartialEq)] enum MethodContext { TraitDefaultImpl, TraitImpl, PlainImpl } fn method_context(cx: &Context, id: ast::NodeId, span: Span) -> MethodContext { match cx.tcx.impl_or_trait_items.borrow().get(&DefId::local(id)) { None => cx.sess().span_bug(span, "missing method descriptor?!"), Some(item) => match item.container() { ty::TraitContainer(..) => MethodContext::TraitDefaultImpl, ty::ImplContainer(cid) => { match cx.tcx.impl_trait_ref(cid) { Some(_) => MethodContext::TraitImpl, None => MethodContext::PlainImpl } } } } } declare_lint! { pub NON_SNAKE_CASE, Warn, "methods, functions, lifetime parameters and modules should have snake case names" } #[derive(Copy, Clone)] pub struct NonSnakeCase; impl NonSnakeCase { fn to_snake_case(mut str: &str) -> String { let mut words = vec![]; // Preserve leading underscores str = str.trim_left_matches(|c: char| { if c == '_' { words.push(String::new()); true } else { false } }); for s in str.split('_') { let mut last_upper = false; let mut buf = String::new(); if s.is_empty() { continue; } for ch in s.chars() { if !buf.is_empty() && buf != "'" && ch.is_uppercase() && !last_upper { words.push(buf); buf = String::new(); } last_upper = ch.is_uppercase(); buf.extend(ch.to_lowercase()); } words.push(buf); } words.join("_") } fn check_snake_case(&self, cx: &Context, sort: &str, name: &str, span: Option) { fn is_snake_case(ident: &str) -> bool { if ident.is_empty() { return true; } let ident = ident.trim_left_matches('\''); let ident = ident.trim_matches('_'); let mut allow_underscore = true; ident.chars().all(|c| { allow_underscore = match c { '_' if !allow_underscore => return false, '_' => false, // It would be more obvious to use `c.is_lowercase()`, // but some characters do not have a lowercase form c if !c.is_uppercase() => true, _ => return false, }; true }) } if !is_snake_case(name) { let sc = NonSnakeCase::to_snake_case(name); let msg = if sc != name { format!("{} `{}` should have a snake case name such as `{}`", sort, name, sc) } else { format!("{} `{}` should have a snake case name", sort, name) }; match span { Some(span) => cx.span_lint(NON_SNAKE_CASE, span, &msg), None => cx.lint(NON_SNAKE_CASE, &msg), } } } } impl LintPass for NonSnakeCase { fn get_lints(&self) -> LintArray { lint_array!(NON_SNAKE_CASE) } fn check_crate(&mut self, cx: &Context, cr: &ast::Crate) { let attr_crate_name = cr.attrs.iter().find(|at| at.check_name("crate_name")) .and_then(|at| at.value_str().map(|s| (at, s))); if let Some(ref name) = cx.tcx.sess.opts.crate_name { self.check_snake_case(cx, "crate", name, None); } else if let Some((attr, ref name)) = attr_crate_name { self.check_snake_case(cx, "crate", name, Some(attr.span)); } } fn check_fn(&mut self, cx: &Context, fk: visit::FnKind, _: &ast::FnDecl, _: &ast::Block, span: Span, id: ast::NodeId) { match fk { visit::FkMethod(ident, _, _) => match method_context(cx, id, span) { MethodContext::PlainImpl => { self.check_snake_case(cx, "method", &ident.name.as_str(), Some(span)) }, MethodContext::TraitDefaultImpl => { self.check_snake_case(cx, "trait method", &ident.name.as_str(), Some(span)) }, _ => (), }, visit::FkItemFn(ident, _, _, _, _, _) => { self.check_snake_case(cx, "function", &ident.name.as_str(), Some(span)) }, _ => (), } } fn check_item(&mut self, cx: &Context, it: &ast::Item) { if let ast::ItemMod(_) = it.node { self.check_snake_case(cx, "module", &it.ident.name.as_str(), Some(it.span)); } } fn check_trait_item(&mut self, cx: &Context, trait_item: &ast::TraitItem) { if let ast::MethodTraitItem(_, None) = trait_item.node { self.check_snake_case(cx, "trait method", &trait_item.ident.name.as_str(), Some(trait_item.span)); } } fn check_lifetime_def(&mut self, cx: &Context, t: &ast::LifetimeDef) { self.check_snake_case(cx, "lifetime", &t.lifetime.name.as_str(), Some(t.lifetime.span)); } fn check_pat(&mut self, cx: &Context, p: &ast::Pat) { if let &ast::PatIdent(_, ref path1, _) = &p.node { let def = cx.tcx.def_map.borrow().get(&p.id).map(|d| d.full_def()); if let Some(def::DefLocal(_)) = def { self.check_snake_case(cx, "variable", &path1.node.name.as_str(), Some(p.span)); } } } fn check_struct_def(&mut self, cx: &Context, s: &ast::StructDef, _: ast::Ident, _: &ast::Generics, _: ast::NodeId) { for sf in &s.fields { if let ast::StructField_ { kind: ast::NamedField(ident, _), .. } = sf.node { self.check_snake_case(cx, "structure field", &ident.name.as_str(), Some(sf.span)); } } } } declare_lint! { pub NON_UPPER_CASE_GLOBALS, Warn, "static constants should have uppercase identifiers" } #[derive(Copy, Clone)] pub struct NonUpperCaseGlobals; impl NonUpperCaseGlobals { fn check_upper_case(cx: &Context, sort: &str, ident: ast::Ident, span: Span) { let s = ident.name.as_str(); if s.chars().any(|c| c.is_lowercase()) { let uc = NonSnakeCase::to_snake_case(&s).to_uppercase(); if uc != &s[..] { cx.span_lint(NON_UPPER_CASE_GLOBALS, span, &format!("{} `{}` should have an upper case name such as `{}`", sort, s, uc)); } else { cx.span_lint(NON_UPPER_CASE_GLOBALS, span, &format!("{} `{}` should have an upper case name", sort, s)); } } } } impl LintPass for NonUpperCaseGlobals { fn get_lints(&self) -> LintArray { lint_array!(NON_UPPER_CASE_GLOBALS) } fn check_item(&mut self, cx: &Context, it: &ast::Item) { match it.node { // only check static constants ast::ItemStatic(_, ast::MutImmutable, _) => { NonUpperCaseGlobals::check_upper_case(cx, "static constant", it.ident, it.span); } ast::ItemConst(..) => { NonUpperCaseGlobals::check_upper_case(cx, "constant", it.ident, it.span); } _ => {} } } fn check_trait_item(&mut self, cx: &Context, ti: &ast::TraitItem) { match ti.node { ast::ConstTraitItem(..) => { NonUpperCaseGlobals::check_upper_case(cx, "associated constant", ti.ident, ti.span); } _ => {} } } fn check_impl_item(&mut self, cx: &Context, ii: &ast::ImplItem) { match ii.node { ast::ConstImplItem(..) => { NonUpperCaseGlobals::check_upper_case(cx, "associated constant", ii.ident, ii.span); } _ => {} } } fn check_pat(&mut self, cx: &Context, p: &ast::Pat) { // Lint for constants that look like binding identifiers (#7526) match (&p.node, cx.tcx.def_map.borrow().get(&p.id).map(|d| d.full_def())) { (&ast::PatIdent(_, ref path1, _), Some(def::DefConst(..))) => { NonUpperCaseGlobals::check_upper_case(cx, "constant in pattern", path1.node, p.span); } _ => {} } } } declare_lint! { UNUSED_PARENS, Warn, "`if`, `match`, `while` and `return` do not need parentheses" } #[derive(Copy, Clone)] pub struct UnusedParens; impl UnusedParens { fn check_unused_parens_core(&self, cx: &Context, value: &ast::Expr, msg: &str, struct_lit_needs_parens: bool) { if let ast::ExprParen(ref inner) = value.node { let necessary = struct_lit_needs_parens && contains_exterior_struct_lit(&**inner); if !necessary { cx.span_lint(UNUSED_PARENS, value.span, &format!("unnecessary parentheses around {}", msg)) } } /// Expressions that syntactically contain an "exterior" struct /// literal i.e. not surrounded by any parens or other /// delimiters, e.g. `X { y: 1 }`, `X { y: 1 }.method()`, `foo /// == X { y: 1 }` and `X { y: 1 } == foo` all do, but `(X { /// y: 1 }) == foo` does not. fn contains_exterior_struct_lit(value: &ast::Expr) -> bool { match value.node { ast::ExprStruct(..) => true, ast::ExprAssign(ref lhs, ref rhs) | ast::ExprAssignOp(_, ref lhs, ref rhs) | ast::ExprBinary(_, ref lhs, ref rhs) => { // X { y: 1 } + X { y: 2 } contains_exterior_struct_lit(&**lhs) || contains_exterior_struct_lit(&**rhs) } ast::ExprUnary(_, ref x) | ast::ExprCast(ref x, _) | ast::ExprField(ref x, _) | ast::ExprTupField(ref x, _) | ast::ExprIndex(ref x, _) => { // &X { y: 1 }, X { y: 1 }.y contains_exterior_struct_lit(&**x) } ast::ExprMethodCall(_, _, ref exprs) => { // X { y: 1 }.bar(...) contains_exterior_struct_lit(&*exprs[0]) } _ => false } } } } impl LintPass for UnusedParens { fn get_lints(&self) -> LintArray { lint_array!(UNUSED_PARENS) } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { let (value, msg, struct_lit_needs_parens) = match e.node { ast::ExprIf(ref cond, _, _) => (cond, "`if` condition", true), ast::ExprWhile(ref cond, _, _) => (cond, "`while` condition", true), ast::ExprMatch(ref head, _, source) => match source { ast::MatchSource::Normal => (head, "`match` head expression", true), ast::MatchSource::IfLetDesugar { .. } => (head, "`if let` head expression", true), ast::MatchSource::WhileLetDesugar => (head, "`while let` head expression", true), ast::MatchSource::ForLoopDesugar => (head, "`for` head expression", true), }, ast::ExprRet(Some(ref value)) => (value, "`return` value", false), ast::ExprAssign(_, ref value) => (value, "assigned value", false), ast::ExprAssignOp(_, _, ref value) => (value, "assigned value", false), _ => return }; self.check_unused_parens_core(cx, &**value, msg, struct_lit_needs_parens); } fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) { let (value, msg) = match s.node { ast::StmtDecl(ref decl, _) => match decl.node { ast::DeclLocal(ref local) => match local.init { Some(ref value) => (value, "assigned value"), None => return }, _ => return }, _ => return }; self.check_unused_parens_core(cx, &**value, msg, false); } } declare_lint! { UNUSED_IMPORT_BRACES, Allow, "unnecessary braces around an imported item" } #[derive(Copy, Clone)] pub struct UnusedImportBraces; impl LintPass for UnusedImportBraces { fn get_lints(&self) -> LintArray { lint_array!(UNUSED_IMPORT_BRACES) } fn check_item(&mut self, cx: &Context, item: &ast::Item) { if let ast::ItemUse(ref view_path) = item.node { if let ast::ViewPathList(_, ref items) = view_path.node { if items.len() == 1 { if let ast::PathListIdent {ref name, ..} = items[0].node { let m = format!("braces around {} is unnecessary", name); cx.span_lint(UNUSED_IMPORT_BRACES, item.span, &m[..]); } } } } } } declare_lint! { NON_SHORTHAND_FIELD_PATTERNS, Warn, "using `Struct { x: x }` instead of `Struct { x }`" } #[derive(Copy, Clone)] pub struct NonShorthandFieldPatterns; impl LintPass for NonShorthandFieldPatterns { fn get_lints(&self) -> LintArray { lint_array!(NON_SHORTHAND_FIELD_PATTERNS) } fn check_pat(&mut self, cx: &Context, pat: &ast::Pat) { let def_map = cx.tcx.def_map.borrow(); if let ast::PatStruct(_, ref v, _) = pat.node { let field_pats = v.iter().filter(|fieldpat| { if fieldpat.node.is_shorthand { return false; } let def = def_map.get(&fieldpat.node.pat.id).map(|d| d.full_def()); def == Some(def::DefLocal(fieldpat.node.pat.id)) }); for fieldpat in field_pats { if let ast::PatIdent(_, ident, None) = fieldpat.node.pat.node { if ident.node.name == fieldpat.node.ident.name { // FIXME: should this comparison really be done on the name? // doing it on the ident will fail during compilation of libcore cx.span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span, &format!("the `{}:` in this pattern is redundant and can \ be removed", ident.node)) } } } } } } declare_lint! { pub UNUSED_UNSAFE, Warn, "unnecessary use of an `unsafe` block" } #[derive(Copy, Clone)] pub struct UnusedUnsafe; impl LintPass for UnusedUnsafe { fn get_lints(&self) -> LintArray { lint_array!(UNUSED_UNSAFE) } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { if let ast::ExprBlock(ref blk) = e.node { // Don't warn about generated blocks, that'll just pollute the output. if blk.rules == ast::UnsafeBlock(ast::UserProvided) && !cx.tcx.used_unsafe.borrow().contains(&blk.id) { cx.span_lint(UNUSED_UNSAFE, blk.span, "unnecessary `unsafe` block"); } } } } declare_lint! { UNSAFE_CODE, Allow, "usage of `unsafe` code" } #[derive(Copy, Clone)] pub struct UnsafeCode; impl LintPass for UnsafeCode { fn get_lints(&self) -> LintArray { lint_array!(UNSAFE_CODE) } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { if let ast::ExprBlock(ref blk) = e.node { // Don't warn about generated blocks, that'll just pollute the output. if blk.rules == ast::UnsafeBlock(ast::UserProvided) { cx.span_lint(UNSAFE_CODE, blk.span, "usage of an `unsafe` block"); } } } fn check_item(&mut self, cx: &Context, it: &ast::Item) { match it.node { ast::ItemTrait(ast::Unsafety::Unsafe, _, _, _) => cx.span_lint(UNSAFE_CODE, it.span, "declaration of an `unsafe` trait"), ast::ItemImpl(ast::Unsafety::Unsafe, _, _, _, _, _) => cx.span_lint(UNSAFE_CODE, it.span, "implementation of an `unsafe` trait"), _ => return, } } fn check_fn(&mut self, cx: &Context, fk: visit::FnKind, _: &ast::FnDecl, _: &ast::Block, span: Span, _: ast::NodeId) { match fk { visit::FkItemFn(_, _, ast::Unsafety::Unsafe, _, _, _) => cx.span_lint(UNSAFE_CODE, span, "declaration of an `unsafe` function"), visit::FkMethod(_, sig, _) => { if sig.unsafety == ast::Unsafety::Unsafe { cx.span_lint(UNSAFE_CODE, span, "implementation of an `unsafe` method") } }, _ => (), } } fn check_trait_item(&mut self, cx: &Context, trait_item: &ast::TraitItem) { if let ast::MethodTraitItem(ref sig, None) = trait_item.node { if sig.unsafety == ast::Unsafety::Unsafe { cx.span_lint(UNSAFE_CODE, trait_item.span, "declaration of an `unsafe` method") } } } } declare_lint! { pub UNUSED_MUT, Warn, "detect mut variables which don't need to be mutable" } #[derive(Copy, Clone)] pub struct UnusedMut; impl UnusedMut { fn check_unused_mut_pat(&self, cx: &Context, pats: &[P]) { // collect all mutable pattern and group their NodeIDs by their Identifier to // avoid false warnings in match arms with multiple patterns let mut mutables = FnvHashMap(); for p in pats { pat_util::pat_bindings(&cx.tcx.def_map, &**p, |mode, id, _, path1| { let ident = path1.node; if let ast::BindByValue(ast::MutMutable) = mode { if !ident.name.as_str().starts_with("_") { match mutables.entry(ident.name.usize()) { Vacant(entry) => { entry.insert(vec![id]); }, Occupied(mut entry) => { entry.get_mut().push(id); }, } } } }); } let used_mutables = cx.tcx.used_mut_nodes.borrow(); for (_, v) in &mutables { if !v.iter().any(|e| used_mutables.contains(e)) { cx.span_lint(UNUSED_MUT, cx.tcx.map.span(v[0]), "variable does not need to be mutable"); } } } } impl LintPass for UnusedMut { fn get_lints(&self) -> LintArray { lint_array!(UNUSED_MUT) } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { if let ast::ExprMatch(_, ref arms, _) = e.node { for a in arms { self.check_unused_mut_pat(cx, &a.pats) } } } fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) { if let ast::StmtDecl(ref d, _) = s.node { if let ast::DeclLocal(ref l) = d.node { self.check_unused_mut_pat(cx, slice::ref_slice(&l.pat)); } } } fn check_fn(&mut self, cx: &Context, _: visit::FnKind, decl: &ast::FnDecl, _: &ast::Block, _: Span, _: ast::NodeId) { for a in &decl.inputs { self.check_unused_mut_pat(cx, slice::ref_slice(&a.pat)); } } } declare_lint! { UNUSED_ALLOCATION, Warn, "detects unnecessary allocations that can be eliminated" } #[derive(Copy, Clone)] pub struct UnusedAllocation; impl LintPass for UnusedAllocation { fn get_lints(&self) -> LintArray { lint_array!(UNUSED_ALLOCATION) } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { match e.node { ast::ExprUnary(ast::UnUniq, _) => (), _ => return } if let Some(adjustment) = cx.tcx.tables.borrow().adjustments.get(&e.id) { if let ty::AdjustDerefRef(ty::AutoDerefRef { ref autoref, .. }) = *adjustment { match autoref { &Some(ty::AutoPtr(_, ast::MutImmutable)) => { cx.span_lint(UNUSED_ALLOCATION, e.span, "unnecessary allocation, use & instead"); } &Some(ty::AutoPtr(_, ast::MutMutable)) => { cx.span_lint(UNUSED_ALLOCATION, e.span, "unnecessary allocation, use &mut instead"); } _ => () } } } } } declare_lint! { MISSING_DOCS, Allow, "detects missing documentation for public members" } pub struct MissingDoc { /// Stack of IDs of struct definitions. struct_def_stack: Vec, /// True if inside variant definition in_variant: bool, /// Stack of whether #[doc(hidden)] is set /// at each level which has lint attributes. doc_hidden_stack: Vec, /// Private traits or trait items that leaked through. Don't check their methods. private_traits: HashSet, } impl MissingDoc { pub fn new() -> MissingDoc { MissingDoc { struct_def_stack: vec!(), in_variant: false, doc_hidden_stack: vec!(false), private_traits: HashSet::new(), } } fn doc_hidden(&self) -> bool { *self.doc_hidden_stack.last().expect("empty doc_hidden_stack") } fn check_missing_docs_attrs(&self, cx: &Context, id: Option, attrs: &[ast::Attribute], sp: Span, desc: &'static str) { // If we're building a test harness, then warning about // documentation is probably not really relevant right now. if cx.sess().opts.test { return; } // `#[doc(hidden)]` disables missing_docs check. if self.doc_hidden() { return; } // Only check publicly-visible items, using the result from the privacy pass. // It's an option so the crate root can also use this function (it doesn't // have a NodeId). if let Some(ref id) = id { if !cx.exported_items.contains(id) { return; } } let has_doc = attrs.iter().any(|a| { match a.node.value.node { ast::MetaNameValue(ref name, _) if *name == "doc" => true, _ => false } }); if !has_doc { cx.span_lint(MISSING_DOCS, sp, &format!("missing documentation for {}", desc)); } } } impl LintPass for MissingDoc { fn get_lints(&self) -> LintArray { lint_array!(MISSING_DOCS) } fn enter_lint_attrs(&mut self, _: &Context, attrs: &[ast::Attribute]) { let doc_hidden = self.doc_hidden() || attrs.iter().any(|attr| { attr.check_name("doc") && match attr.meta_item_list() { None => false, Some(l) => attr::contains_name(&l[..], "hidden"), } }); self.doc_hidden_stack.push(doc_hidden); } fn exit_lint_attrs(&mut self, _: &Context, _: &[ast::Attribute]) { self.doc_hidden_stack.pop().expect("empty doc_hidden_stack"); } fn check_struct_def(&mut self, _: &Context, _: &ast::StructDef, _: ast::Ident, _: &ast::Generics, id: ast::NodeId) { self.struct_def_stack.push(id); } fn check_struct_def_post(&mut self, _: &Context, _: &ast::StructDef, _: ast::Ident, _: &ast::Generics, id: ast::NodeId) { let popped = self.struct_def_stack.pop().expect("empty struct_def_stack"); assert!(popped == id); } fn check_crate(&mut self, cx: &Context, krate: &ast::Crate) { self.check_missing_docs_attrs(cx, None, &krate.attrs, krate.span, "crate"); } fn check_item(&mut self, cx: &Context, it: &ast::Item) { let desc = match it.node { ast::ItemFn(..) => "a function", ast::ItemMod(..) => "a module", ast::ItemEnum(..) => "an enum", ast::ItemStruct(..) => "a struct", ast::ItemTrait(_, _, _, ref items) => { // Issue #11592, traits are always considered exported, even when private. if it.vis == ast::Visibility::Inherited { self.private_traits.insert(it.id); for itm in items { self.private_traits.insert(itm.id); } return } "a trait" }, ast::ItemTy(..) => "a type alias", ast::ItemImpl(_, _, _, Some(ref trait_ref), _, ref impl_items) => { // If the trait is private, add the impl items to private_traits so they don't get // reported for missing docs. let real_trait = cx.tcx.trait_ref_to_def_id(trait_ref); match cx.tcx.map.find(real_trait.node) { Some(ast_map::NodeItem(item)) => if item.vis == ast::Visibility::Inherited { for itm in impl_items { self.private_traits.insert(itm.id); } }, _ => { } } return }, ast::ItemConst(..) => "a constant", ast::ItemStatic(..) => "a static", _ => return }; self.check_missing_docs_attrs(cx, Some(it.id), &it.attrs, it.span, desc); } fn check_trait_item(&mut self, cx: &Context, trait_item: &ast::TraitItem) { if self.private_traits.contains(&trait_item.id) { return } let desc = match trait_item.node { ast::ConstTraitItem(..) => "an associated constant", ast::MethodTraitItem(..) => "a trait method", ast::TypeTraitItem(..) => "an associated type", }; self.check_missing_docs_attrs(cx, Some(trait_item.id), &trait_item.attrs, trait_item.span, desc); } fn check_impl_item(&mut self, cx: &Context, impl_item: &ast::ImplItem) { // If the method is an impl for a trait, don't doc. if method_context(cx, impl_item.id, impl_item.span) == MethodContext::TraitImpl { return; } let desc = match impl_item.node { ast::ConstImplItem(..) => "an associated constant", ast::MethodImplItem(..) => "a method", ast::TypeImplItem(_) => "an associated type", ast::MacImplItem(_) => "an impl item macro", }; self.check_missing_docs_attrs(cx, Some(impl_item.id), &impl_item.attrs, impl_item.span, desc); } fn check_struct_field(&mut self, cx: &Context, sf: &ast::StructField) { if let ast::NamedField(_, vis) = sf.node.kind { if vis == ast::Public || self.in_variant { let cur_struct_def = *self.struct_def_stack.last() .expect("empty struct_def_stack"); self.check_missing_docs_attrs(cx, Some(cur_struct_def), &sf.node.attrs, sf.span, "a struct field") } } } fn check_variant(&mut self, cx: &Context, v: &ast::Variant, _: &ast::Generics) { self.check_missing_docs_attrs(cx, Some(v.node.id), &v.node.attrs, v.span, "a variant"); assert!(!self.in_variant); self.in_variant = true; } fn check_variant_post(&mut self, _: &Context, _: &ast::Variant, _: &ast::Generics) { assert!(self.in_variant); self.in_variant = false; } } declare_lint! { pub MISSING_COPY_IMPLEMENTATIONS, Allow, "detects potentially-forgotten implementations of `Copy`" } #[derive(Copy, Clone)] pub struct MissingCopyImplementations; impl LintPass for MissingCopyImplementations { fn get_lints(&self) -> LintArray { lint_array!(MISSING_COPY_IMPLEMENTATIONS) } fn check_item(&mut self, cx: &Context, item: &ast::Item) { if !cx.exported_items.contains(&item.id) { return; } if cx.tcx.destructor_for_type.borrow().contains_key(&DefId::local(item.id)) { return; } let ty = match item.node { ast::ItemStruct(_, ref ast_generics) => { if ast_generics.is_parameterized() { return; } cx.tcx.mk_struct(cx.tcx.lookup_adt_def(DefId::local(item.id)), cx.tcx.mk_substs(Substs::empty())) } ast::ItemEnum(_, ref ast_generics) => { if ast_generics.is_parameterized() { return; } cx.tcx.mk_enum(cx.tcx.lookup_adt_def(DefId::local(item.id)), cx.tcx.mk_substs(Substs::empty())) } _ => return, }; let parameter_environment = cx.tcx.empty_parameter_environment(); // FIXME (@jroesch) should probably inver this so that the parameter env still impls this // method if !ty.moves_by_default(¶meter_environment, item.span) { return; } if parameter_environment.can_type_implement_copy(ty, item.span).is_ok() { cx.span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, "type could implement `Copy`; consider adding `impl \ Copy`") } } } declare_lint! { MISSING_DEBUG_IMPLEMENTATIONS, Allow, "detects missing implementations of fmt::Debug" } pub struct MissingDebugImplementations { impling_types: Option, } impl MissingDebugImplementations { pub fn new() -> MissingDebugImplementations { MissingDebugImplementations { impling_types: None, } } } impl LintPass for MissingDebugImplementations { fn get_lints(&self) -> LintArray { lint_array!(MISSING_DEBUG_IMPLEMENTATIONS) } fn check_item(&mut self, cx: &Context, item: &ast::Item) { if !cx.exported_items.contains(&item.id) { return; } match item.node { ast::ItemStruct(..) | ast::ItemEnum(..) => {}, _ => return, } let debug = match cx.tcx.lang_items.debug_trait() { Some(debug) => debug, None => return, }; if self.impling_types.is_none() { let debug_def = cx.tcx.lookup_trait_def(debug); let mut impls = NodeSet(); debug_def.for_each_impl(cx.tcx, |d| { if d.is_local() { if let Some(ty_def) = cx.tcx.node_id_to_type(d.node).ty_to_def_id() { impls.insert(ty_def.node); } } }); self.impling_types = Some(impls); debug!("{:?}", self.impling_types); } if !self.impling_types.as_ref().unwrap().contains(&item.id) { cx.span_lint(MISSING_DEBUG_IMPLEMENTATIONS, item.span, "type does not implement `fmt::Debug`; consider adding #[derive(Debug)] \ or a manual implementation") } } } declare_lint! { DEPRECATED, Warn, "detects use of #[deprecated] items" } /// Checks for use of items with `#[deprecated]` attributes #[derive(Copy, Clone)] pub struct Stability; impl Stability { fn lint(&self, cx: &Context, _id: DefId, span: Span, stability: &Option<&attr::Stability>) { // Deprecated attributes apply in-crate and cross-crate. let (lint, label) = match *stability { Some(&attr::Stability { deprecated_since: Some(_), .. }) => (DEPRECATED, "deprecated"), _ => return }; output(cx, span, stability, lint, label); fn output(cx: &Context, span: Span, stability: &Option<&attr::Stability>, lint: &'static Lint, label: &'static str) { let msg = match *stability { Some(&attr::Stability { reason: Some(ref s), .. }) => { format!("use of {} item: {}", label, *s) } _ => format!("use of {} item", label) }; cx.span_lint(lint, span, &msg[..]); } } } impl LintPass for Stability { fn get_lints(&self) -> LintArray { lint_array!(DEPRECATED) } fn check_item(&mut self, cx: &Context, item: &ast::Item) { stability::check_item(cx.tcx, item, false, &mut |id, sp, stab| self.lint(cx, id, sp, stab)); } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { stability::check_expr(cx.tcx, e, &mut |id, sp, stab| self.lint(cx, id, sp, stab)); } fn check_path(&mut self, cx: &Context, path: &ast::Path, id: ast::NodeId) { stability::check_path(cx.tcx, path, id, &mut |id, sp, stab| self.lint(cx, id, sp, stab)); } fn check_pat(&mut self, cx: &Context, pat: &ast::Pat) { stability::check_pat(cx.tcx, pat, &mut |id, sp, stab| self.lint(cx, id, sp, stab)) } } declare_lint! { pub UNCONDITIONAL_RECURSION, Warn, "functions that cannot return without calling themselves" } #[derive(Copy, Clone)] pub struct UnconditionalRecursion; impl LintPass for UnconditionalRecursion { fn get_lints(&self) -> LintArray { lint_array![UNCONDITIONAL_RECURSION] } fn check_fn(&mut self, cx: &Context, fn_kind: visit::FnKind, _: &ast::FnDecl, blk: &ast::Block, sp: Span, id: ast::NodeId) { type F = for<'tcx> fn(&ty::ctxt<'tcx>, ast::NodeId, ast::NodeId, ast::Ident, ast::NodeId) -> bool; let method = match fn_kind { visit::FkItemFn(..) => None, visit::FkMethod(..) => { cx.tcx.impl_or_trait_item(DefId::local(id)).as_opt_method() } // closures can't recur, so they don't matter. visit::FkClosure => return }; // Walk through this function (say `f`) looking to see if // every possible path references itself, i.e. the function is // called recursively unconditionally. This is done by trying // to find a path from the entry node to the exit node that // *doesn't* call `f` by traversing from the entry while // pretending that calls of `f` are sinks (i.e. ignoring any // exit edges from them). // // NB. this has an edge case with non-returning statements, // like `loop {}` or `panic!()`: control flow never reaches // the exit node through these, so one can have a function // that never actually calls itselfs but is still picked up by // this lint: // // fn f(cond: bool) { // if !cond { panic!() } // could come from `assert!(cond)` // f(false) // } // // In general, functions of that form may be able to call // itself a finite number of times and then diverge. The lint // considers this to be an error for two reasons, (a) it is // easier to implement, and (b) it seems rare to actually want // to have behaviour like the above, rather than // e.g. accidentally recurring after an assert. let cfg = cfg::CFG::new(cx.tcx, blk); let mut work_queue = vec![cfg.entry]; let mut reached_exit_without_self_call = false; let mut self_call_spans = vec![]; let mut visited = HashSet::new(); while let Some(idx) = work_queue.pop() { if idx == cfg.exit { // found a path! reached_exit_without_self_call = true; break; } let cfg_id = idx.node_id(); if visited.contains(&cfg_id) { // already done continue; } visited.insert(cfg_id); let node_id = cfg.graph.node_data(idx).id(); // is this a recursive call? let self_recursive = if node_id != ast::DUMMY_NODE_ID { match method { Some(ref method) => { expr_refers_to_this_method(cx.tcx, method, node_id) } None => expr_refers_to_this_fn(cx.tcx, id, node_id) } } else { false }; if self_recursive { self_call_spans.push(cx.tcx.map.span(node_id)); // this is a self call, so we shouldn't explore past // this node in the CFG. continue; } // add the successors of this node to explore the graph further. for (_, edge) in cfg.graph.outgoing_edges(idx) { let target_idx = edge.target(); let target_cfg_id = target_idx.node_id(); if !visited.contains(&target_cfg_id) { work_queue.push(target_idx) } } } // Check the number of self calls because a function that // doesn't return (e.g. calls a `-> !` function or `loop { /* // no break */ }`) shouldn't be linted unless it actually // recurs. if !reached_exit_without_self_call && !self_call_spans.is_empty() { cx.span_lint(UNCONDITIONAL_RECURSION, sp, "function cannot return without recurring"); // FIXME #19668: these could be span_lint_note's instead of this manual guard. if cx.current_level(UNCONDITIONAL_RECURSION) != Level::Allow { let sess = cx.sess(); // offer some help to the programmer. for call in &self_call_spans { sess.span_note(*call, "recursive call site") } sess.fileline_help(sp, "a `loop` may express intention \ better if this is on purpose") } } // all done return; // Functions for identifying if the given Expr NodeId `id` // represents a call to the function `fn_id`/method `method`. fn expr_refers_to_this_fn(tcx: &ty::ctxt, fn_id: ast::NodeId, id: ast::NodeId) -> bool { match tcx.map.get(id) { ast_map::NodeExpr(&ast::Expr { node: ast::ExprCall(ref callee, _), .. }) => { tcx.def_map.borrow().get(&callee.id) .map_or(false, |def| def.def_id() == DefId::local(fn_id)) } _ => false } } // Check if the expression `id` performs a call to `method`. fn expr_refers_to_this_method(tcx: &ty::ctxt, method: &ty::Method, id: ast::NodeId) -> bool { let tables = tcx.tables.borrow(); // Check for method calls and overloaded operators. if let Some(m) = tables.method_map.get(&ty::MethodCall::expr(id)) { if method_call_refers_to_method(tcx, method, m.def_id, m.substs, id) { return true; } } // Check for overloaded autoderef method calls. if let Some(&ty::AdjustDerefRef(ref adj)) = tables.adjustments.get(&id) { for i in 0..adj.autoderefs { let method_call = ty::MethodCall::autoderef(id, i as u32); if let Some(m) = tables.method_map.get(&method_call) { if method_call_refers_to_method(tcx, method, m.def_id, m.substs, id) { return true; } } } } // Check for calls to methods via explicit paths (e.g. `T::method()`). match tcx.map.get(id) { ast_map::NodeExpr(&ast::Expr { node: ast::ExprCall(ref callee, _), .. }) => { match tcx.def_map.borrow().get(&callee.id).map(|d| d.full_def()) { Some(def::DefMethod(def_id)) => { let no_substs = &ty::ItemSubsts::empty(); let ts = tables.item_substs.get(&callee.id).unwrap_or(no_substs); method_call_refers_to_method(tcx, method, def_id, &ts.substs, id) } _ => false } } _ => false } } // Check if the method call to the method with the ID `callee_id` // and instantiated with `callee_substs` refers to method `method`. fn method_call_refers_to_method<'tcx>(tcx: &ty::ctxt<'tcx>, method: &ty::Method, callee_id: DefId, callee_substs: &Substs<'tcx>, expr_id: ast::NodeId) -> bool { let callee_item = tcx.impl_or_trait_item(callee_id); match callee_item.container() { // This is an inherent method, so the `def_id` refers // directly to the method definition. ty::ImplContainer(_) => { callee_id == method.def_id } // A trait method, from any number of possible sources. // Attempt to select a concrete impl before checking. ty::TraitContainer(trait_def_id) => { let trait_substs = callee_substs.clone().method_to_trait(); let trait_substs = tcx.mk_substs(trait_substs); let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs); let trait_ref = ty::Binder(trait_ref); let span = tcx.map.span(expr_id); let obligation = traits::Obligation::new(traits::ObligationCause::misc(span, expr_id), trait_ref.to_poly_trait_predicate()); let param_env = ty::ParameterEnvironment::for_item(tcx, method.def_id.node); let infcx = infer::new_infer_ctxt(tcx, &tcx.tables, Some(param_env), false); let mut selcx = traits::SelectionContext::new(&infcx); match selcx.select(&obligation) { // The method comes from a `T: Trait` bound. // If `T` is `Self`, then this call is inside // a default method definition. Ok(Some(traits::VtableParam(_))) => { let self_ty = callee_substs.self_ty(); let on_self = self_ty.map_or(false, |t| t.is_self()); // We can only be recurring in a default // method if we're being called literally // on the `Self` type. on_self && callee_id == method.def_id } // The `impl` is known, so we check that with a // special case: Ok(Some(traits::VtableImpl(vtable_impl))) => { let container = ty::ImplContainer(vtable_impl.impl_def_id); // It matches if it comes from the same impl, // and has the same method name. container == method.container && callee_item.name() == method.name } // There's no way to know if this call is // recursive, so we assume it's not. _ => return false } } } } } } declare_lint! { PLUGIN_AS_LIBRARY, Warn, "compiler plugin used as ordinary library in non-plugin crate" } #[derive(Copy, Clone)] pub struct PluginAsLibrary; impl LintPass for PluginAsLibrary { fn get_lints(&self) -> LintArray { lint_array![PLUGIN_AS_LIBRARY] } fn check_item(&mut self, cx: &Context, it: &ast::Item) { if cx.sess().plugin_registrar_fn.get().is_some() { // We're compiling a plugin; it's fine to link other plugins. return; } match it.node { ast::ItemExternCrate(..) => (), _ => return, }; let md = match cx.sess().cstore.find_extern_mod_stmt_cnum(it.id) { Some(cnum) => cx.sess().cstore.get_crate_data(cnum), None => { // Probably means we aren't linking the crate for some reason. // // Not sure if / when this could happen. return; } }; if decoder::get_plugin_registrar_fn(md.data()).is_some() { cx.span_lint(PLUGIN_AS_LIBRARY, it.span, "compiler plugin used as an ordinary library"); } } } declare_lint! { PRIVATE_NO_MANGLE_FNS, Warn, "functions marked #[no_mangle] should be exported" } declare_lint! { PRIVATE_NO_MANGLE_STATICS, Warn, "statics marked #[no_mangle] should be exported" } declare_lint! { NO_MANGLE_CONST_ITEMS, Deny, "const items will not have their symbols exported" } #[derive(Copy, Clone)] pub struct InvalidNoMangleItems; impl LintPass for InvalidNoMangleItems { fn get_lints(&self) -> LintArray { lint_array!(PRIVATE_NO_MANGLE_FNS, PRIVATE_NO_MANGLE_STATICS, NO_MANGLE_CONST_ITEMS) } fn check_item(&mut self, cx: &Context, it: &ast::Item) { match it.node { ast::ItemFn(..) => { if attr::contains_name(&it.attrs, "no_mangle") && !cx.exported_items.contains(&it.id) { let msg = format!("function {} is marked #[no_mangle], but not exported", it.ident); cx.span_lint(PRIVATE_NO_MANGLE_FNS, it.span, &msg); } }, ast::ItemStatic(..) => { if attr::contains_name(&it.attrs, "no_mangle") && !cx.exported_items.contains(&it.id) { let msg = format!("static {} is marked #[no_mangle], but not exported", it.ident); cx.span_lint(PRIVATE_NO_MANGLE_STATICS, it.span, &msg); } }, ast::ItemConst(..) => { if attr::contains_name(&it.attrs, "no_mangle") { // Const items do not refer to a particular location in memory, and therefore // don't have anything to attach a symbol to let msg = "const items should never be #[no_mangle], consider instead using \ `pub static`"; cx.span_lint(NO_MANGLE_CONST_ITEMS, it.span, msg); } } _ => {}, } } } #[derive(Clone, Copy)] pub struct MutableTransmutes; declare_lint! { MUTABLE_TRANSMUTES, Deny, "mutating transmuted &mut T from &T may cause undefined behavior" } impl LintPass for MutableTransmutes { fn get_lints(&self) -> LintArray { lint_array!(MUTABLE_TRANSMUTES) } fn check_expr(&mut self, cx: &Context, expr: &ast::Expr) { use syntax::abi::RustIntrinsic; let msg = "mutating transmuted &mut T from &T may cause undefined behavior,\ consider instead using an UnsafeCell"; match get_transmute_from_to(cx, expr) { Some((&ty::TyRef(_, from_mt), &ty::TyRef(_, to_mt))) => { if to_mt.mutbl == ast::Mutability::MutMutable && from_mt.mutbl == ast::Mutability::MutImmutable { cx.span_lint(MUTABLE_TRANSMUTES, expr.span, msg); } } _ => () } fn get_transmute_from_to<'a, 'tcx>(cx: &Context<'a, 'tcx>, expr: &ast::Expr) -> Option<(&'tcx ty::TypeVariants<'tcx>, &'tcx ty::TypeVariants<'tcx>)> { match expr.node { ast::ExprPath(..) => (), _ => return None } if let def::DefFn(did, _) = cx.tcx.resolve_expr(expr) { if !def_id_is_transmute(cx, did) { return None; } let typ = cx.tcx.node_id_to_type(expr.id); match typ.sty { ty::TyBareFn(_, ref bare_fn) if bare_fn.abi == RustIntrinsic => { if let ty::FnConverging(to) = bare_fn.sig.0.output { let from = bare_fn.sig.0.inputs[0]; return Some((&from.sty, &to.sty)); } }, _ => () } } None } fn def_id_is_transmute(cx: &Context, def_id: DefId) -> bool { match cx.tcx.lookup_item_type(def_id).ty.sty { ty::TyBareFn(_, ref bfty) if bfty.abi == RustIntrinsic => (), _ => return false } cx.tcx.with_path(def_id, |path| match path.last() { Some(ref last) => last.name().as_str() == "transmute", _ => false }) } } } /// Forbids using the `#[feature(...)]` attribute #[derive(Copy, Clone)] pub struct UnstableFeatures; declare_lint! { UNSTABLE_FEATURES, Allow, "enabling unstable features (deprecated. do not use)" } impl LintPass for UnstableFeatures { fn get_lints(&self) -> LintArray { lint_array!(UNSTABLE_FEATURES) } fn check_attribute(&mut self, ctx: &Context, attr: &ast::Attribute) { if attr::contains_name(&[attr.node.value.clone()], "feature") { if let Some(items) = attr.node.value.meta_item_list() { for item in items { ctx.span_lint(UNSTABLE_FEATURES, item.span, "unstable feature"); } } } } } /// Lints for attempts to impl Drop on types that have `#[repr(C)]` /// attribute (see issue #24585). #[derive(Copy, Clone)] pub struct DropWithReprExtern; declare_lint! { DROP_WITH_REPR_EXTERN, Warn, "use of #[repr(C)] on a type that implements Drop" } impl LintPass for DropWithReprExtern { fn get_lints(&self) -> LintArray { lint_array!(DROP_WITH_REPR_EXTERN) } fn check_crate(&mut self, ctx: &Context, _: &ast::Crate) { for dtor_did in ctx.tcx.destructors.borrow().iter() { let (drop_impl_did, dtor_self_type) = if dtor_did.is_local() { let impl_did = ctx.tcx.map.get_parent_did(dtor_did.node); let ty = ctx.tcx.lookup_item_type(impl_did).ty; (impl_did, ty) } else { continue; }; match dtor_self_type.sty { ty::TyEnum(self_type_def, _) | ty::TyStruct(self_type_def, _) => { let self_type_did = self_type_def.did; let hints = ctx.tcx.lookup_repr_hints(self_type_did); if hints.iter().any(|attr| *attr == attr::ReprExtern) && ctx.tcx.ty_dtor(self_type_did).has_drop_flag() { let drop_impl_span = ctx.tcx.map.def_id_span(drop_impl_did, codemap::DUMMY_SP); let self_defn_span = ctx.tcx.map.def_id_span(self_type_did, codemap::DUMMY_SP); ctx.span_lint(DROP_WITH_REPR_EXTERN, drop_impl_span, "implementing Drop adds hidden state to types, \ possibly conflicting with `#[repr(C)]`"); // FIXME #19668: could be span_lint_note instead of manual guard. if ctx.current_level(DROP_WITH_REPR_EXTERN) != Level::Allow { ctx.sess().span_note(self_defn_span, "the `#[repr(C)]` attribute is attached here"); } } } _ => {} } } } }