rust/src/librustuv/lib.rs

506 lines
14 KiB
Rust
Raw Normal View History

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
Bindings to libuv, along with the default implementation of `std::rt::rtio`.
UV types consist of the event loop (Loop), Watchers, Requests and
Callbacks.
Watchers and Requests encapsulate pointers to uv *handles*, which have
subtyping relationships with each other. This subtyping is reflected
in the bindings with explicit or implicit coercions. For example, an
upcast from TcpWatcher to StreamWatcher is done with
`tcp_watcher.as_stream()`. In other cases a callback on a specific
type of watcher will be passed a watcher of a supertype.
Currently all use of Request types (connect/write requests) are
encapsulated in the bindings and don't need to be dealt with by the
caller.
# Safety note
Due to the complex lifecycle of uv handles, as well as compiler bugs,
this module is not memory safe and requires explicit memory management,
via `close` and `delete` methods.
*/
2014-03-31 15:11:35 -05:00
#![crate_id = "rustuv#0.10"]
#![license = "MIT/ASL2"]
#![crate_type = "rlib"]
#![crate_type = "dylib"]
#![feature(macro_rules)]
#![deny(unused_result, unused_must_use)]
#![allow(visible_private_types)]
#[cfg(test)] extern crate green;
#[cfg(test)] extern crate realrustuv = "rustuv";
use std::cast;
use std::fmt;
use std::io::IoError;
use std::io;
use std::libc::{c_int, c_void};
use std::ptr::null;
use std::ptr;
use std::rt::local::Local;
use std::rt::rtio;
use std::rt::task::{BlockedTask, Task};
use std::str::raw::from_c_str;
use std::str;
use std::task;
2013-11-05 13:29:45 -06:00
pub use self::async::AsyncWatcher;
pub use self::file::{FsRequest, FileWatcher};
pub use self::idle::IdleWatcher;
2013-11-05 13:29:45 -06:00
pub use self::net::{TcpWatcher, TcpListener, TcpAcceptor, UdpWatcher};
pub use self::pipe::{PipeWatcher, PipeListener, PipeAcceptor};
2013-11-05 13:29:45 -06:00
pub use self::process::Process;
pub use self::signal::SignalWatcher;
2013-11-05 13:29:45 -06:00
pub use self::timer::TimerWatcher;
pub use self::tty::TtyWatcher;
// Run tests with libgreen instead of libnative.
//
// FIXME: This egregiously hacks around starting the test runner in a different
// threading mode than the default by reaching into the auto-generated
// '__test' module.
#[cfg(test)] #[start]
fn start(argc: int, argv: **u8) -> int {
green::start(argc, argv, event_loop, __test::main)
}
mod macros;
Implement clone() for TCP/UDP/Unix sockets This is part of the overall strategy I would like to take when approaching issue #11165. The only two I/O objects that reasonably want to be "split" are the network stream objects. Everything else can be "split" by just creating another version. The initial idea I had was the literally split the object into a reader and a writer half, but that would just introduce lots of clutter with extra interfaces that were a little unnnecssary, or it would return a ~Reader and a ~Writer which means you couldn't access things like the remote peer name or local socket name. The solution I found to be nicer was to just clone the stream itself. The clone is just a clone of the handle, nothing fancy going on at the kernel level. Conceptually I found this very easy to wrap my head around (everything else supports clone()), and it solved the "split" problem at the same time. The cloning support is pretty specific per platform/lib combination: * native/win32 - uses some specific WSA apis to clone the SOCKET handle * native/unix - uses dup() to get another file descriptor * green/all - This is where things get interesting. When we support full clones of a handle, this implies that we're allowing simultaneous writes and reads to happen. It turns out that libuv doesn't support two simultaneous reads or writes of the same object. It does support *one* read and *one* write at the same time, however. Some extra infrastructure was added to just block concurrent writers/readers until the previous read/write operation was completed. I've added tests to the tcp/unix modules to make sure that this functionality is supported everywhere.
2014-01-22 21:32:16 -06:00
mod access;
mod homing;
Implement clone() for TCP/UDP/Unix sockets This is part of the overall strategy I would like to take when approaching issue #11165. The only two I/O objects that reasonably want to be "split" are the network stream objects. Everything else can be "split" by just creating another version. The initial idea I had was the literally split the object into a reader and a writer half, but that would just introduce lots of clutter with extra interfaces that were a little unnnecssary, or it would return a ~Reader and a ~Writer which means you couldn't access things like the remote peer name or local socket name. The solution I found to be nicer was to just clone the stream itself. The clone is just a clone of the handle, nothing fancy going on at the kernel level. Conceptually I found this very easy to wrap my head around (everything else supports clone()), and it solved the "split" problem at the same time. The cloning support is pretty specific per platform/lib combination: * native/win32 - uses some specific WSA apis to clone the SOCKET handle * native/unix - uses dup() to get another file descriptor * green/all - This is where things get interesting. When we support full clones of a handle, this implies that we're allowing simultaneous writes and reads to happen. It turns out that libuv doesn't support two simultaneous reads or writes of the same object. It does support *one* read and *one* write at the same time, however. Some extra infrastructure was added to just block concurrent writers/readers until the previous read/write operation was completed. I've added tests to the tcp/unix modules to make sure that this functionality is supported everywhere.
2014-01-22 21:32:16 -06:00
mod queue;
mod rc;
/// The implementation of `rtio` for libuv
pub mod uvio;
/// C bindings to libuv
pub mod uvll;
pub mod file;
pub mod net;
pub mod idle;
pub mod timer;
pub mod async;
pub mod addrinfo;
pub mod process;
pub mod pipe;
pub mod tty;
pub mod signal;
pub mod stream;
/// Creates a new event loop which is powered by libuv
///
/// This function is used in tandem with libgreen's `PoolConfig` type as a value
/// for the `event_loop_factory` field. Using this function as the event loop
/// factory will power programs with libuv and enable green threading.
///
/// # Example
///
/// ```
/// extern crate rustuv;
/// extern crate green;
///
/// #[start]
/// fn start(argc: int, argv: **u8) -> int {
/// green::start(argc, argv, rustuv::event_loop, main)
/// }
///
/// fn main() {
/// // this code is running inside of a green task powered by libuv
/// }
/// ```
pub fn event_loop() -> ~rtio::EventLoop:Send {
~uvio::UvEventLoop::new() as ~rtio::EventLoop:Send
}
/// A type that wraps a uv handle
pub trait UvHandle<T> {
fn uv_handle(&self) -> *T;
fn uv_loop(&self) -> Loop {
Loop::wrap(unsafe { uvll::get_loop_for_uv_handle(self.uv_handle()) })
}
// FIXME(#8888) dummy self
fn alloc(_: Option<Self>, ty: uvll::uv_handle_type) -> *T {
unsafe {
let handle = uvll::malloc_handle(ty);
assert!(!handle.is_null());
handle as *T
}
}
unsafe fn from_uv_handle<'a>(h: &'a *T) -> &'a mut Self {
cast::transmute(uvll::get_data_for_uv_handle(*h))
}
fn install(~self) -> ~Self {
unsafe {
let myptr = cast::transmute::<&~Self, &*u8>(&self);
uvll::set_data_for_uv_handle(self.uv_handle(), *myptr);
}
self
}
fn close_async_(&mut self) {
// we used malloc to allocate all handles, so we must always have at
// least a callback to free all the handles we allocated.
extern fn close_cb(handle: *uvll::uv_handle_t) {
unsafe { uvll::free_handle(handle) }
}
unsafe {
uvll::set_data_for_uv_handle(self.uv_handle(), null::<()>());
uvll::uv_close(self.uv_handle() as *uvll::uv_handle_t, close_cb)
}
}
fn close(&mut self) {
let mut slot = None;
unsafe {
uvll::uv_close(self.uv_handle() as *uvll::uv_handle_t, close_cb);
uvll::set_data_for_uv_handle(self.uv_handle(), ptr::null::<()>());
wait_until_woken_after(&mut slot, &self.uv_loop(), || {
uvll::set_data_for_uv_handle(self.uv_handle(), &slot);
})
}
extern fn close_cb(handle: *uvll::uv_handle_t) {
unsafe {
let data = uvll::get_data_for_uv_handle(handle);
uvll::free_handle(handle);
if data == ptr::null() { return }
let slot: &mut Option<BlockedTask> = cast::transmute(data);
wakeup(slot);
}
}
}
}
pub struct ForbidSwitch {
msg: &'static str,
io: uint,
}
impl ForbidSwitch {
fn new(s: &'static str) -> ForbidSwitch {
ForbidSwitch {
msg: s,
io: homing::local_id(),
}
}
}
impl Drop for ForbidSwitch {
fn drop(&mut self) {
assert!(self.io == homing::local_id(),
"didnt want a scheduler switch: {}",
self.msg);
}
}
pub struct ForbidUnwind {
msg: &'static str,
failing_before: bool,
}
impl ForbidUnwind {
fn new(s: &'static str) -> ForbidUnwind {
ForbidUnwind {
msg: s, failing_before: task::failing(),
}
}
}
impl Drop for ForbidUnwind {
fn drop(&mut self) {
assert!(self.failing_before == task::failing(),
"didnt want an unwind during: {}", self.msg);
}
}
fn wait_until_woken_after(slot: *mut Option<BlockedTask>,
loop_: &Loop,
f: ||) {
let _f = ForbidUnwind::new("wait_until_woken_after");
unsafe {
assert!((*slot).is_none());
let task: ~Task = Local::take();
loop_.modify_blockers(1);
task.deschedule(1, |task| {
*slot = Some(task);
f();
Ok(())
});
loop_.modify_blockers(-1);
}
}
fn wakeup(slot: &mut Option<BlockedTask>) {
assert!(slot.is_some());
let _ = slot.take_unwrap().wake().map(|t| t.reawaken());
}
pub struct Request {
pub handle: *uvll::uv_req_t,
defused: bool,
}
impl Request {
pub fn new(ty: uvll::uv_req_type) -> Request {
unsafe {
let handle = uvll::malloc_req(ty);
uvll::set_data_for_req(handle, null::<()>());
Request::wrap(handle)
}
}
pub fn wrap(handle: *uvll::uv_req_t) -> Request {
Request { handle: handle, defused: false }
}
pub fn set_data<T>(&self, t: *T) {
unsafe { uvll::set_data_for_req(self.handle, t) }
}
pub unsafe fn get_data<T>(&self) -> &'static mut T {
let data = uvll::get_data_for_req(self.handle);
assert!(data != null());
cast::transmute(data)
}
// This function should be used when the request handle has been given to an
// underlying uv function, and the uv function has succeeded. This means
// that uv will at some point invoke the callback, and in the meantime we
// can't deallocate the handle because libuv could be using it.
//
// This is still a problem in blocking situations due to linked failure. In
// the connection callback the handle should be re-wrapped with the `wrap`
// function to ensure its destruction.
pub fn defuse(&mut self) {
self.defused = true;
}
}
impl Drop for Request {
fn drop(&mut self) {
if !self.defused {
unsafe { uvll::free_req(self.handle) }
}
}
}
/// FIXME: Loop(*handle) is buggy with destructors. Normal structs
2013-11-05 13:29:45 -06:00
/// with dtors may not be destructured, but tuple structs can,
/// but the results are not correct.
pub struct Loop {
handle: *uvll::uv_loop_t
2013-11-05 13:29:45 -06:00
}
impl Loop {
pub fn new() -> Loop {
let handle = unsafe { uvll::loop_new() };
assert!(handle.is_not_null());
unsafe { uvll::set_data_for_uv_loop(handle, 0 as *c_void) }
2013-11-05 13:29:45 -06:00
Loop::wrap(handle)
}
2013-11-05 13:29:45 -06:00
pub fn wrap(handle: *uvll::uv_loop_t) -> Loop { Loop { handle: handle } }
pub fn run(&mut self) {
assert_eq!(unsafe { uvll::uv_run(self.handle, uvll::RUN_DEFAULT) }, 0);
}
pub fn close(&mut self) {
2013-11-05 13:29:45 -06:00
unsafe { uvll::uv_loop_delete(self.handle) };
}
// The 'data' field of the uv_loop_t is used to count the number of tasks
// that are currently blocked waiting for I/O to complete.
fn modify_blockers(&self, amt: uint) {
unsafe {
let cur = uvll::get_data_for_uv_loop(self.handle) as uint;
uvll::set_data_for_uv_loop(self.handle, (cur + amt) as *c_void)
}
}
fn get_blockers(&self) -> uint {
unsafe { uvll::get_data_for_uv_loop(self.handle) as uint }
}
}
// FIXME: Need to define the error constants like EOF so they can be
// compared to the UvError type
pub struct UvError(c_int);
impl UvError {
pub fn name(&self) -> ~str {
unsafe {
let inner = match self { &UvError(a) => a };
2013-11-03 12:39:39 -06:00
let name_str = uvll::uv_err_name(inner);
assert!(name_str.is_not_null());
from_c_str(name_str)
}
}
pub fn desc(&self) -> ~str {
unsafe {
let inner = match self { &UvError(a) => a };
2013-11-03 12:39:39 -06:00
let desc_str = uvll::uv_strerror(inner);
assert!(desc_str.is_not_null());
from_c_str(desc_str)
}
}
pub fn is_eof(&self) -> bool {
let UvError(handle) = *self;
handle == uvll::EOF
}
}
impl fmt::Show for UvError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f.buf, "{}: {}", self.name(), self.desc())
}
}
#[test]
fn error_smoke_test() {
let err: UvError = UvError(uvll::EOF);
assert_eq!(err.to_str(), ~"EOF: end of file");
}
pub fn uv_error_to_io_error(uverr: UvError) -> IoError {
unsafe {
// Importing error constants
// uv error descriptions are static
let UvError(errcode) = uverr;
let c_desc = uvll::uv_strerror(errcode);
let desc = str::raw::c_str_to_static_slice(c_desc);
let kind = match errcode {
uvll::UNKNOWN => io::OtherIoError,
uvll::OK => io::OtherIoError,
uvll::EOF => io::EndOfFile,
uvll::EACCES => io::PermissionDenied,
uvll::ECONNREFUSED => io::ConnectionRefused,
uvll::ECONNRESET => io::ConnectionReset,
uvll::ENOTCONN => io::NotConnected,
uvll::ENOENT => io::FileNotFound,
uvll::EPIPE => io::BrokenPipe,
uvll::ECONNABORTED => io::ConnectionAborted,
2013-12-27 19:50:16 -06:00
uvll::EADDRNOTAVAIL => io::ConnectionRefused,
err => {
uvdebug!("uverr.code {}", err as int);
// FIXME: Need to map remaining uv error types
io::OtherIoError
}
};
IoError {
kind: kind,
desc: desc,
detail: None
}
}
}
/// Given a uv error code, convert a callback status to a UvError
pub fn status_to_maybe_uv_error(status: c_int) -> Option<UvError> {
if status >= 0 {
None
} else {
Some(UvError(status))
}
}
pub fn status_to_io_result(status: c_int) -> Result<(), IoError> {
if status >= 0 {Ok(())} else {Err(uv_error_to_io_error(UvError(status)))}
}
/// The uv buffer type
pub type Buf = uvll::uv_buf_t;
pub fn empty_buf() -> Buf {
uvll::uv_buf_t {
base: null(),
len: 0,
}
}
/// Borrow a slice to a Buf
pub fn slice_to_uv_buf(v: &[u8]) -> Buf {
let data = v.as_ptr();
uvll::uv_buf_t { base: data, len: v.len() as uvll::uv_buf_len_t }
}
// This function is full of lies!
#[cfg(test)]
fn local_loop() -> &'static mut uvio::UvIoFactory {
unsafe {
cast::transmute({
let mut task = Local::borrow(None::<Task>);
let mut io = task.get().local_io().unwrap();
let (_vtable, uvio): (uint, &'static mut uvio::UvIoFactory) =
cast::transmute(io.get());
uvio
})
}
}
2013-11-06 13:03:11 -06:00
#[cfg(test)]
mod test {
use std::cast::transmute;
use std::unstable::run_in_bare_thread;
2013-11-06 13:03:11 -06:00
use super::{slice_to_uv_buf, Loop};
2013-11-06 13:03:11 -06:00
#[test]
fn test_slice_to_uv_buf() {
let slice = [0, .. 20];
let buf = slice_to_uv_buf(slice);
2013-11-06 13:03:11 -06:00
assert_eq!(buf.len, 20);
2013-11-06 13:03:11 -06:00
unsafe {
let base = transmute::<*u8, *mut u8>(buf.base);
(*base) = 1;
(*base.offset(1)) = 2;
2013-11-06 13:03:11 -06:00
}
2013-11-06 13:03:11 -06:00
assert!(slice[0] == 1);
assert!(slice[1] == 2);
}
2013-11-06 13:03:11 -06:00
#[test]
fn loop_smoke_test() {
2014-01-26 21:57:42 -06:00
run_in_bare_thread(proc() {
2013-11-06 13:03:11 -06:00
let mut loop_ = Loop::new();
loop_.run();
loop_.close();
2014-01-26 21:57:42 -06:00
});
}
}