rust/src/libstd/sha1.rs

423 lines
14 KiB
Rust
Raw Normal View History

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* An implementation of the SHA-1 cryptographic hash.
*
* First create a `sha1` object using the `sha1` constructor, then
* feed it input using the `input` or `input_str` methods, which may be
* called any number of times.
*
* After the entire input has been fed to the hash read the result using
* the `result` or `result_str` methods.
*
* The `sha1` object may be reused to create multiple hashes by calling
* the `reset` method.
*/
2011-10-26 18:24:31 -05:00
use core::str;
use core::uint;
use core::vec;
/*
* A SHA-1 implementation derived from Paul E. Jones's reference
* implementation, which is written for clarity, not speed. At some
* point this will want to be rewritten.
*/
/// The SHA-1 interface
2012-08-29 18:09:41 -05:00
trait Sha1 {
/// Provide message input as bytes
fn input(&mut self, &const [u8]);
/// Provide message input as string
fn input_str(&mut self, &str);
/**
* Read the digest as a vector of 20 bytes. After calling this no further
* input may be provided until reset is called.
*/
fn result(&mut self) -> ~[u8];
/**
* Read the digest as a hex string. After calling this no further
* input may be provided until reset is called.
*/
fn result_str(&mut self) -> ~str;
/// Reset the SHA-1 state for reuse
fn reset(&mut self);
}
2011-10-26 18:24:31 -05:00
// Some unexported constants
static digest_buf_len: uint = 5u;
static msg_block_len: uint = 64u;
static work_buf_len: uint = 80u;
static k0: u32 = 0x5A827999u32;
static k1: u32 = 0x6ED9EBA1u32;
static k2: u32 = 0x8F1BBCDCu32;
static k3: u32 = 0xCA62C1D6u32;
/// Construct a `sha` object
pub fn sha1() -> @Sha1 {
struct Sha1State
{ h: ~[u32],
len_low: u32,
len_high: u32,
msg_block: ~[u8],
msg_block_idx: uint,
computed: bool,
work_buf: @mut ~[u32]};
2011-07-27 07:19:39 -05:00
fn add_input(st: &mut Sha1State, msg: &const [u8]) {
2013-03-28 20:39:09 -05:00
assert!((!st.computed));
for vec::each_const(msg) |element| {
st.msg_block[st.msg_block_idx] = *element;
st.msg_block_idx += 1u;
st.len_low += 8u32;
2011-07-27 07:19:39 -05:00
if st.len_low == 0u32 {
st.len_high += 1u32;
2011-07-27 07:19:39 -05:00
if st.len_high == 0u32 {
// FIXME: Need better failure mode (#2346)
fail!();
}
}
2011-07-27 07:19:39 -05:00
if st.msg_block_idx == msg_block_len { process_msg_block(st); }
}
}
fn process_msg_block(st: &mut Sha1State) {
2013-03-28 20:39:09 -05:00
assert!((vec::len(st.h) == digest_buf_len));
assert!((vec::uniq_len(st.work_buf) == work_buf_len));
let mut t: int; // Loop counter
let mut w = st.work_buf;
// Initialize the first 16 words of the vector w
t = 0;
2011-07-27 07:19:39 -05:00
while t < 16 {
let mut tmp;
tmp = (st.msg_block[t * 4] as u32) << 24u32;
tmp = tmp | (st.msg_block[t * 4 + 1] as u32) << 16u32;
tmp = tmp | (st.msg_block[t * 4 + 2] as u32) << 8u32;
tmp = tmp | (st.msg_block[t * 4 + 3] as u32);
w[t] = tmp;
t += 1;
}
// Initialize the rest of vector w
2011-07-27 07:19:39 -05:00
while t < 80 {
let val = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
w[t] = circular_shift(1u32, val);
t += 1;
}
let mut a = st.h[0];
let mut b = st.h[1];
let mut c = st.h[2];
let mut d = st.h[3];
let mut e = st.h[4];
let mut temp: u32;
t = 0;
2011-07-27 07:19:39 -05:00
while t < 20 {
temp = circular_shift(5u32, a) + (b & c | !b & d) + e + w[t] + k0;
e = d;
d = c;
c = circular_shift(30u32, b);
b = a;
a = temp;
t += 1;
}
2011-07-27 07:19:39 -05:00
while t < 40 {
temp = circular_shift(5u32, a) + (b ^ c ^ d) + e + w[t] + k1;
e = d;
d = c;
c = circular_shift(30u32, b);
b = a;
a = temp;
t += 1;
}
2011-07-27 07:19:39 -05:00
while t < 60 {
temp =
circular_shift(5u32, a) + (b & c | b & d | c & d) + e + w[t] +
k2;
e = d;
d = c;
c = circular_shift(30u32, b);
b = a;
a = temp;
t += 1;
}
2011-07-27 07:19:39 -05:00
while t < 80 {
temp = circular_shift(5u32, a) + (b ^ c ^ d) + e + w[t] + k3;
e = d;
d = c;
c = circular_shift(30u32, b);
b = a;
a = temp;
t += 1;
}
st.h[0] = st.h[0] + a;
st.h[1] = st.h[1] + b;
st.h[2] = st.h[2] + c;
st.h[3] = st.h[3] + d;
st.h[4] = st.h[4] + e;
st.msg_block_idx = 0u;
}
2011-07-27 07:19:39 -05:00
fn circular_shift(bits: u32, word: u32) -> u32 {
2012-08-01 19:30:05 -05:00
return word << bits | word >> 32u32 - bits;
}
fn mk_result(st: &mut Sha1State) -> ~[u8] {
if !(*st).computed { pad_msg(st); (*st).computed = true; }
let mut rs: ~[u8] = ~[];
for vec::each_mut((*st).h) |ptr_hpart| {
let hpart = *ptr_hpart;
let a = (hpart >> 24u32 & 0xFFu32) as u8;
let b = (hpart >> 16u32 & 0xFFu32) as u8;
let c = (hpart >> 8u32 & 0xFFu32) as u8;
let d = (hpart & 0xFFu32) as u8;
rs = vec::append(rs, ~[a, b, c, d]);
}
2012-08-01 19:30:05 -05:00
return rs;
}
/*
* According to the standard, the message must be padded to an even
* 512 bits. The first padding bit must be a '1'. The last 64 bits
* represent the length of the original message. All bits in between
* should be 0. This function will pad the message according to those
* rules by filling the msg_block vector accordingly. It will also
* call process_msg_block() appropriately. When it returns, it
* can be assumed that the message digest has been computed.
*/
fn pad_msg(st: &mut Sha1State) {
2013-03-28 20:39:09 -05:00
assert!((vec::len((*st).msg_block) == msg_block_len));
/*
* Check to see if the current message block is too small to hold
* the initial padding bits and length. If so, we will pad the
* block, process it, and then continue padding into a second block.
*/
if (*st).msg_block_idx > 55u {
(*st).msg_block[(*st).msg_block_idx] = 0x80u8;
(*st).msg_block_idx += 1u;
while (*st).msg_block_idx < msg_block_len {
(*st).msg_block[(*st).msg_block_idx] = 0u8;
(*st).msg_block_idx += 1u;
}
process_msg_block(st);
} else {
(*st).msg_block[(*st).msg_block_idx] = 0x80u8;
(*st).msg_block_idx += 1u;
}
while (*st).msg_block_idx < 56u {
(*st).msg_block[(*st).msg_block_idx] = 0u8;
(*st).msg_block_idx += 1u;
}
// Store the message length as the last 8 octets
(*st).msg_block[56] = ((*st).len_high >> 24u32 & 0xFFu32) as u8;
(*st).msg_block[57] = ((*st).len_high >> 16u32 & 0xFFu32) as u8;
(*st).msg_block[58] = ((*st).len_high >> 8u32 & 0xFFu32) as u8;
(*st).msg_block[59] = ((*st).len_high & 0xFFu32) as u8;
(*st).msg_block[60] = ((*st).len_low >> 24u32 & 0xFFu32) as u8;
(*st).msg_block[61] = ((*st).len_low >> 16u32 & 0xFFu32) as u8;
(*st).msg_block[62] = ((*st).len_low >> 8u32 & 0xFFu32) as u8;
(*st).msg_block[63] = ((*st).len_low & 0xFFu32) as u8;
process_msg_block(st);
}
impl Sha1 for Sha1State {
fn reset(&mut self) {
2013-03-28 20:39:09 -05:00
assert!((vec::len(self.h) == digest_buf_len));
self.len_low = 0u32;
self.len_high = 0u32;
self.msg_block_idx = 0u;
self.h[0] = 0x67452301u32;
self.h[1] = 0xEFCDAB89u32;
self.h[2] = 0x98BADCFEu32;
self.h[3] = 0x10325476u32;
self.h[4] = 0xC3D2E1F0u32;
self.computed = false;
}
fn input(&mut self, msg: &const [u8]) { add_input(self, msg); }
fn input_str(&mut self, msg: &str) {
let bs = str::to_bytes(msg);
add_input(self, bs);
}
fn result(&mut self) -> ~[u8] { return mk_result(self); }
fn result_str(&mut self) -> ~str {
let rr = mk_result(self);
let mut s = ~"";
for vec::each(rr) |b| {
let hex = uint::to_str_radix(*b as uint, 16u);
if hex.len() == 1 {
s += "0";
}
s += hex;
}
2012-08-01 19:30:05 -05:00
return s;
}
}
let mut st = Sha1State {
h: vec::from_elem(digest_buf_len, 0u32),
len_low: 0u32,
len_high: 0u32,
msg_block: vec::from_elem(msg_block_len, 0u8),
msg_block_idx: 0u,
computed: false,
work_buf: @mut vec::from_elem(work_buf_len, 0u32)
};
let mut sh = @st as @Sha1;
sh.reset();
2012-08-01 19:30:05 -05:00
return sh;
}
2012-01-17 21:05:07 -06:00
#[cfg(test)]
mod tests {
use sha1;
use core::str;
use core::vec;
2012-01-17 21:05:07 -06:00
#[test]
fn test() {
struct Test {
input: ~str,
output: ~[u8],
output_str: ~str,
}
2012-01-17 21:05:07 -06:00
fn a_million_letter_a() -> ~str {
let mut i = 0;
let mut rs = ~"";
while i < 100000 {
str::push_str(&mut rs, ~"aaaaaaaaaa");
i += 1;
2012-09-21 20:36:32 -05:00
}
return rs;
}
// Test messages from FIPS 180-1
2012-01-17 21:05:07 -06:00
let fips_180_1_tests = ~[
Test {
input: ~"abc",
output: ~[
0xA9u8, 0x99u8, 0x3Eu8, 0x36u8,
0x47u8, 0x06u8, 0x81u8, 0x6Au8,
0xBAu8, 0x3Eu8, 0x25u8, 0x71u8,
0x78u8, 0x50u8, 0xC2u8, 0x6Cu8,
0x9Cu8, 0xD0u8, 0xD8u8, 0x9Du8,
],
output_str: ~"a9993e364706816aba3e25717850c26c9cd0d89d"
},
Test {
input:
~"abcdbcdecdefdefgefghfghighij" +
~"hijkijkljklmklmnlmnomnopnopq",
output: ~[
0x84u8, 0x98u8, 0x3Eu8, 0x44u8,
0x1Cu8, 0x3Bu8, 0xD2u8, 0x6Eu8,
0xBAu8, 0xAEu8, 0x4Au8, 0xA1u8,
0xF9u8, 0x51u8, 0x29u8, 0xE5u8,
0xE5u8, 0x46u8, 0x70u8, 0xF1u8,
],
output_str: ~"84983e441c3bd26ebaae4aa1f95129e5e54670f1"
},
Test {
input: a_million_letter_a(),
output: ~[
0x34u8, 0xAAu8, 0x97u8, 0x3Cu8,
0xD4u8, 0xC4u8, 0xDAu8, 0xA4u8,
0xF6u8, 0x1Eu8, 0xEBu8, 0x2Bu8,
0xDBu8, 0xADu8, 0x27u8, 0x31u8,
0x65u8, 0x34u8, 0x01u8, 0x6Fu8,
],
output_str: ~"34aa973cd4c4daa4f61eeb2bdbad27316534016f"
},
];
// Examples from wikipedia
2012-01-17 21:05:07 -06:00
let wikipedia_tests = ~[
Test {
input: ~"The quick brown fox jumps over the lazy dog",
output: ~[
0x2fu8, 0xd4u8, 0xe1u8, 0xc6u8,
0x7au8, 0x2du8, 0x28u8, 0xfcu8,
0xedu8, 0x84u8, 0x9eu8, 0xe1u8,
0xbbu8, 0x76u8, 0xe7u8, 0x39u8,
0x1bu8, 0x93u8, 0xebu8, 0x12u8,
],
output_str: ~"2fd4e1c67a2d28fced849ee1bb76e7391b93eb12",
},
Test {
input: ~"The quick brown fox jumps over the lazy cog",
output: ~[
0xdeu8, 0x9fu8, 0x2cu8, 0x7fu8,
0xd2u8, 0x5eu8, 0x1bu8, 0x3au8,
0xfau8, 0xd3u8, 0xe8u8, 0x5au8,
0x0bu8, 0xd1u8, 0x7du8, 0x9bu8,
0x10u8, 0x0du8, 0xb4u8, 0xb3u8,
],
output_str: ~"de9f2c7fd25e1b3afad3e85a0bd17d9b100db4b3",
},
];
let tests = fips_180_1_tests + wikipedia_tests;
fn check_vec_eq(v0: ~[u8], v1: ~[u8]) {
assert!((vec::len::<u8>(v0) == vec::len::<u8>(v1)));
let len = vec::len::<u8>(v0);
let mut i = 0u;
while i < len {
let a = v0[i];
let b = v1[i];
assert!((a == b));
i += 1u;
2012-01-17 21:05:07 -06:00
}
}
// Test that it works when accepting the message all at once
2012-01-17 21:05:07 -06:00
let mut sh = sha1::sha1();
for vec::each(tests) |t| {
sh.input_str(t.input);
let out = sh.result();
check_vec_eq(t.output, out);
let out_str = sh.result_str();
assert!((out_str.len() == 40));
assert!((out_str == t.output_str));
sh.reset();
}
2012-01-17 21:05:07 -06:00
// Test that it works when accepting the message in pieces
for vec::each(tests) |t| {
let len = str::len(t.input);
let mut left = len;
while left > 0u {
let take = (left + 1u) / 2u;
sh.input_str(str::slice(t.input, len - left,
take + len - left).to_owned());
left = left - take;
}
let out = sh.result();
check_vec_eq(t.output, out);
let out_str = sh.result_str();
assert!((out_str.len() == 40));
assert!((out_str == t.output_str));
sh.reset();
2012-01-17 21:05:07 -06:00
}
}
}
// Local Variables:
// mode: rust;
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End: