rust/src/librustc_trans/back/symbol_names.rs

372 lines
15 KiB
Rust
Raw Normal View History

// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Rust Linkage Model and Symbol Names
//! =======================================
//!
//! The semantic model of Rust linkage is, broadly, that "there's no global
//! namespace" between crates. Our aim is to preserve the illusion of this
//! model despite the fact that it's not *quite* possible to implement on
//! modern linkers. We initially didn't use system linkers at all, but have
//! been convinced of their utility.
//!
//! There are a few issues to handle:
//!
//! - Linkers operate on a flat namespace, so we have to flatten names.
//! We do this using the C++ namespace-mangling technique. Foo::bar
//! symbols and such.
//!
//! - Symbols for distinct items with the same *name* need to get different
//! linkage-names. Examples of this are monomorphizations of functions or
//! items within anonymous scopes that end up having the same path.
//!
//! - Symbols in different crates but with same names "within" the crate need
//! to get different linkage-names.
//!
//! - Symbol names should be deterministic: Two consecutive runs of the
//! compiler over the same code base should produce the same symbol names for
//! the same items.
//!
//! - Symbol names should not depend on any global properties of the code base,
//! so that small modifications to the code base do not result in all symbols
//! changing. In previous versions of the compiler, symbol names incorporated
//! the SVH (Stable Version Hash) of the crate. This scheme turned out to be
//! infeasible when used in conjunction with incremental compilation because
//! small code changes would invalidate all symbols generated previously.
//!
//! - Even symbols from different versions of the same crate should be able to
//! live next to each other without conflict.
//!
//! In order to fulfill the above requirements the following scheme is used by
//! the compiler:
//!
//! The main tool for avoiding naming conflicts is the incorporation of a 64-bit
//! hash value into every exported symbol name. Anything that makes a difference
//! to the symbol being named, but does not show up in the regular path needs to
//! be fed into this hash:
//!
//! - Different monomorphizations of the same item have the same path but differ
//! in their concrete type parameters, so these parameters are part of the
//! data being digested for the symbol hash.
//!
//! - Rust allows items to be defined in anonymous scopes, such as in
//! `fn foo() { { fn bar() {} } { fn bar() {} } }`. Both `bar` functions have
//! the path `foo::bar`, since the anonymous scopes do not contribute to the
//! path of an item. The compiler already handles this case via so-called
//! disambiguating `DefPaths` which use indices to distinguish items with the
//! same name. The DefPaths of the functions above are thus `foo[0]::bar[0]`
//! and `foo[0]::bar[1]`. In order to incorporate this disambiguation
//! information into the symbol name too, these indices are fed into the
//! symbol hash, so that the above two symbols would end up with different
//! hash values.
//!
//! The two measures described above suffice to avoid intra-crate conflicts. In
//! order to also avoid inter-crate conflicts two more measures are taken:
//!
//! - The name of the crate containing the symbol is prepended to the symbol
//! name, i.e. symbols are "crate qualified". For example, a function `foo` in
//! module `bar` in crate `baz` would get a symbol name like
//! `baz::bar::foo::{hash}` instead of just `bar::foo::{hash}`. This avoids
//! simple conflicts between functions from different crates.
//!
//! - In order to be able to also use symbols from two versions of the same
//! crate (which naturally also have the same name), a stronger measure is
//! required: The compiler accepts an arbitrary "disambiguator" value via the
//! `-C metadata` commandline argument. This disambiguator is then fed into
//! the symbol hash of every exported item. Consequently, the symbols in two
//! identical crates but with different disambiguators are not in conflict
//! with each other. This facility is mainly intended to be used by build
//! tools like Cargo.
//!
//! A note on symbol name stability
//! -------------------------------
//! Previous versions of the compiler resorted to feeding NodeIds into the
//! symbol hash in order to disambiguate between items with the same path. The
//! current version of the name generation algorithm takes great care not to do
//! that, since NodeIds are notoriously unstable: A small change to the
//! code base will offset all NodeIds after the change and thus, much as using
//! the SVH in the hash, invalidate an unbounded number of symbol names. This
//! makes re-using previously compiled code for incremental compilation
//! virtually impossible. Thus, symbol hash generation exclusively relies on
//! DefPaths which are much more robust in the face of changes to the code base.
use monomorphize::Instance;
use rustc::middle::weak_lang_items;
use rustc::hir::def_id::DefId;
use rustc::hir::map as hir_map;
use rustc::ty::{self, Ty, TyCtxt, TypeFoldable};
use rustc::ty::fold::TypeVisitor;
use rustc::ty::item_path::{self, ItemPathBuffer, RootMode};
use rustc::ty::subst::Substs;
use rustc::hir::map::definitions::DefPathData;
use rustc::util::common::record_time;
use syntax::attr;
use std::fmt::Write;
fn get_symbol_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
// the DefId of the item this name is for
def_id: Option<DefId>,
// type of the item, without any generic
// parameters substituted; this is
// included in the hash as a kind of
// safeguard.
item_type: Ty<'tcx>,
// values for generic type parameters,
// if any.
substs: Option<&'tcx Substs<'tcx>>)
-> String {
debug!("get_symbol_hash(def_id={:?}, parameters={:?})", def_id, substs);
let mut hasher = ty::util::TypeIdHasher::<u64>::new(tcx);
record_time(&tcx.sess.perf_stats.symbol_hash_time, || {
// the main symbol name is not necessarily unique; hash in the
// compiler's internal def-path, guaranteeing each symbol has a
// truly unique path
hasher.hash(def_id.map(|def_id| tcx.def_path_hash(def_id)));
// Include the main item-type. Note that, in this case, the
// assertions about `needs_subst` may not hold, but this item-type
// ought to be the same for every reference anyway.
assert!(!item_type.has_erasable_regions());
hasher.visit_ty(item_type);
// also include any type parameters (for generic items)
if let Some(substs) = substs {
assert!(!substs.has_erasable_regions());
assert!(!substs.needs_subst());
substs.visit_with(&mut hasher);
// If this is an instance of a generic function, we also hash in
// the ID of the instantiating crate. This avoids symbol conflicts
// in case the same instances is emitted in two crates of the same
// project.
if substs.types().next().is_some() {
hasher.hash(tcx.crate_name.as_str());
hasher.hash(tcx.sess.local_crate_disambiguator().as_str());
}
}
});
// 64 bits should be enough to avoid collisions.
format!("h{:016x}", hasher.finish())
}
pub fn symbol_name<'a, 'tcx>(instance: Instance<'tcx>,
tcx: TyCtxt<'a, 'tcx, 'tcx>) -> String {
let def_id = instance.def_id();
let substs = instance.substs;
debug!("symbol_name(def_id={:?}, substs={:?})",
def_id, substs);
let node_id = tcx.hir.as_local_node_id(def_id);
if let Some(id) = node_id {
if tcx.sess.plugin_registrar_fn.get() == Some(id) {
let idx = def_id.index;
let disambiguator = tcx.sess.local_crate_disambiguator();
return tcx.sess.generate_plugin_registrar_symbol(disambiguator, idx);
}
if tcx.sess.derive_registrar_fn.get() == Some(id) {
let idx = def_id.index;
let disambiguator = tcx.sess.local_crate_disambiguator();
return tcx.sess.generate_derive_registrar_symbol(disambiguator, idx);
}
}
// FIXME(eddyb) Precompute a custom symbol name based on attributes.
let attrs = tcx.get_attrs(def_id);
let is_foreign = if let Some(id) = node_id {
match tcx.hir.get(id) {
hir_map::NodeForeignItem(_) => true,
_ => false
}
} else {
tcx.sess.cstore.is_foreign_item(def_id)
};
if let Some(name) = weak_lang_items::link_name(&attrs) {
return name.to_string();
}
if is_foreign {
if let Some(name) = attr::first_attr_value_str_by_name(&attrs, "link_name") {
return name.to_string();
}
// Don't mangle foreign items.
return tcx.item_name(def_id).as_str().to_string();
}
if let Some(name) = attr::find_export_name_attr(tcx.sess.diagnostic(), &attrs) {
// Use provided name
return name.to_string();
}
if attr::contains_name(&attrs, "no_mangle") {
// Don't mangle
return tcx.item_name(def_id).as_str().to_string();
}
// We want to compute the "type" of this item. Unfortunately, some
// kinds of items (e.g., closures) don't have an entry in the
// item-type array. So walk back up the find the closest parent
// that DOES have an entry.
let mut ty_def_id = def_id;
let instance_ty;
loop {
let key = tcx.def_key(ty_def_id);
match key.disambiguated_data.data {
DefPathData::TypeNs(_) |
DefPathData::ValueNs(_) => {
instance_ty = tcx.type_of(ty_def_id);
break;
}
_ => {
// if we're making a symbol for something, there ought
// to be a value or type-def or something in there
// *somewhere*
ty_def_id.index = key.parent.unwrap_or_else(|| {
bug!("finding type for {:?}, encountered def-id {:?} with no \
parent", def_id, ty_def_id);
});
}
}
}
// Erase regions because they may not be deterministic when hashed
// and should not matter anyhow.
let instance_ty = tcx.erase_regions(&instance_ty);
let hash = get_symbol_hash(tcx, Some(def_id), instance_ty, Some(substs));
let mut buffer = SymbolPathBuffer::new();
item_path::with_forced_absolute_paths(|| {
tcx.push_item_path(&mut buffer, def_id);
});
buffer.finish(&hash)
}
// Follow C++ namespace-mangling style, see
// http://en.wikipedia.org/wiki/Name_mangling for more info.
//
// It turns out that on macOS you can actually have arbitrary symbols in
// function names (at least when given to LLVM), but this is not possible
// when using unix's linker. Perhaps one day when we just use a linker from LLVM
// we won't need to do this name mangling. The problem with name mangling is
// that it seriously limits the available characters. For example we can't
// have things like &T in symbol names when one would theoretically
// want them for things like impls of traits on that type.
//
// To be able to work on all platforms and get *some* reasonable output, we
// use C++ name-mangling.
struct SymbolPathBuffer {
result: String,
temp_buf: String
}
impl SymbolPathBuffer {
fn new() -> Self {
let mut result = SymbolPathBuffer {
result: String::with_capacity(64),
temp_buf: String::with_capacity(16)
};
result.result.push_str("_ZN"); // _Z == Begin name-sequence, N == nested
result
}
fn finish(mut self, hash: &str) -> String {
// end name-sequence
self.push(hash);
self.result.push('E');
self.result
}
}
impl ItemPathBuffer for SymbolPathBuffer {
fn root_mode(&self) -> &RootMode {
const ABSOLUTE: &'static RootMode = &RootMode::Absolute;
ABSOLUTE
}
fn push(&mut self, text: &str) {
self.temp_buf.clear();
let need_underscore = sanitize(&mut self.temp_buf, text);
let _ = write!(self.result, "{}", self.temp_buf.len() + (need_underscore as usize));
if need_underscore {
self.result.push('_');
}
self.result.push_str(&self.temp_buf);
}
}
pub fn exported_name_from_type_and_prefix<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
t: Ty<'tcx>,
prefix: &str)
-> String {
let hash = get_symbol_hash(tcx, None, t, None);
let mut buffer = SymbolPathBuffer::new();
buffer.push(prefix);
buffer.finish(&hash)
2016-03-01 07:18:21 -06:00
}
// Name sanitation. LLVM will happily accept identifiers with weird names, but
// gas doesn't!
// gas accepts the following characters in symbols: a-z, A-Z, 0-9, ., _, $
//
// returns true if an underscore must be added at the start
pub fn sanitize(result: &mut String, s: &str) -> bool {
2016-03-01 07:18:21 -06:00
for c in s.chars() {
match c {
// Escape these with $ sequences
'@' => result.push_str("$SP$"),
'*' => result.push_str("$BP$"),
'&' => result.push_str("$RF$"),
'<' => result.push_str("$LT$"),
'>' => result.push_str("$GT$"),
'(' => result.push_str("$LP$"),
')' => result.push_str("$RP$"),
',' => result.push_str("$C$"),
// '.' doesn't occur in types and functions, so reuse it
// for ':' and '-'
'-' | ':' => result.push('.'),
// These are legal symbols
'a' ... 'z'
| 'A' ... 'Z'
| '0' ... '9'
| '_' | '.' | '$' => result.push(c),
_ => {
result.push('$');
for c in c.escape_unicode().skip(1) {
match c {
'{' => {},
'}' => result.push('$'),
c => result.push(c),
}
}
}
}
}
// Underscore-qualify anything that didn't start as an ident.
!result.is_empty() &&
2016-03-01 07:18:21 -06:00
result.as_bytes()[0] != '_' as u8 &&
! (result.as_bytes()[0] as char).is_xid_start()
}