rust/crates/ra_hir/src/ty/traits.rs

162 lines
6.0 KiB
Rust
Raw Normal View History

//! Trait solving using Chalk.
use std::sync::{Arc, Mutex};
use rustc_hash::FxHashSet;
2019-05-01 13:50:49 -05:00
use log::debug;
use chalk_ir::cast::Cast;
use crate::{Crate, Trait, db::HirDatabase, ImplBlock};
use super::{TraitRef, Ty, Canonical};
use self::chalk::{ToChalk, from_chalk};
mod chalk;
pub(crate) type Solver = chalk_solve::Solver;
#[derive(Debug, Copy, Clone)]
struct ChalkContext<'a, DB> {
db: &'a DB,
krate: Crate,
}
pub(crate) fn solver(_db: &impl HirDatabase, _krate: Crate) -> Arc<Mutex<Solver>> {
// krate parameter is just so we cache a unique solver per crate
let solver_choice = chalk_solve::SolverChoice::SLG { max_size: 10 };
Arc::new(Mutex::new(solver_choice.into_solver()))
}
/// Collects impls for the given trait in the whole dependency tree of `krate`.
pub(crate) fn impls_for_trait(
db: &impl HirDatabase,
krate: Crate,
trait_: Trait,
) -> Arc<[ImplBlock]> {
let mut impls = FxHashSet::default();
// We call the query recursively here. On the one hand, this means we can
// reuse results from queries for different crates; on the other hand, this
// will only ever get called for a few crates near the root of the tree (the
// ones the user is editing), so this may actually be a waste of memory. I'm
// doing it like this mainly for simplicity for now.
for dep in krate.dependencies(db) {
impls.extend(db.impls_for_trait(dep.krate, trait_).iter());
}
let crate_impl_blocks = db.impls_in_crate(krate);
impls.extend(crate_impl_blocks.lookup_impl_blocks_for_trait(&trait_));
impls.into_iter().collect::<Vec<_>>().into()
}
fn solve(
db: &impl HirDatabase,
krate: Crate,
goal: &chalk_ir::UCanonical<chalk_ir::InEnvironment<chalk_ir::Goal>>,
) -> Option<chalk_solve::Solution> {
let context = ChalkContext { db, krate };
let solver = db.solver(krate);
let solution = solver.lock().unwrap().solve(&context, goal);
2019-05-01 13:50:49 -05:00
debug!("solve({:?}) => {:?}", goal, solution);
solution
}
/// Something that needs to be proven (by Chalk) during type checking, e.g. that
/// a certain type implements a certain trait. Proving the Obligation might
/// result in additional information about inference variables.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum Obligation {
/// Prove that a certain type implements a trait (the type is the `Self` type
/// parameter to the `TraitRef`).
Trait(TraitRef),
}
/// Check using Chalk whether trait is implemented for given parameters including `Self` type.
pub(crate) fn implements(
db: &impl HirDatabase,
krate: Crate,
trait_ref: Canonical<TraitRef>,
) -> Option<Solution> {
let goal: chalk_ir::Goal = trait_ref.value.to_chalk(db).cast();
2019-05-01 13:50:49 -05:00
debug!("goal: {:?}", goal);
let env = chalk_ir::Environment::new();
let in_env = chalk_ir::InEnvironment::new(&env, goal);
let parameter = chalk_ir::ParameterKind::Ty(chalk_ir::UniverseIndex::ROOT);
let canonical =
chalk_ir::Canonical { value: in_env, binders: vec![parameter; trait_ref.num_vars] };
// We currently don't deal with universes (I think / hope they're not yet
// relevant for our use cases?)
let u_canonical = chalk_ir::UCanonical { canonical, universes: 1 };
let solution = solve(db, krate, &u_canonical);
2019-05-01 09:37:52 -05:00
solution.map(|solution| solution_from_chalk(db, solution))
}
fn solution_from_chalk(db: &impl HirDatabase, solution: chalk_solve::Solution) -> Solution {
let convert_subst = |subst: chalk_ir::Canonical<chalk_ir::Substitution>| {
let value = subst
.value
.parameters
.into_iter()
.map(|p| {
let ty = match p {
chalk_ir::Parameter(chalk_ir::ParameterKind::Ty(ty)) => from_chalk(db, ty),
chalk_ir::Parameter(chalk_ir::ParameterKind::Lifetime(_)) => unimplemented!(),
};
ty
})
.collect();
let result = Canonical { value, num_vars: subst.binders.len() };
SolutionVariables(result)
};
match solution {
2019-05-01 09:37:52 -05:00
chalk_solve::Solution::Unique(constr_subst) => {
let subst = chalk_ir::Canonical {
value: constr_subst.value.subst,
binders: constr_subst.binders,
};
2019-05-01 09:37:52 -05:00
Solution::Unique(convert_subst(subst))
}
2019-05-01 09:37:52 -05:00
chalk_solve::Solution::Ambig(chalk_solve::Guidance::Definite(subst)) => {
Solution::Ambig(Guidance::Definite(convert_subst(subst)))
}
2019-05-01 09:37:52 -05:00
chalk_solve::Solution::Ambig(chalk_solve::Guidance::Suggested(subst)) => {
Solution::Ambig(Guidance::Suggested(convert_subst(subst)))
}
2019-05-01 09:37:52 -05:00
chalk_solve::Solution::Ambig(chalk_solve::Guidance::Unknown) => {
Solution::Ambig(Guidance::Unknown)
}
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
2019-05-05 09:04:31 -05:00
pub struct SolutionVariables(pub Canonical<Vec<Ty>>);
#[derive(Clone, Debug, PartialEq, Eq)]
/// A (possible) solution for a proposed goal.
2019-05-05 09:04:31 -05:00
pub enum Solution {
/// The goal indeed holds, and there is a unique value for all existential
/// variables.
Unique(SolutionVariables),
/// The goal may be provable in multiple ways, but regardless we may have some guidance
/// for type inference. In this case, we don't return any lifetime
/// constraints, since we have not "committed" to any particular solution
/// yet.
Ambig(Guidance),
}
#[derive(Clone, Debug, PartialEq, Eq)]
/// When a goal holds ambiguously (e.g., because there are multiple possible
/// solutions), we issue a set of *guidance* back to type inference.
2019-05-05 09:04:31 -05:00
pub enum Guidance {
/// The existential variables *must* have the given values if the goal is
/// ever to hold, but that alone isn't enough to guarantee the goal will
/// actually hold.
Definite(SolutionVariables),
/// There are multiple plausible values for the existentials, but the ones
/// here are suggested as the preferred choice heuristically. These should
/// be used for inference fallback only.
Suggested(SolutionVariables),
/// There's no useful information to feed back to type inference
Unknown,
}