rust/crates/ra_hir_ty/src/traits.rs

347 lines
12 KiB
Rust
Raw Normal View History

//! Trait solving using Chalk.
use std::{panic, sync::Arc};
2019-12-21 07:46:15 -06:00
use chalk_ir::cast::Cast;
2019-11-27 03:02:54 -06:00
use hir_def::{expr::ExprId, DefWithBodyId, ImplId, TraitId, TypeAliasId};
use ra_db::{impl_intern_key, salsa, CrateId};
2019-05-21 08:04:17 -05:00
use ra_prof::profile;
use rustc_hash::FxHashSet;
use crate::{db::HirDatabase, method_resolution::TyFingerprint, DebruijnIndex};
2019-11-26 09:02:50 -06:00
use super::{Canonical, GenericPredicate, HirDisplay, ProjectionTy, TraitRef, Ty, TypeWalk};
use self::chalk::{from_chalk, Interner, ToChalk};
pub(crate) mod chalk;
mod builtin;
/// This controls the maximum size of types Chalk considers. If we set this too
/// high, we can run into slow edge cases; if we set it too low, Chalk won't
/// find some solutions.
2020-01-27 14:38:20 -06:00
const CHALK_SOLVER_MAX_SIZE: usize = 10;
2020-01-17 15:12:15 -06:00
/// This controls how much 'time' we give the Chalk solver before giving up.
const CHALK_SOLVER_FUEL: i32 = 100;
#[derive(Debug, Copy, Clone)]
struct ChalkContext<'a> {
db: &'a dyn HirDatabase,
2019-11-27 00:42:55 -06:00
krate: CrateId,
}
fn create_chalk_solver() -> chalk_solve::Solver<Interner> {
2020-01-17 15:12:15 -06:00
let solver_choice =
chalk_solve::SolverChoice::SLG { max_size: CHALK_SOLVER_MAX_SIZE, expected_answers: None };
2020-01-13 10:15:50 -06:00
solver_choice.into_solver()
}
/// Collects impls for the given trait in the whole dependency tree of `krate`.
2019-05-21 04:44:08 -05:00
pub(crate) fn impls_for_trait_query(
db: &dyn HirDatabase,
2019-11-26 13:26:47 -06:00
krate: CrateId,
trait_: TraitId,
self_ty_fp: Option<TyFingerprint>,
2019-11-27 03:02:54 -06:00
) -> Arc<[ImplId]> {
// FIXME: We could be a lot smarter here - because of the orphan rules and
// the fact that the trait and the self type need to be in the dependency
// tree of a crate somewhere for an impl to exist, we could skip looking in
// a lot of crates completely
let mut impls = FxHashSet::default();
// We call the query recursively here. On the one hand, this means we can
// reuse results from queries for different crates; on the other hand, this
// will only ever get called for a few crates near the root of the tree (the
// ones the user is editing), so this may actually be a waste of memory. I'm
// doing it like this mainly for simplicity for now.
2020-03-09 05:11:59 -05:00
for dep in &db.crate_graph()[krate].dependencies {
impls.extend(db.impls_for_trait(dep.crate_id, trait_, self_ty_fp).iter());
}
2020-02-29 14:24:40 -06:00
let crate_impl_defs = db.impls_in_crate(krate);
match self_ty_fp {
Some(fp) => impls.extend(crate_impl_defs.lookup_impl_defs_for_trait_and_ty(trait_, fp)),
None => impls.extend(crate_impl_defs.lookup_impl_defs_for_trait(trait_)),
}
2019-10-13 23:06:05 -05:00
impls.into_iter().collect()
}
/// A set of clauses that we assume to be true. E.g. if we are inside this function:
/// ```rust
/// fn foo<T: Default>(t: T) {}
/// ```
/// we assume that `T: Default`.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
2019-07-09 14:34:23 -05:00
pub struct TraitEnvironment {
pub predicates: Vec<GenericPredicate>,
}
impl TraitEnvironment {
/// Returns trait refs with the given self type which are supposed to hold
/// in this trait env. E.g. if we are in `foo<T: SomeTrait>()`, this will
/// find that `T: SomeTrait` if we call it for `T`.
pub(crate) fn trait_predicates_for_self_ty<'a>(
&'a self,
ty: &'a Ty,
) -> impl Iterator<Item = &'a TraitRef> + 'a {
self.predicates.iter().filter_map(move |pred| match pred {
GenericPredicate::Implemented(tr) if tr.self_ty() == ty => Some(tr),
_ => None,
})
}
}
/// Something (usually a goal), along with an environment.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct InEnvironment<T> {
2019-07-09 14:34:23 -05:00
pub environment: Arc<TraitEnvironment>,
pub value: T,
}
impl<T> InEnvironment<T> {
2019-07-09 14:34:23 -05:00
pub fn new(environment: Arc<TraitEnvironment>, value: T) -> InEnvironment<T> {
InEnvironment { environment, value }
}
}
/// Something that needs to be proven (by Chalk) during type checking, e.g. that
/// a certain type implements a certain trait. Proving the Obligation might
/// result in additional information about inference variables.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum Obligation {
/// Prove that a certain type implements a trait (the type is the `Self` type
/// parameter to the `TraitRef`).
Trait(TraitRef),
Projection(ProjectionPredicate),
}
impl Obligation {
pub fn from_predicate(predicate: GenericPredicate) -> Option<Obligation> {
match predicate {
GenericPredicate::Implemented(trait_ref) => Some(Obligation::Trait(trait_ref)),
GenericPredicate::Projection(projection_pred) => {
Some(Obligation::Projection(projection_pred))
}
GenericPredicate::Error => None,
}
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct ProjectionPredicate {
pub projection_ty: ProjectionTy,
pub ty: Ty,
}
impl TypeWalk for ProjectionPredicate {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
self.projection_ty.walk(f);
self.ty.walk(f);
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
self.projection_ty.walk_mut_binders(f, binders);
self.ty.walk_mut_binders(f, binders);
}
}
/// Solve a trait goal using Chalk.
2019-07-09 14:34:23 -05:00
pub(crate) fn trait_solve_query(
db: &dyn HirDatabase,
2019-11-27 00:42:55 -06:00
krate: CrateId,
2019-08-10 05:13:39 -05:00
goal: Canonical<InEnvironment<Obligation>>,
) -> Option<Solution> {
let _p = profile("trait_solve_query").detail(|| match &goal.value.value {
Obligation::Trait(it) => db.trait_data(it.trait_).name.to_string(),
Obligation::Projection(_) => "projection".to_string(),
});
2020-04-06 08:01:58 -05:00
log::info!("trait_solve_query({})", goal.value.value.display(db));
2019-09-24 12:04:53 -05:00
if let Obligation::Projection(pred) = &goal.value.value {
if let Ty::Bound(_) = &pred.projection_ty.parameters[0] {
// Hack: don't ask Chalk to normalize with an unknown self type, it'll say that's impossible
return Some(Solution::Ambig(Guidance::Unknown));
}
}
2020-03-27 08:50:08 -05:00
let canonical = goal.to_chalk(db).cast(&Interner);
2019-05-21 12:57:36 -05:00
// We currently don't deal with universes (I think / hope they're not yet
// relevant for our use cases?)
let u_canonical = chalk_ir::UCanonical { canonical, universes: 1 };
let solution = solve(db, krate, &u_canonical);
2019-05-21 12:57:36 -05:00
solution.map(|solution| solution_from_chalk(db, solution))
}
fn solve(
db: &dyn HirDatabase,
krate: CrateId,
goal: &chalk_ir::UCanonical<chalk_ir::InEnvironment<chalk_ir::Goal<Interner>>>,
) -> Option<chalk_solve::Solution<Interner>> {
let context = ChalkContext { db, krate };
log::debug!("solve goal: {:?}", goal);
let mut solver = create_chalk_solver();
let fuel = std::cell::Cell::new(CHALK_SOLVER_FUEL);
let should_continue = || {
context.db.check_canceled();
let remaining = fuel.get();
fuel.set(remaining - 1);
if remaining == 0 {
log::debug!("fuel exhausted");
}
remaining > 0
};
let mut solve = || solver.solve_limited(&context, goal, should_continue);
// don't set the TLS for Chalk unless Chalk debugging is active, to make
// extra sure we only use it for debugging
let solution =
if is_chalk_debug() { chalk::tls::set_current_program(db, solve) } else { solve() };
log::debug!("solve({:?}) => {:?}", goal, solution);
solution
}
fn is_chalk_debug() -> bool {
std::env::var("CHALK_DEBUG").is_ok()
}
2019-11-16 06:21:51 -06:00
fn solution_from_chalk(
db: &dyn HirDatabase,
solution: chalk_solve::Solution<Interner>,
2019-11-16 06:21:51 -06:00
) -> Solution {
let convert_subst = |subst: chalk_ir::Canonical<chalk_ir::Substitution<Interner>>| {
let value = subst
.value
2020-03-27 08:50:08 -05:00
.iter(&Interner)
.map(|p| match p.ty(&Interner) {
2020-02-18 07:32:19 -06:00
Some(ty) => from_chalk(db, ty.clone()),
None => unimplemented!(),
})
.collect();
let result = Canonical { value, num_vars: subst.binders.len() };
SolutionVariables(result)
};
match solution {
2019-05-01 09:37:52 -05:00
chalk_solve::Solution::Unique(constr_subst) => {
let subst = chalk_ir::Canonical {
value: constr_subst.value.subst,
binders: constr_subst.binders,
};
2019-05-01 09:37:52 -05:00
Solution::Unique(convert_subst(subst))
}
2019-05-01 09:37:52 -05:00
chalk_solve::Solution::Ambig(chalk_solve::Guidance::Definite(subst)) => {
Solution::Ambig(Guidance::Definite(convert_subst(subst)))
}
2019-05-01 09:37:52 -05:00
chalk_solve::Solution::Ambig(chalk_solve::Guidance::Suggested(subst)) => {
Solution::Ambig(Guidance::Suggested(convert_subst(subst)))
}
2019-05-01 09:37:52 -05:00
chalk_solve::Solution::Ambig(chalk_solve::Guidance::Unknown) => {
Solution::Ambig(Guidance::Unknown)
}
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
2019-05-05 09:04:31 -05:00
pub struct SolutionVariables(pub Canonical<Vec<Ty>>);
#[derive(Clone, Debug, PartialEq, Eq)]
/// A (possible) solution for a proposed goal.
2019-05-05 09:04:31 -05:00
pub enum Solution {
/// The goal indeed holds, and there is a unique value for all existential
/// variables.
Unique(SolutionVariables),
/// The goal may be provable in multiple ways, but regardless we may have some guidance
/// for type inference. In this case, we don't return any lifetime
/// constraints, since we have not "committed" to any particular solution
/// yet.
Ambig(Guidance),
}
#[derive(Clone, Debug, PartialEq, Eq)]
/// When a goal holds ambiguously (e.g., because there are multiple possible
/// solutions), we issue a set of *guidance* back to type inference.
2019-05-05 09:04:31 -05:00
pub enum Guidance {
/// The existential variables *must* have the given values if the goal is
/// ever to hold, but that alone isn't enough to guarantee the goal will
/// actually hold.
Definite(SolutionVariables),
/// There are multiple plausible values for the existentials, but the ones
/// here are suggested as the preferred choice heuristically. These should
/// be used for inference fallback only.
Suggested(SolutionVariables),
/// There's no useful information to feed back to type inference
Unknown,
}
2019-09-09 15:10:58 -05:00
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum FnTrait {
FnOnce,
FnMut,
Fn,
}
impl FnTrait {
fn lang_item_name(self) -> &'static str {
match self {
FnTrait::FnOnce => "fn_once",
FnTrait::FnMut => "fn_mut",
FnTrait::Fn => "fn",
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
2019-09-09 15:10:58 -05:00
pub struct ClosureFnTraitImplData {
2019-11-25 09:31:48 -06:00
def: DefWithBodyId,
2019-09-09 15:10:58 -05:00
expr: ExprId,
fn_trait: FnTrait,
}
2020-02-21 12:05:27 -06:00
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct UnsizeToSuperTraitObjectData {
trait_: TraitId,
super_trait: TraitId,
}
2019-09-09 15:10:58 -05:00
/// An impl. Usually this comes from an impl block, but some built-in types get
/// synthetic impls.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
2019-09-09 15:10:58 -05:00
pub enum Impl {
/// A normal impl from an impl block.
2020-02-29 14:24:40 -06:00
ImplDef(ImplId),
2019-09-09 15:10:58 -05:00
/// Closure types implement the Fn traits synthetically.
ClosureFnTraitImpl(ClosureFnTraitImplData),
/// [T; n]: Unsize<[T]>
UnsizeArray,
2020-02-21 12:05:27 -06:00
/// T: Unsize<dyn Trait> where T: Trait
UnsizeToTraitObject(TraitId),
/// dyn Trait: Unsize<dyn SuperTrait> if Trait: SuperTrait
UnsizeToSuperTraitObject(UnsizeToSuperTraitObjectData),
2019-09-09 15:10:58 -05:00
}
2019-11-24 05:25:48 -06:00
/// This exists just for Chalk, because our ImplIds are only unique per module.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct GlobalImplId(salsa::InternId);
impl_intern_key!(GlobalImplId);
/// An associated type value. Usually this comes from a `type` declaration
/// inside an impl block, but for built-in impls we have to synthesize it.
/// (We only need this because Chalk wants a unique ID for each of these.)
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum AssocTyValue {
/// A normal assoc type value from an impl block.
2019-11-27 02:40:10 -06:00
TypeAlias(TypeAliasId),
/// The output type of the Fn trait implementation.
ClosureFnTraitImplOutput(ClosureFnTraitImplData),
}
2019-11-24 05:25:48 -06:00
/// This exists just for Chalk, because it needs a unique ID for each associated
/// type value in an impl (even synthetic ones).
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct AssocTyValueId(salsa::InternId);
impl_intern_key!(AssocTyValueId);