rust/src/libstd/io/test.rs

200 lines
6.2 KiB
Rust
Raw Normal View History

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*! Various utility functions useful for writing I/O tests */
#[macro_escape];
use os;
use prelude::*;
use rand;
use rand::Rng;
use std::io::net::ip::*;
use sync::atomics::{AtomicUint, INIT_ATOMIC_UINT, Relaxed};
macro_rules! iotest (
2013-12-27 17:50:16 -08:00
{ fn $name:ident() $b:block $($a:attr)* } => (
mod $name {
#[allow(unused_imports)];
use super::super::*;
use super::*;
use io;
use prelude::*;
use io::*;
use io::fs::*;
2013-12-27 17:50:16 -08:00
use io::test::*;
use io::net::tcp::*;
use io::net::ip::*;
use io::net::udp::*;
#[cfg(unix)]
use io::net::unix::*;
Implement native timers Native timers are a much hairier thing to deal with than green timers due to the interface that we would like to expose (both a blocking sleep() and a channel-based interface). I ended up implementing timers in three different ways for the various platforms that we supports. In all three of the implementations, there is a worker thread which does send()s on channels for timers. This worker thread is initialized once and then communicated to in a platform-specific manner, but there's always a shared channel available for sending messages to the worker thread. * Windows - I decided to use windows kernel timer objects via CreateWaitableTimer and SetWaitableTimer in order to provide sleeping capabilities. The worker thread blocks via WaitForMultipleObjects where one of the objects is an event that is used to wake up the helper thread (which then drains the incoming message channel for requests). * Linux/(Android?) - These have the ideal interface for implementing timers, timerfd_create. Each timer corresponds to a timerfd, and the helper thread uses epoll to wait for all active timers and then send() for the next one that wakes up. The tricky part in this implementation is updating a timerfd, but see the implementation for the fun details * OSX/FreeBSD - These obviously don't have the windows APIs, and sadly don't have the timerfd api available to them, so I have thrown together a solution which uses select() plus a timeout in order to ad-hoc-ly implement a timer solution for threads. The implementation is backed by a sorted array of timers which need to fire. As I said, this is an ad-hoc solution which is certainly not accurate timing-wise. I have done this implementation due to the lack of other primitives to provide an implementation, and I've done it the best that I could, but I'm sure that there's room for improvement. I'm pretty happy with how these implementations turned out. In theory we could drop the timerfd implementation and have linux use the select() + timeout implementation, but it's so inaccurate that I would much rather continue to use timerfd rather than my ad-hoc select() implementation. The only change that I would make to the API in general is to have a generic sleep() method on an IoFactory which doesn't require allocating a Timer object. For everything but windows it's super-cheap to request a blocking sleep for a set amount of time, and it's probably worth it to provide a sleep() which doesn't do something like allocate a file descriptor on linux.
2013-12-28 23:33:56 -08:00
use io::timer::*;
use io::process::*;
use unstable::running_on_valgrind;
use str;
use util;
fn f() $b
2013-12-27 17:50:16 -08:00
$($a)* #[test] fn green() { f() }
$($a)* #[test] fn native() {
use native;
let (p, c) = Chan::new();
native::task::spawn(proc() { c.send(f()) });
p.recv();
}
}
)
)
/// Get a port number, starting at 9600, for use in tests
pub fn next_test_port() -> u16 {
static mut next_offset: AtomicUint = INIT_ATOMIC_UINT;
unsafe {
base_port() + next_offset.fetch_add(1, Relaxed) as u16
}
}
/// Get a temporary path which could be the location of a unix socket
pub fn next_test_unix() -> Path {
if cfg!(unix) {
os::tmpdir().join(rand::task_rng().gen_ascii_str(20))
} else {
Path::new(r"\\.\pipe\" + rand::task_rng().gen_ascii_str(20))
}
}
/// Get a unique IPv4 localhost:port pair starting at 9600
pub fn next_test_ip4() -> SocketAddr {
SocketAddr { ip: Ipv4Addr(127, 0, 0, 1), port: next_test_port() }
}
/// Get a unique IPv6 localhost:port pair starting at 9600
pub fn next_test_ip6() -> SocketAddr {
SocketAddr { ip: Ipv6Addr(0, 0, 0, 0, 0, 0, 0, 1), port: next_test_port() }
}
/*
XXX: Welcome to MegaHack City.
The bots run multiple builds at the same time, and these builds
all want to use ports. This function figures out which workspace
it is running in and assigns a port range based on it.
*/
fn base_port() -> u16 {
let base = 9600u16;
let range = 1000u16;
let bases = [
("32-opt", base + range * 1),
2013-12-27 17:50:16 -08:00
("32-nopt", base + range * 2),
("64-opt", base + range * 3),
2013-12-27 17:50:16 -08:00
("64-nopt", base + range * 4),
("64-opt-vg", base + range * 5),
("all-opt", base + range * 6),
("snap3", base + range * 7),
("dist", base + range * 8)
];
// FIXME (#9639): This needs to handle non-utf8 paths
let path = os::getcwd();
let path_s = path.as_str().unwrap();
let mut final_base = base;
for &(dir, base) in bases.iter() {
if path_s.contains(dir) {
final_base = base;
break;
}
}
return final_base;
}
pub fn raise_fd_limit() {
unsafe { darwin_fd_limit::raise_fd_limit() }
}
#[cfg(target_os="macos")]
#[allow(non_camel_case_types)]
mod darwin_fd_limit {
/*!
* darwin_fd_limit exists to work around an issue where launchctl on Mac OS X defaults the
* rlimit maxfiles to 256/unlimited. The default soft limit of 256 ends up being far too low
* for our multithreaded scheduler testing, depending on the number of cores available.
*
* This fixes issue #7772.
*/
use libc;
type rlim_t = libc::uint64_t;
struct rlimit {
rlim_cur: rlim_t,
rlim_max: rlim_t
}
#[nolink]
extern {
// name probably doesn't need to be mut, but the C function doesn't specify const
fn sysctl(name: *mut libc::c_int, namelen: libc::c_uint,
oldp: *mut libc::c_void, oldlenp: *mut libc::size_t,
newp: *mut libc::c_void, newlen: libc::size_t) -> libc::c_int;
fn getrlimit(resource: libc::c_int, rlp: *mut rlimit) -> libc::c_int;
fn setrlimit(resource: libc::c_int, rlp: *rlimit) -> libc::c_int;
}
static CTL_KERN: libc::c_int = 1;
static KERN_MAXFILESPERPROC: libc::c_int = 29;
static RLIMIT_NOFILE: libc::c_int = 8;
pub unsafe fn raise_fd_limit() {
// The strategy here is to fetch the current resource limits, read the kern.maxfilesperproc
// sysctl value, and bump the soft resource limit for maxfiles up to the sysctl value.
2014-02-14 18:42:01 -05:00
use ptr::mut_null;
use mem::size_of_val;
use os::last_os_error;
// Fetch the kern.maxfilesperproc value
let mut mib: [libc::c_int, ..2] = [CTL_KERN, KERN_MAXFILESPERPROC];
let mut maxfiles: libc::c_int = 0;
let mut size: libc::size_t = size_of_val(&maxfiles) as libc::size_t;
2014-02-14 18:42:01 -05:00
if sysctl(&mut mib[0], 2, &mut maxfiles as *mut libc::c_int as *mut libc::c_void, &mut size,
mut_null(), 0) != 0 {
let err = last_os_error();
error!("raise_fd_limit: error calling sysctl: {}", err);
return;
}
// Fetch the current resource limits
let mut rlim = rlimit{rlim_cur: 0, rlim_max: 0};
2014-02-14 18:42:01 -05:00
if getrlimit(RLIMIT_NOFILE, &mut rlim) != 0 {
let err = last_os_error();
error!("raise_fd_limit: error calling getrlimit: {}", err);
return;
}
// Bump the soft limit to the smaller of kern.maxfilesperproc and the hard limit
rlim.rlim_cur = ::cmp::min(maxfiles as rlim_t, rlim.rlim_max);
// Set our newly-increased resource limit
2014-02-14 18:42:01 -05:00
if setrlimit(RLIMIT_NOFILE, &rlim) != 0 {
let err = last_os_error();
error!("raise_fd_limit: error calling setrlimit: {}", err);
return;
}
}
}
#[cfg(not(target_os="macos"))]
mod darwin_fd_limit {
pub unsafe fn raise_fd_limit() {}
}