153 lines
4.0 KiB
Rust
Raw Normal View History

// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2014-08-04 22:48:39 +12:00
//! Collection types.
2014-10-05 13:32:18 -04:00
//!
//! See [std::collections](../std/collections) for a detailed discussion of collections in Rust.
2014-10-05 13:32:18 -04:00
// Do not remove on snapshot creation. Needed for bootstrap. (Issue #22364)
#![cfg_attr(stage0, feature(custom_attribute))]
#![crate_name = "collections"]
#![unstable(feature = "collections")]
Preliminary feature staging This partially implements the feature staging described in the [release channel RFC][rc]. It does not yet fully conform to the RFC as written, but does accomplish its goals sufficiently for the 1.0 alpha release. It has three primary user-visible effects: * On the nightly channel, use of unstable APIs generates a warning. * On the beta channel, use of unstable APIs generates a warning. * On the beta channel, use of feature gates generates a warning. Code that does not trigger these warnings is considered 'stable', modulo pre-1.0 bugs. Disabling the warnings for unstable APIs continues to be done in the existing (i.e. old) style, via `#[allow(...)]`, not that specified in the RFC. I deem this marginally acceptable since any code that must do this is not using the stable dialect of Rust. Use of feature gates is itself gated with the new 'unstable_features' lint, on nightly set to 'allow', and on beta 'warn'. The attribute scheme used here corresponds to an older version of the RFC, with the `#[staged_api]` crate attribute toggling the staging behavior of the stability attributes, but the user impact is only in-tree so I'm not concerned about having to make design changes later (and I may ultimately prefer the scheme here after all, with the `#[staged_api]` crate attribute). Since the Rust codebase itself makes use of unstable features the compiler and build system to a midly elaborate dance to allow it to bootstrap while disobeying these lints (which would otherwise be errors because Rust builds with `-D warnings`). This patch includes one significant hack that causes a regression. Because the `format_args!` macro emits calls to unstable APIs it would trigger the lint. I added a hack to the lint to make it not trigger, but this in turn causes arguments to `println!` not to be checked for feature gates. I don't presently understand macro expansion well enough to fix. This is bug #20661. Closes #16678 [rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md
2015-01-06 06:26:08 -08:00
#![staged_api]
#![crate_type = "rlib"]
#![doc(html_logo_url = "http://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
html_favicon_url = "http://www.rust-lang.org/favicon.ico",
html_root_url = "http://doc.rust-lang.org/nightly/",
html_playground_url = "http://play.rust-lang.org/")]
#![feature(alloc)]
#![feature(box_syntax)]
#![feature(box_patterns)]
#![feature(core)]
2015-03-10 23:13:24 -05:00
#![feature(lang_items)]
#![feature(staged_api)]
#![feature(unboxed_closures)]
#![feature(unicode)]
#![feature(unsafe_destructor)]
#![feature(unique)]
#![feature(unsafe_no_drop_flag)]
#![feature(step_by)]
#![feature(str_char)]
#![cfg_attr(test, feature(rand, rustc_private, test))]
#![cfg_attr(test, allow(deprecated))] // rand
#![feature(no_std)]
#![no_std]
#[macro_use]
extern crate core;
Add libunicode; move unicode functions from core - created new crate, libunicode, below libstd - split Char trait into Char (libcore) and UnicodeChar (libunicode) - Unicode-aware functions now live in libunicode - is_alphabetic, is_XID_start, is_XID_continue, is_lowercase, is_uppercase, is_whitespace, is_alphanumeric, is_control, is_digit, to_uppercase, to_lowercase - added width method in UnicodeChar trait - determines printed width of character in columns, or None if it is a non-NULL control character - takes a boolean argument indicating whether the present context is CJK or not (characters with 'A'mbiguous widths are double-wide in CJK contexts, single-wide otherwise) - split StrSlice into StrSlice (libcore) and UnicodeStrSlice (libunicode) - functionality formerly in StrSlice that relied upon Unicode functionality from Char is now in UnicodeStrSlice - words, is_whitespace, is_alphanumeric, trim, trim_left, trim_right - also moved Words type alias into libunicode because words method is in UnicodeStrSlice - unified Unicode tables from libcollections, libcore, and libregex into libunicode - updated unicode.py in src/etc to generate aforementioned tables - generated new tables based on latest Unicode data - added UnicodeChar and UnicodeStrSlice traits to prelude - libunicode is now the collection point for the std::char module, combining the libunicode functionality with the Char functionality from libcore - thus, moved doc comment for char from core::char to unicode::char - libcollections remains the collection point for std::str The Unicode-aware functions that previously lived in the Char and StrSlice traits are no longer available to programs that only use libcore. To regain use of these methods, include the libunicode crate and use the UnicodeChar and/or UnicodeStrSlice traits: extern crate unicode; use unicode::UnicodeChar; use unicode::UnicodeStrSlice; use unicode::Words; // if you want to use the words() method NOTE: this does *not* impact programs that use libstd, since UnicodeChar and UnicodeStrSlice have been added to the prelude. closes #15224 [breaking-change]
2014-06-30 17:04:10 -04:00
extern crate unicode;
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-29 18:50:12 -07:00
extern crate alloc;
2015-03-11 19:44:02 -05:00
#[cfg(test)] #[macro_use] extern crate std;
#[cfg(test)] extern crate test;
pub use binary_heap::BinaryHeap;
pub use bit_vec::BitVec;
pub use bit_set::BitSet;
pub use btree_map::BTreeMap;
pub use btree_set::BTreeSet;
pub use linked_list::LinkedList;
2014-02-20 19:10:41 +13:00
pub use enum_set::EnumSet;
pub use vec_deque::VecDeque;
pub use string::String;
pub use vec::Vec;
pub use vec_map::VecMap;
#[deprecated(since = "1.0.0", reason = "renamed to vec_deque")]
#[unstable(feature = "collections")]
pub use vec_deque as ring_buf;
#[deprecated(since = "1.0.0", reason = "renamed to linked_list")]
#[unstable(feature = "collections")]
pub use linked_list as dlist;
#[deprecated(since = "1.0.0", reason = "renamed to bit_vec")]
#[unstable(feature = "collections")]
pub use bit_vec as bitv;
#[deprecated(since = "1.0.0", reason = "renamed to bit_set")]
#[unstable(feature = "collections")]
pub use bit_set as bitv_set;
// Needed for the vec! macro
pub use alloc::boxed;
#[macro_use]
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-29 18:50:12 -07:00
mod macros;
pub mod binary_heap;
mod bit;
mod btree;
2015-02-19 18:35:52 -08:00
pub mod borrow;
2014-02-20 19:10:41 +13:00
pub mod enum_set;
pub mod fmt;
2015-02-19 18:35:52 -08:00
pub mod linked_list;
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-29 18:50:12 -07:00
pub mod slice;
pub mod str;
pub mod string;
pub mod vec;
2015-02-19 18:35:52 -08:00
pub mod vec_deque;
pub mod vec_map;
#[unstable(feature = "collections",
reason = "RFC 509")]
pub mod bit_vec {
pub use bit::{BitVec, Iter};
#[deprecated(since = "1.0.0", reason = "renamed to BitVec")]
#[unstable(feature = "collections")]
pub use bit::BitVec as Bitv;
}
#[unstable(feature = "collections",
reason = "RFC 509")]
pub mod bit_set {
pub use bit::{BitSet, Union, Intersection, Difference, SymmetricDifference};
2014-12-30 19:07:53 -05:00
pub use bit::SetIter as Iter;
#[deprecated(since = "1.0.0", reason = "renamed to BitSet")]
#[unstable(feature = "collections")]
pub use bit::BitSet as BitvSet;
}
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub mod btree_map {
pub use btree::map::*;
}
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub mod btree_set {
pub use btree::set::*;
}
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-29 18:50:12 -07:00
// FIXME(#14344) this shouldn't be necessary
#[doc(hidden)]
pub fn fixme_14344_be_sure_to_link_to_collections() {}
2015-03-11 19:44:02 -05:00
#[cfg(not(test))]
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-29 18:50:12 -07:00
mod std {
pub use core::ops; // RangeFull
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-29 18:50:12 -07:00
}
/// An endpoint of a range of keys.
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
pub enum Bound<T> {
/// An inclusive bound.
Included(T),
/// An exclusive bound.
Excluded(T),
/// An infinite endpoint. Indicates that there is no bound in this direction.
Unbounded,
}