Implement range and range_mut for BTree

Simplify BTree's iterators, too.
This commit is contained in:
Piotr Czarnecki 2015-01-13 21:55:44 +01:00
parent 135cac8528
commit 429c23d5f4
5 changed files with 614 additions and 203 deletions

View File

@ -27,6 +27,7 @@
use core::iter::{Map, FromIterator};
use core::ops::{Index, IndexMut};
use core::{iter, fmt, mem};
use Bound::{self, Included, Excluded, Unbounded};
use ring_buf::RingBuf;
@ -37,8 +38,6 @@
use super::node::{Traversal, MutTraversal, MoveTraversal};
use super::node::{self, Node, Found, GoDown};
// FIXME(conventions): implement bounded iterators
/// A map based on a B-Tree.
///
/// B-Trees represent a fundamental compromise between cache-efficiency and actually minimizing
@ -92,9 +91,7 @@ pub struct BTreeMap<K, V> {
/// An abstract base over-which all other BTree iterators are built.
struct AbsIter<T> {
lca: T,
left: RingBuf<T>,
right: RingBuf<T>,
traversals: RingBuf<T>,
size: uint,
}
@ -128,6 +125,16 @@ pub struct Values<'a, K: 'a, V: 'a> {
inner: Map<(&'a K, &'a V), &'a V, Iter<'a, K, V>, fn((&'a K, &'a V)) -> &'a V>
}
/// An iterator over a sub-range of BTreeMap's entries.
pub struct Range<'a, K: 'a, V: 'a> {
inner: AbsIter<Traversal<'a, K, V>>
}
/// A mutable iterator over a sub-range of BTreeMap's entries.
pub struct RangeMut<'a, K: 'a, V: 'a> {
inner: AbsIter<MutTraversal<'a, K, V>>
}
/// A view into a single entry in a map, which may either be vacant or occupied.
#[unstable = "precise API still under development"]
pub enum Entry<'a, K:'a, V:'a> {
@ -924,74 +931,45 @@ fn traverse(node: Node<K, V>) -> MoveTraversal<K, V> {
}
/// Represents an operation to perform inside the following iterator methods.
/// This is necessary to use in `next` because we want to modify self.left inside
/// a match that borrows it. Similarly, in `next_back` for self.right. Instead, we use this
/// enum to note what we want to do, and do it after the match.
/// This is necessary to use in `next` because we want to modify `self.traversals` inside
/// a match that borrows it. Similarly in `next_back`. Instead, we use this enum to note
/// what we want to do, and do it after the match.
enum StackOp<T> {
Push(T),
Pop,
}
impl<K, V, E, T> Iterator for AbsIter<T> where
T: DoubleEndedIterator<Item=TraversalItem<K, V, E>> + Traverse<E>,
{
type Item = (K, V);
// This function is pretty long, but only because there's a lot of cases to consider.
// Our iterator represents two search paths, left and right, to the smallest and largest
// elements we have yet to yield. lca represents the least common ancestor of these two paths,
// above-which we never walk, since everything outside it has already been consumed (or was
// never in the range to iterate).
//
// Note that the design of these iterators permits an *arbitrary* initial pair of min and max,
// making these arbitrary sub-range iterators. However the logic to construct these paths
// efficiently is fairly involved, so this is a FIXME. The sub-range iterators also wouldn't be
// able to accurately predict size, so those iterators can't implement ExactSizeIterator.
// Our iterator represents a queue of all ancestors of elements we have
// yet to yield, from smallest to largest. Note that the design of these
// iterators permits an *arbitrary* initial pair of min and max, making
// these arbitrary sub-range iterators.
fn next(&mut self) -> Option<(K, V)> {
loop {
// We want the smallest element, so try to get the top of the left stack
let op = match self.left.back_mut() {
// The left stack is empty, so try to get the next element of the two paths
// LCAs (the left search path is currently a subpath of the right one)
None => match self.lca.next() {
// The lca has been exhausted, walk further down the right path
None => match self.right.pop_front() {
// The right path is exhausted, so we're done
None => return None,
// The right path had something, make that the new LCA
// and restart the whole process
Some(right) => {
self.lca = right;
continue;
}
},
// The lca yielded an edge, make that the new head of the left path
Some(Edge(next)) => Push(Traverse::traverse(next)),
// The lca yielded an entry, so yield that
Some(Elem(k, v)) => {
self.size -= 1;
return Some((k, v))
}
},
// The left stack wasn't empty, so continue along the node in its head
// We want the smallest element, so try to get the back of the queue
let op = match self.traversals.back_mut() {
None => return None,
// The queue wasn't empty, so continue along the node in its head
Some(iter) => match iter.next() {
// The head of the left path is empty, so Pop it off and restart the process
// The head is empty, so Pop it off and continue the process
None => Pop,
// The head of the left path yielded an edge, so make that the new head
// of the left path
// The head yielded an edge, so make that the new head
Some(Edge(next)) => Push(Traverse::traverse(next)),
// The head of the left path yielded entry, so yield that
Some(Elem(k, v)) => {
// The head yielded an entry, so yield that
Some(Elem(kv)) => {
self.size -= 1;
return Some((k, v))
return Some(kv)
}
}
};
// Handle any operation on the left stack as necessary
// Handle any operation as necessary, without a conflicting borrow of the queue
match op {
Push(item) => { self.left.push_back(item); },
Pop => { self.left.pop_back(); },
Push(item) => { self.traversals.push_back(item); },
Pop => { self.traversals.pop_back(); },
}
}
}
@ -1005,36 +983,24 @@ impl<K, V, E, T> DoubleEndedIterator for AbsIter<T> where
T: DoubleEndedIterator<Item=TraversalItem<K, V, E>> + Traverse<E>,
{
// next_back is totally symmetric to next
#[inline]
fn next_back(&mut self) -> Option<(K, V)> {
loop {
let op = match self.right.back_mut() {
None => match self.lca.next_back() {
None => match self.left.pop_front() {
None => return None,
Some(left) => {
self.lca = left;
continue;
}
},
Some(Edge(next)) => Push(Traverse::traverse(next)),
Some(Elem(k, v)) => {
self.size -= 1;
return Some((k, v))
}
},
let op = match self.traversals.front_mut() {
None => return None,
Some(iter) => match iter.next_back() {
None => Pop,
Some(Edge(next)) => Push(Traverse::traverse(next)),
Some(Elem(k, v)) => {
Some(Elem(kv)) => {
self.size -= 1;
return Some((k, v))
return Some(kv)
}
}
};
match op {
Push(item) => { self.right.push_back(item); },
Pop => { self.right.pop_back(); }
Push(item) => { self.traversals.push_front(item); },
Pop => { self.traversals.pop_front(); }
}
}
}
@ -1111,6 +1077,24 @@ fn next_back(&mut self) -> Option<(&'a V)> { self.inner.next_back() }
#[stable]
impl<'a, K, V> ExactSizeIterator for Values<'a, K, V> {}
impl<'a, K, V> Iterator for Range<'a, K, V> {
type Item = (&'a K, &'a V);
fn next(&mut self) -> Option<(&'a K, &'a V)> { self.inner.next() }
}
impl<'a, K, V> DoubleEndedIterator for Range<'a, K, V> {
fn next_back(&mut self) -> Option<(&'a K, &'a V)> { self.inner.next_back() }
}
impl<'a, K, V> Iterator for RangeMut<'a, K, V> {
type Item = (&'a K, &'a mut V);
fn next(&mut self) -> Option<(&'a K, &'a mut V)> { self.inner.next() }
}
impl<'a, K, V> DoubleEndedIterator for RangeMut<'a, K, V> {
fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> { self.inner.next_back() }
}
impl<'a, K: Ord, V> Entry<'a, K, V> {
#[unstable = "matches collection reform v2 specification, waiting for dust to settle"]
/// Returns a mutable reference to the entry if occupied, or the VacantEntry if vacant
@ -1188,11 +1172,12 @@ impl<K, V> BTreeMap<K, V> {
#[stable]
pub fn iter(&self) -> Iter<K, V> {
let len = self.len();
// NB. The initial capacity for ringbuf is large enough to avoid reallocs in many cases.
let mut lca = RingBuf::new();
lca.push_back(Traverse::traverse(&self.root));
Iter {
inner: AbsIter {
lca: Traverse::traverse(&self.root),
left: RingBuf::new(),
right: RingBuf::new(),
traversals: lca,
size: len,
}
}
@ -1220,11 +1205,11 @@ pub fn iter(&self) -> Iter<K, V> {
#[stable]
pub fn iter_mut(&mut self) -> IterMut<K, V> {
let len = self.len();
let mut lca = RingBuf::new();
lca.push_back(Traverse::traverse(&mut self.root));
IterMut {
inner: AbsIter {
lca: Traverse::traverse(&mut self.root),
left: RingBuf::new(),
right: RingBuf::new(),
traversals: lca,
size: len,
}
}
@ -1249,11 +1234,11 @@ pub fn iter_mut(&mut self) -> IterMut<K, V> {
#[stable]
pub fn into_iter(self) -> IntoIter<K, V> {
let len = self.len();
let mut lca = RingBuf::new();
lca.push_back(Traverse::traverse(self.root));
IntoIter {
inner: AbsIter {
lca: Traverse::traverse(self.root),
left: RingBuf::new(),
right: RingBuf::new(),
traversals: lca,
size: len,
}
}
@ -1334,7 +1319,189 @@ pub fn len(&self) -> uint { self.length }
pub fn is_empty(&self) -> bool { self.len() == 0 }
}
macro_rules! range_impl {
($root:expr, $min:expr, $max:expr, $as_slices_internal:ident, $iter:ident, $Range:ident,
$edges:ident, [$($mutability:ident)*]) => (
{
// A deque that encodes two search paths containing (left-to-right):
// a series of truncated-from-the-left iterators, the LCA's doubly-truncated iterator,
// and a series of truncated-from-the-right iterators.
let mut traversals = RingBuf::new();
let (root, min, max) = ($root, $min, $max);
let mut leftmost = None;
let mut rightmost = None;
match (&min, &max) {
(&Unbounded, &Unbounded) => {
traversals.push_back(Traverse::traverse(root))
}
(&Unbounded, &Included(_)) | (&Unbounded, &Excluded(_)) => {
rightmost = Some(root);
}
(&Included(_), &Unbounded) | (&Excluded(_), &Unbounded) => {
leftmost = Some(root);
}
(&Included(min_key), &Included(max_key))
| (&Included(min_key), &Excluded(max_key))
| (&Excluded(min_key), &Included(max_key))
| (&Excluded(min_key), &Excluded(max_key)) => {
// lca represents the Lowest Common Ancestor, above which we never
// walk, since everything else is outside the range to iterate.
// ___________________
// |__0_|_80_|_85_|_90_| (root)
// | | | | |
// |
// v
// ___________________
// |__5_|_15_|_30_|_73_|
// | | | | |
// |
// v
// ___________________
// |_33_|_58_|_63_|_68_| lca for the range [41, 65]
// | |\___|___/| | iterator at traversals[2]
// | |
// | v
// v rightmost
// leftmost
let mut is_leaf = root.is_leaf();
let mut lca = root.$as_slices_internal();
loop {
let slice = lca.slice_from(min_key).slice_to(max_key);
if let [ref $($mutability)* edge] = slice.edges {
// Follow the only edge that leads the node that covers the range.
is_leaf = edge.is_leaf();
lca = edge.$as_slices_internal();
} else {
let mut iter = slice.$iter();
if is_leaf {
leftmost = None;
rightmost = None;
} else {
// Only change the state of nodes with edges.
leftmost = iter.next_edge_item();
rightmost = iter.next_edge_item_back();
}
traversals.push_back(iter);
break;
}
}
}
}
// Keep narrowing the range by going down.
// ___________________
// |_38_|_43_|_48_|_53_|
// | |____|____|____/ iterator at traversals[1]
// |
// v
// ___________________
// |_39_|_40_|_41_|_42_| (leaf, the last leftmost)
// \_________| iterator at traversals[0]
match min {
Included(key) | Excluded(key) =>
while let Some(left) = leftmost {
let is_leaf = left.is_leaf();
let mut iter = left.$as_slices_internal().slice_from(key).$iter();
leftmost = if is_leaf {
None
} else {
// Only change the state of nodes with edges.
iter.next_edge_item()
};
traversals.push_back(iter);
},
_ => {}
}
// If the leftmost iterator starts with an element, then it was an exact match.
if let (Excluded(_), Some(leftmost_iter)) = (min, traversals.back_mut()) {
// Drop this excluded element. `next_kv_item` has no effect when
// the next item is an edge.
leftmost_iter.next_kv_item();
}
// The code for the right side is similar.
match max {
Included(key) | Excluded(key) =>
while let Some(right) = rightmost {
let is_leaf = right.is_leaf();
let mut iter = right.$as_slices_internal().slice_to(key).$iter();
rightmost = if is_leaf {
None
} else {
iter.next_edge_item_back()
};
traversals.push_front(iter);
},
_ => {}
}
if let (Excluded(_), Some(rightmost_iter)) = (max, traversals.front_mut()) {
rightmost_iter.next_kv_item_back();
}
$Range {
inner: AbsIter {
traversals: traversals,
size: 0, // unused
}
}
}
)
}
impl<K: Ord, V> BTreeMap<K, V> {
/// Constructs a double-ended iterator over a sub-range of elements in the map, starting
/// at min, and ending at max. If min is `Unbounded`, then it will be treated as "negative
/// infinity", and if max is `Unbounded`, then it will be treated as "positive infinity".
/// Thus range(Unbounded, Unbounded) will yield the whole collection.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeMap;
/// use std::collections::Bound::{Included, Unbounded};
///
/// let mut map = BTreeMap::new();
/// map.insert(3u, "a");
/// map.insert(5u, "b");
/// map.insert(8u, "c");
/// for (&key, &value) in map.range(Included(&4), Included(&8)) {
/// println!("{}: {}", key, value);
/// }
/// assert_eq!(Some((&5u, &"b")), map.range(Included(&4), Unbounded).next());
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn range<'a>(&'a self, min: Bound<&K>, max: Bound<&K>) -> Range<'a, K, V> {
range_impl!(&self.root, min, max, as_slices_internal, iter, Range, edges, [])
}
/// Constructs a mutable double-ended iterator over a sub-range of elements in the map, starting
/// at min, and ending at max. If min is `Unbounded`, then it will be treated as "negative
/// infinity", and if max is `Unbounded`, then it will be treated as "positive infinity".
/// Thus range(Unbounded, Unbounded) will yield the whole collection.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeMap;
/// use std::collections::Bound::{Included, Excluded};
///
/// let mut map: BTreeMap<&str, i32> = ["Alice", "Bob", "Carol", "Cheryl"].iter()
/// .map(|&s| (s, 0))
/// .collect();
/// for (_, balance) in map.range_mut(Included(&"B"), Excluded(&"Cheryl")) {
/// *balance += 100;
/// }
/// for (name, balance) in map.iter() {
/// println!("{} => {}", name, balance);
/// }
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn range_mut<'a>(&'a mut self, min: Bound<&K>, max: Bound<&K>) -> RangeMut<'a, K, V> {
range_impl!(&mut self.root, min, max, as_slices_internal_mut, iter_mut, RangeMut,
edges_mut, [mut])
}
/// Gets the given key's corresponding entry in the map for in-place manipulation.
///
/// # Examples
@ -1410,8 +1577,10 @@ pub fn entry<'a>(&'a mut self, mut key: K) -> Entry<'a, K, V> {
#[cfg(test)]
mod test {
use prelude::*;
use std::iter::range_inclusive;
use super::{BTreeMap, Occupied, Vacant};
use Bound::{self, Included, Excluded, Unbounded};
#[test]
fn test_basic_large() {
@ -1481,28 +1650,7 @@ fn test_iter() {
// Forwards
let mut map: BTreeMap<uint, uint> = range(0, size).map(|i| (i, i)).collect();
{
let mut iter = map.iter();
for i in range(0, size) {
assert_eq!(iter.size_hint(), (size - i, Some(size - i)));
assert_eq!(iter.next().unwrap(), (&i, &i));
}
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
}
{
let mut iter = map.iter_mut();
for i in range(0, size) {
assert_eq!(iter.size_hint(), (size - i, Some(size - i)));
assert_eq!(iter.next().unwrap(), (&i, &mut (i + 0)));
}
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
}
{
let mut iter = map.into_iter();
fn test<T>(size: uint, mut iter: T) where T: Iterator<Item=(uint, uint)> {
for i in range(0, size) {
assert_eq!(iter.size_hint(), (size - i, Some(size - i)));
assert_eq!(iter.next().unwrap(), (i, i));
@ -1510,7 +1658,9 @@ fn test_iter() {
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
}
test(size, map.iter().map(|(&k, &v)| (k, v)));
test(size, map.iter_mut().map(|(&k, &mut v)| (k, v)));
test(size, map.into_iter());
}
#[test]
@ -1520,28 +1670,7 @@ fn test_iter_rev() {
// Forwards
let mut map: BTreeMap<uint, uint> = range(0, size).map(|i| (i, i)).collect();
{
let mut iter = map.iter().rev();
for i in range(0, size) {
assert_eq!(iter.size_hint(), (size - i, Some(size - i)));
assert_eq!(iter.next().unwrap(), (&(size - i - 1), &(size - i - 1)));
}
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
}
{
let mut iter = map.iter_mut().rev();
for i in range(0, size) {
assert_eq!(iter.size_hint(), (size - i, Some(size - i)));
assert_eq!(iter.next().unwrap(), (&(size - i - 1), &mut(size - i - 1)));
}
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
}
{
let mut iter = map.into_iter().rev();
fn test<T>(size: uint, mut iter: T) where T: Iterator<Item=(uint, uint)> {
for i in range(0, size) {
assert_eq!(iter.size_hint(), (size - i, Some(size - i)));
assert_eq!(iter.next().unwrap(), (size - i - 1, size - i - 1));
@ -1549,7 +1678,93 @@ fn test_iter_rev() {
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
}
test(size, map.iter().rev().map(|(&k, &v)| (k, v)));
test(size, map.iter_mut().rev().map(|(&k, &mut v)| (k, v)));
test(size, map.into_iter().rev());
}
#[test]
fn test_iter_mixed() {
let size = 10000u;
// Forwards
let mut map: BTreeMap<uint, uint> = range(0, size).map(|i| (i, i)).collect();
fn test<T>(size: uint, mut iter: T)
where T: Iterator<Item=(uint, uint)> + DoubleEndedIterator {
for i in range(0, size / 4) {
assert_eq!(iter.size_hint(), (size - i * 2, Some(size - i * 2)));
assert_eq!(iter.next().unwrap(), (i, i));
assert_eq!(iter.next_back().unwrap(), (size - i - 1, size - i - 1));
}
for i in range(size / 4, size * 3 / 4) {
assert_eq!(iter.size_hint(), (size * 3 / 4 - i, Some(size * 3 / 4 - i)));
assert_eq!(iter.next().unwrap(), (i, i));
}
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
}
test(size, map.iter().map(|(&k, &v)| (k, v)));
test(size, map.iter_mut().map(|(&k, &mut v)| (k, v)));
test(size, map.into_iter());
}
#[test]
fn test_range_small() {
let size = 5u;
// Forwards
let map: BTreeMap<uint, uint> = range(0, size).map(|i| (i, i)).collect();
let mut j = 0u;
for ((&k, &v), i) in map.range(Included(&2), Unbounded).zip(range(2u, size)) {
assert_eq!(k, i);
assert_eq!(v, i);
j += 1;
}
assert_eq!(j, size - 2);
}
#[test]
fn test_range_1000() {
let size = 1000u;
let map: BTreeMap<uint, uint> = range(0, size).map(|i| (i, i)).collect();
fn test(map: &BTreeMap<uint, uint>, size: uint, min: Bound<&uint>, max: Bound<&uint>) {
let mut kvs = map.range(min, max).map(|(&k, &v)| (k, v));
let mut pairs = range(0, size).map(|i| (i, i));
for (kv, pair) in kvs.by_ref().zip(pairs.by_ref()) {
assert_eq!(kv, pair);
}
assert_eq!(kvs.next(), None);
assert_eq!(pairs.next(), None);
}
test(&map, size, Included(&0), Excluded(&size));
test(&map, size, Unbounded, Excluded(&size));
test(&map, size, Included(&0), Included(&(size - 1)));
test(&map, size, Unbounded, Included(&(size - 1)));
test(&map, size, Included(&0), Unbounded);
test(&map, size, Unbounded, Unbounded);
}
#[test]
fn test_range() {
let size = 200u;
let map: BTreeMap<uint, uint> = range(0, size).map(|i| (i, i)).collect();
for i in range(0, size) {
for j in range(i, size) {
let mut kvs = map.range(Included(&i), Included(&j)).map(|(&k, &v)| (k, v));
let mut pairs = range_inclusive(i, j).map(|i| (i, i));
for (kv, pair) in kvs.by_ref().zip(pairs.by_ref()) {
assert_eq!(kv, pair);
}
assert_eq!(kvs.next(), None);
assert_eq!(pairs.next(), None);
}
}
}
#[test]

View File

@ -77,6 +77,24 @@ pub struct Node<K, V> {
_capacity: uint,
}
struct NodeSlice<'a, K: 'a, V: 'a> {
keys: &'a [K],
vals: &'a [V],
pub edges: &'a [Node<K, V>],
head_is_edge: bool,
tail_is_edge: bool,
has_edges: bool,
}
struct MutNodeSlice<'a, K: 'a, V: 'a> {
keys: &'a [K],
vals: &'a mut [V],
pub edges: &'a mut [Node<K, V>],
head_is_edge: bool,
tail_is_edge: bool,
has_edges: bool,
}
/// Rounds up to a multiple of a power of two. Returns the closest multiple
/// of `target_alignment` that is higher or equal to `unrounded`.
///
@ -342,7 +360,8 @@ pub fn as_slices_mut<'a>(&'a mut self) -> (&'a mut [K], &'a mut [V]) {
}
#[inline]
pub fn as_slices_internal<'a>(&'a self) -> (&'a [K], &'a [V], &'a [Node<K, V>]) {
pub fn as_slices_internal<'b>(&'b self) -> NodeSlice<'b, K, V> {
let is_leaf = self.is_leaf();
let (keys, vals) = self.as_slices();
let edges: &[_] = if self.is_leaf() {
&[]
@ -354,12 +373,18 @@ pub fn as_slices_internal<'a>(&'a self) -> (&'a [K], &'a [V], &'a [Node<K, V>])
})
}
};
(keys, vals, edges)
NodeSlice {
keys: keys,
vals: vals,
edges: edges,
head_is_edge: true,
tail_is_edge: true,
has_edges: !is_leaf,
}
}
#[inline]
pub fn as_slices_internal_mut<'a>(&'a mut self) -> (&'a mut [K], &'a mut [V],
&'a mut [Node<K, V>]) {
pub fn as_slices_internal_mut<'b>(&'b mut self) -> MutNodeSlice<'b, K, V> {
unsafe { mem::transmute(self.as_slices_internal()) }
}
@ -385,12 +410,12 @@ pub fn vals_mut<'a>(&'a mut self) -> &'a mut [V] {
#[inline]
pub fn edges<'a>(&'a self) -> &'a [Node<K, V>] {
self.as_slices_internal().2
self.as_slices_internal().edges
}
#[inline]
pub fn edges_mut<'a>(&'a mut self) -> &'a mut [Node<K, V>] {
self.as_slices_internal_mut().2
self.as_slices_internal_mut().edges
}
}
@ -522,30 +547,11 @@ pub fn search<Q: ?Sized, NodeRef: Deref<Target=Node<K, V>>>(node: NodeRef, key:
// FIXME(Gankro): Tune when to search linear or binary based on B (and maybe K/V).
// For the B configured as of this writing (B = 6), binary search was *significantly*
// worse for uints.
let (found, index) = node.search_linear(key);
if found {
Found(Handle {
node: node,
index: index
})
} else {
GoDown(Handle {
node: node,
index: index
})
match node.as_slices_internal().search_linear(key) {
(index, true) => Found(Handle { node: node, index: index }),
(index, false) => GoDown(Handle { node: node, index: index }),
}
}
fn search_linear<Q: ?Sized>(&self, key: &Q) -> (bool, uint) where Q: BorrowFrom<K> + Ord {
for (i, k) in self.keys().iter().enumerate() {
match key.cmp(BorrowFrom::borrow_from(k)) {
Greater => {},
Equal => return (true, i),
Less => return (false, i),
}
}
(false, self.len())
}
}
// Public interface
@ -1043,31 +1049,11 @@ pub fn kv_handle(&mut self, index: uint) -> Handle<&mut Node<K, V>, handle::KV,
}
pub fn iter<'a>(&'a self) -> Traversal<'a, K, V> {
let is_leaf = self.is_leaf();
let (keys, vals, edges) = self.as_slices_internal();
Traversal {
inner: ElemsAndEdges(
keys.iter().zip(vals.iter()),
edges.iter()
),
head_is_edge: true,
tail_is_edge: true,
has_edges: !is_leaf,
}
self.as_slices_internal().iter()
}
pub fn iter_mut<'a>(&'a mut self) -> MutTraversal<'a, K, V> {
let is_leaf = self.is_leaf();
let (keys, vals, edges) = self.as_slices_internal_mut();
MutTraversal {
inner: ElemsAndEdges(
keys.iter().zip(vals.iter_mut()),
edges.iter_mut()
),
head_is_edge: true,
tail_is_edge: true,
has_edges: !is_leaf,
}
self.as_slices_internal_mut().iter_mut()
}
pub fn into_iter(self) -> MoveTraversal<K, V> {
@ -1311,12 +1297,15 @@ fn min_load_from_capacity(cap: uint) -> uint {
/// A trait for pairs of `Iterator`s, one over edges and the other over key/value pairs. This is
/// necessary, as the `MoveTraversalImpl` needs to have a destructor that deallocates the `Node`,
/// and a pair of `Iterator`s would require two independent destructors.
trait TraversalImpl<K, V, E> {
fn next_kv(&mut self) -> Option<(K, V)>;
fn next_kv_back(&mut self) -> Option<(K, V)>;
trait TraversalImpl {
type Item;
type Edge;
fn next_edge(&mut self) -> Option<E>;
fn next_edge_back(&mut self) -> Option<E>;
fn next_kv(&mut self) -> Option<Self::Item>;
fn next_kv_back(&mut self) -> Option<Self::Item>;
fn next_edge(&mut self) -> Option<Self::Edge>;
fn next_edge_back(&mut self) -> Option<Self::Edge>;
}
/// A `TraversalImpl` that actually is backed by two iterators. This works in the non-moving case,
@ -1324,9 +1313,11 @@ trait TraversalImpl<K, V, E> {
struct ElemsAndEdges<Elems, Edges>(Elems, Edges);
impl<K, V, E, Elems: DoubleEndedIterator, Edges: DoubleEndedIterator>
TraversalImpl<K, V, E> for ElemsAndEdges<Elems, Edges>
TraversalImpl for ElemsAndEdges<Elems, Edges>
where Elems : Iterator<Item=(K, V)>, Edges : Iterator<Item=E>
{
type Item = (K, V);
type Edge = E;
fn next_kv(&mut self) -> Option<(K, V)> { self.0.next() }
fn next_kv_back(&mut self) -> Option<(K, V)> { self.0.next_back() }
@ -1347,7 +1338,10 @@ struct MoveTraversalImpl<K, V> {
is_leaf: bool
}
impl<K, V> TraversalImpl<K, V, Node<K, V>> for MoveTraversalImpl<K, V> {
impl<K, V> TraversalImpl for MoveTraversalImpl<K, V> {
type Item = (K, V);
type Edge = Node<K, V>;
fn next_kv(&mut self) -> Option<(K, V)> {
match (self.keys.next(), self.vals.next()) {
(Some(k), Some(v)) => Some((k, v)),
@ -1398,9 +1392,12 @@ struct AbsTraversal<Impl> {
has_edges: bool,
}
/// A single atomic step in a traversal. Either an element is visited, or an edge is followed
/// A single atomic step in a traversal.
pub enum TraversalItem<K, V, E> {
Elem(K, V),
/// An element is visited. This isn't written as `Elem(K, V)` just because `opt.map(Elem)`
/// requires the function to take a single argument. (Enum constructors are functions.)
Elem((K, V)),
/// An edge is followed.
Edge(E),
}
@ -1417,32 +1414,175 @@ pub enum TraversalItem<K, V, E> {
/// An owning traversal over a node's entries and edges
pub type MoveTraversal<K, V> = AbsTraversal<MoveTraversalImpl<K, V>>;
#[old_impl_check]
impl<K, V, E, Impl: TraversalImpl<K, V, E>> Iterator for AbsTraversal<Impl> {
impl<K, V, E, Impl> Iterator for AbsTraversal<Impl>
where Impl: TraversalImpl<Item=(K, V), Edge=E> {
type Item = TraversalItem<K, V, E>;
fn next(&mut self) -> Option<TraversalItem<K, V, E>> {
let head_is_edge = self.head_is_edge;
self.head_is_edge = !head_is_edge;
if head_is_edge && self.has_edges {
self.inner.next_edge().map(|node| Edge(node))
} else {
self.inner.next_kv().map(|(k, v)| Elem(k, v))
}
self.next_edge_item().map(Edge).or_else(||
self.next_kv_item().map(Elem)
)
}
}
#[old_impl_check]
impl<K, V, E, Impl: TraversalImpl<K, V, E>> DoubleEndedIterator for AbsTraversal<Impl> {
impl<K, V, E, Impl> DoubleEndedIterator for AbsTraversal<Impl>
where Impl: TraversalImpl<Item=(K, V), Edge=E> {
fn next_back(&mut self) -> Option<TraversalItem<K, V, E>> {
let tail_is_edge = self.tail_is_edge;
self.tail_is_edge = !tail_is_edge;
self.next_edge_item_back().map(Edge).or_else(||
self.next_kv_item_back().map(Elem)
)
}
}
if tail_is_edge && self.has_edges {
self.inner.next_edge_back().map(|node| Edge(node))
impl<K, V, E, Impl> AbsTraversal<Impl>
where Impl: TraversalImpl<Item=(K, V), Edge=E> {
/// Advances the iterator and returns the item if it's an edge. Returns None
/// and does nothing if the first item is not an edge.
pub fn next_edge_item(&mut self) -> Option<E> {
// NB. `&& self.has_edges` might be redundant in this condition.
let edge = if self.head_is_edge && self.has_edges {
self.inner.next_edge()
} else {
self.inner.next_kv_back().map(|(k, v)| Elem(k, v))
None
};
self.head_is_edge = false;
edge
}
/// Advances the iterator and returns the item if it's an edge. Returns None
/// and does nothing if the last item is not an edge.
pub fn next_edge_item_back(&mut self) -> Option<E> {
let edge = if self.tail_is_edge && self.has_edges {
self.inner.next_edge_back()
} else {
None
};
self.tail_is_edge = false;
edge
}
/// Advances the iterator and returns the item if it's a key-value pair. Returns None
/// and does nothing if the first item is not a key-value pair.
pub fn next_kv_item(&mut self) -> Option<(K, V)> {
if !self.head_is_edge {
self.head_is_edge = true;
self.inner.next_kv()
} else {
None
}
}
/// Advances the iterator and returns the item if it's a key-value pair. Returns None
/// and does nothing if the last item is not a key-value pair.
pub fn next_kv_item_back(&mut self) -> Option<(K, V)> {
if !self.tail_is_edge {
self.tail_is_edge = true;
self.inner.next_kv_back()
} else {
None
}
}
}
macro_rules! node_slice_impl {
($NodeSlice:ident, $Traversal:ident,
$as_slices_internal:ident, $slice_from:ident, $slice_to:ident, $iter:ident) => {
impl<'a, K: Ord + 'a, V: 'a> $NodeSlice<'a, K, V> {
/// Performs linear search in a slice. Returns a tuple of (index, is_exact_match).
fn search_linear<Q: ?Sized>(&self, key: &Q) -> (uint, bool)
where Q: BorrowFrom<K> + Ord {
for (i, k) in self.keys.iter().enumerate() {
match key.cmp(BorrowFrom::borrow_from(k)) {
Greater => {},
Equal => return (i, true),
Less => return (i, false),
}
}
(self.keys.len(), false)
}
/// Returns a sub-slice with elements starting with `min_key`.
pub fn slice_from(self, min_key: &K) -> $NodeSlice<'a, K, V> {
// _______________
// |_1_|_3_|_5_|_7_|
// | | | | |
// 0 0 1 1 2 2 3 3 4 index
// | | | | |
// \___|___|___|___/ slice_from(&0); pos = 0
// \___|___|___/ slice_from(&2); pos = 1
// |___|___|___/ slice_from(&3); pos = 1; result.head_is_edge = false
// \___|___/ slice_from(&4); pos = 2
// \___/ slice_from(&6); pos = 3
// \|/ slice_from(&999); pos = 4
let (pos, pos_is_kv) = self.search_linear(min_key);
$NodeSlice {
has_edges: self.has_edges,
edges: if !self.has_edges {
self.edges
} else {
self.edges.$slice_from(pos)
},
keys: self.keys.slice_from(pos),
vals: self.vals.$slice_from(pos),
head_is_edge: !pos_is_kv,
tail_is_edge: self.tail_is_edge,
}
}
/// Returns a sub-slice with elements up to and including `max_key`.
pub fn slice_to(self, max_key: &K) -> $NodeSlice<'a, K, V> {
// _______________
// |_1_|_3_|_5_|_7_|
// | | | | |
// 0 0 1 1 2 2 3 3 4 index
// | | | | |
//\|/ | | | | slice_to(&0); pos = 0
// \___/ | | | slice_to(&2); pos = 1
// \___|___| | | slice_to(&3); pos = 1; result.tail_is_edge = false
// \___|___/ | | slice_to(&4); pos = 2
// \___|___|___/ | slice_to(&6); pos = 3
// \___|___|___|___/ slice_to(&999); pos = 4
let (pos, pos_is_kv) = self.search_linear(max_key);
let pos = pos + if pos_is_kv { 1 } else { 0 };
$NodeSlice {
has_edges: self.has_edges,
edges: if !self.has_edges {
self.edges
} else {
self.edges.$slice_to(pos + 1)
},
keys: self.keys.slice_to(pos),
vals: self.vals.$slice_to(pos),
head_is_edge: self.head_is_edge,
tail_is_edge: !pos_is_kv,
}
}
}
impl<'a, K: 'a, V: 'a> $NodeSlice<'a, K, V> {
/// Returns an iterator over key/value pairs and edges in a slice.
#[inline]
pub fn $iter(self) -> $Traversal<'a, K, V> {
let mut edges = self.edges.$iter();
// Skip edges at both ends, if excluded.
if !self.head_is_edge { edges.next(); }
if !self.tail_is_edge { edges.next_back(); }
// The key iterator is always immutable.
$Traversal {
inner: ElemsAndEdges(
self.keys.iter().zip(self.vals.$iter()),
edges
),
head_is_edge: self.head_is_edge,
tail_is_edge: self.tail_is_edge,
has_edges: self.has_edges,
}
}
}
}
}
node_slice_impl!(NodeSlice, Traversal, as_slices_internal, slice_from, slice_to, iter);
node_slice_impl!(MutNodeSlice, MutTraversal, as_slices_internal_mut, slice_from_mut,
slice_to_mut, iter_mut);

View File

@ -25,6 +25,7 @@
use core::ops::{BitOr, BitAnd, BitXor, Sub};
use btree_map::{BTreeMap, Keys};
use Bound;
// FIXME(conventions): implement bounded iterators
@ -50,6 +51,11 @@ pub struct IntoIter<T> {
iter: Map<(T, ()), T, ::btree_map::IntoIter<T, ()>, fn((T, ())) -> T>
}
/// An iterator over a sub-range of BTreeSet's items.
pub struct Range<'a, T: 'a> {
iter: Map<(&'a T, &'a ()), &'a T, ::btree_map::Range<'a, T, ()>, fn((&'a T, &'a ())) -> &'a T>
}
/// A lazy iterator producing elements in the set difference (in-order).
#[stable]
pub struct Difference<'a, T:'a> {
@ -145,6 +151,36 @@ fn first<A, B>((a, _): (A, B)) -> A { a }
}
}
impl<T: Ord> BTreeSet<T> {
/// Constructs a double-ended iterator over a sub-range of elements in the set, starting
/// at min, and ending at max. If min is `Unbounded`, then it will be treated as "negative
/// infinity", and if max is `Unbounded`, then it will be treated as "positive infinity".
/// Thus range(Unbounded, Unbounded) will yield the whole collection.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
/// use std::collections::Bound::{Included, Unbounded};
///
/// let mut set = BTreeSet::new();
/// set.insert(3u);
/// set.insert(5u);
/// set.insert(8u);
/// for &elem in set.range(Included(&4), Included(&8)) {
/// println!("{}", elem);
/// }
/// assert_eq!(Some(&5u), set.range(Included(&4), Unbounded).next());
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn range<'a>(&'a self, min: Bound<&T>, max: Bound<&T>) -> Range<'a, T> {
fn first<A, B>((a, _): (A, B)) -> A { a }
let first: fn((&'a T, &'a ())) -> &'a T = first; // coerce to fn pointer
Range { iter: self.map.range(min, max).map(first) }
}
}
impl<T: Ord> BTreeSet<T> {
/// Visits the values representing the difference, in ascending order.
///
@ -598,6 +634,16 @@ fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
#[stable]
impl<T> ExactSizeIterator for IntoIter<T> {}
impl<'a, T> Iterator for Range<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<&'a T> { self.iter.next() }
}
impl<'a, T> DoubleEndedIterator for Range<'a, T> {
fn next_back(&mut self) -> Option<&'a T> { self.iter.next_back() }
}
/// Compare `x` and `y`, but return `short` if x is None and `long` if y is None
fn cmp_opt<T: Ord>(x: Option<&T>, y: Option<&T>,
short: Ordering, long: Ordering) -> Ordering {

View File

@ -26,7 +26,6 @@
#![feature(unsafe_destructor, slicing_syntax)]
#![feature(box_syntax)]
#![feature(unboxed_closures)]
#![feature(old_impl_check)]
#![allow(unknown_features)] #![feature(int_uint)]
#![allow(unstable)]
#![no_std]
@ -142,3 +141,13 @@ mod prelude {
pub use string::{String, ToString};
pub use vec::Vec;
}
/// An endpoint of a range of keys.
pub enum Bound<T> {
/// An inclusive bound.
Included(T),
/// An exclusive bound.
Excluded(T),
/// An infinite endpoint. Indicates that there is no bound in this direction.
Unbounded,
}

View File

@ -311,6 +311,7 @@
#![stable]
pub use core_collections::Bound;
pub use core_collections::{BinaryHeap, Bitv, BitvSet, BTreeMap, BTreeSet};
pub use core_collections::{DList, RingBuf, VecMap};