rust/src/libstd/iterator.rs

2128 lines
60 KiB
Rust
Raw Normal View History

2013-04-09 09:54:32 -05:00
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2013-04-19 11:17:24 -05:00
/*! Composable external iterators
The `Iterator` trait defines an interface for objects which implement iteration as a state machine.
Algorithms like `zip` are provided as `Iterator` implementations which wrap other objects
implementing the `Iterator` trait.
*/
2013-04-09 09:54:32 -05:00
use cmp;
use num::{Zero, One, Saturating};
2013-06-06 15:34:50 -05:00
use option::{Option, Some, None};
use ops::{Add, Mul};
use cmp::Ord;
2013-06-06 15:34:50 -05:00
use clone::Clone;
use uint;
2013-04-09 09:54:32 -05:00
/// Conversion from an `Iterator`
pub trait FromIterator<A, T: Iterator<A>> {
/// Build a container with elements from an external iterator.
fn from_iterator(iterator: &mut T) -> Self;
}
2013-07-27 16:41:30 -05:00
/// A type growable from an `Iterator` implementation
pub trait Extendable<A, T: Iterator<A>>: FromIterator<A, T> {
/// Extend a container with the elements yielded by an iterator
fn extend(&mut self, iterator: &mut T);
}
/// An interface for dealing with "external iterators". These types of iterators
/// can be resumed at any time as all state is stored internally as opposed to
/// being located on the call stack.
2013-04-15 09:30:16 -05:00
pub trait Iterator<A> {
2013-04-09 09:54:32 -05:00
/// Advance the iterator and return the next value. Return `None` when the end is reached.
2013-04-15 09:30:16 -05:00
fn next(&mut self) -> Option<A>;
/// Return a lower bound and upper bound on the remaining length of the iterator.
///
/// The common use case for the estimate is pre-allocating space to store the results.
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) { (0, None) }
2013-04-09 09:54:32 -05:00
}
/// A range iterator able to yield elements from both ends
pub trait DoubleEndedIterator<A>: Iterator<A> {
/// Yield an element from the end of the range, returning `None` if the range is empty.
fn next_back(&mut self) -> Option<A>;
}
2013-07-22 19:11:24 -05:00
/// An object implementing random access indexing by `uint`
///
/// A `RandomAccessIterator` should be either infinite or a `DoubleEndedIterator`.
pub trait RandomAccessIterator<A>: Iterator<A> {
2013-07-22 19:11:24 -05:00
/// Return the number of indexable elements. At most `std::uint::max_value`
/// elements are indexable, even if the iterator represents a longer range.
fn indexable(&self) -> uint;
/// Return an element at an index
fn idx(&self, index: uint) -> Option<A>;
}
/// Iterator adaptors provided for every `DoubleEndedIterator` implementation.
///
/// In the future these will be default methods instead of a utility trait.
pub trait DoubleEndedIteratorUtil {
/// Flip the direction of the iterator
fn invert(self) -> Invert<Self>;
}
/// Iterator adaptors provided for every `DoubleEndedIterator` implementation.
///
/// In the future these will be default methods instead of a utility trait.
impl<A, T: DoubleEndedIterator<A>> DoubleEndedIteratorUtil for T {
/// Flip the direction of the iterator
///
/// The inverted iterator flips the ends on an iterator that can already
/// be iterated from the front and from the back.
///
///
/// If the iterator also implements RandomAccessIterator, the inverted
/// iterator is also random access, with the indices starting at the back
/// of the original iterator.
///
/// Note: Random access with inverted indices still only applies to the first
/// `uint::max_value` elements of the original iterator.
#[inline]
fn invert(self) -> Invert<T> {
Invert{iter: self}
}
}
/// An double-ended iterator with the direction inverted
#[deriving(Clone)]
pub struct Invert<T> {
priv iter: T
}
impl<A, T: DoubleEndedIterator<A>> Iterator<A> for Invert<T> {
#[inline]
fn next(&mut self) -> Option<A> { self.iter.next_back() }
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) { self.iter.size_hint() }
}
impl<A, T: DoubleEndedIterator<A>> DoubleEndedIterator<A> for Invert<T> {
#[inline]
fn next_back(&mut self) -> Option<A> { self.iter.next() }
}
impl<A, T: DoubleEndedIterator<A> + RandomAccessIterator<A>> RandomAccessIterator<A>
for Invert<T> {
#[inline]
fn indexable(&self) -> uint { self.iter.indexable() }
#[inline]
fn idx(&self, index: uint) -> Option<A> {
self.iter.idx(self.indexable() - index - 1)
}
}
2013-04-19 11:17:24 -05:00
/// Iterator adaptors provided for every `Iterator` implementation. The adaptor objects are also
/// implementations of the `Iterator` trait.
///
/// In the future these will be default methods instead of a utility trait.
2013-04-15 09:30:16 -05:00
pub trait IteratorUtil<A> {
/// Chain this iterator with another, returning a new iterator which will
/// finish iterating over the current iterator, and then it will iterate
/// over the other specified iterator.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [0];
/// let b = [1];
/// let mut it = a.iter().chain_(b.iter());
/// assert_eq!(it.next().get(), &0);
/// assert_eq!(it.next().get(), &1);
/// assert!(it.next().is_none());
/// ~~~
fn chain_<U: Iterator<A>>(self, other: U) -> Chain<Self, U>;
/// Creates an iterator which iterates over both this and the specified
/// iterators simultaneously, yielding the two elements as pairs. When
/// either iterator returns None, all further invocations of next() will
/// return None.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [0];
/// let b = [1];
/// let mut it = a.iter().zip(b.iter());
/// assert_eq!(it.next().get(), (&0, &1));
/// assert!(it.next().is_none());
/// ~~~
fn zip<B, U: Iterator<B>>(self, other: U) -> Zip<Self, U>;
2013-04-15 09:30:16 -05:00
// FIXME: #5898: should be called map
/// Creates a new iterator which will apply the specified function to each
/// element returned by the first, yielding the mapped element instead.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2];
/// let mut it = a.iter().transform(|&x| 2 * x);
/// assert_eq!(it.next().get(), 2);
/// assert_eq!(it.next().get(), 4);
/// assert!(it.next().is_none());
/// ~~~
fn transform<'r, B>(self, f: &'r fn(A) -> B) -> Map<'r, A, B, Self>;
/// Creates an iterator which applies the predicate to each element returned
/// by this iterator. Only elements which have the predicate evaluate to
/// `true` will be yielded.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2];
/// let mut it = a.iter().filter(|&x| *x > 1);
/// assert_eq!(it.next().get(), &2);
/// assert!(it.next().is_none());
/// ~~~
fn filter<'r>(self, predicate: &'r fn(&A) -> bool) -> Filter<'r, A, Self>;
/// Creates an iterator which both filters and maps elements.
/// If the specified function returns None, the element is skipped.
/// Otherwise the option is unwrapped and the new value is yielded.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2];
/// let mut it = a.iter().filter_map(|&x| if x > 1 {Some(2 * x)} else {None});
/// assert_eq!(it.next().get(), 4);
/// assert!(it.next().is_none());
/// ~~~
fn filter_map<'r, B>(self, f: &'r fn(A) -> Option<B>) -> FilterMap<'r, A, B, Self>;
/// Creates an iterator which yields a pair of the value returned by this
/// iterator plus the current index of iteration.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [100, 200];
/// let mut it = a.iter().enumerate();
/// assert_eq!(it.next().get(), (0, &100));
/// assert_eq!(it.next().get(), (1, &200));
/// assert!(it.next().is_none());
/// ~~~
fn enumerate(self) -> Enumerate<Self>;
/// Creates an iterator which invokes the predicate on elements until it
/// returns false. Once the predicate returns false, all further elements are
/// yielded.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2, 3, 2, 1];
/// let mut it = a.iter().skip_while(|&a| *a < 3);
/// assert_eq!(it.next().get(), &3);
/// assert_eq!(it.next().get(), &2);
/// assert_eq!(it.next().get(), &1);
/// assert!(it.next().is_none());
/// ~~~
fn skip_while<'r>(self, predicate: &'r fn(&A) -> bool) -> SkipWhile<'r, A, Self>;
/// Creates an iterator which yields elements so long as the predicate
/// returns true. After the predicate returns false for the first time, no
/// further elements will be yielded.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2, 3, 2, 1];
/// let mut it = a.iter().take_while(|&a| *a < 3);
/// assert_eq!(it.next().get(), &1);
/// assert_eq!(it.next().get(), &2);
/// assert!(it.next().is_none());
/// ~~~
fn take_while<'r>(self, predicate: &'r fn(&A) -> bool) -> TakeWhile<'r, A, Self>;
/// Creates an iterator which skips the first `n` elements of this iterator,
/// and then it yields all further items.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2, 3, 4, 5];
/// let mut it = a.iter().skip(3);
/// assert_eq!(it.next().get(), &4);
/// assert_eq!(it.next().get(), &5);
/// assert!(it.next().is_none());
/// ~~~
fn skip(self, n: uint) -> Skip<Self>;
// FIXME: #5898: should be called take
/// Creates an iterator which yields the first `n` elements of this
/// iterator, and then it will always return None.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2, 3, 4, 5];
/// let mut it = a.iter().take_(3);
/// assert_eq!(it.next().get(), &1);
/// assert_eq!(it.next().get(), &2);
/// assert_eq!(it.next().get(), &3);
/// assert!(it.next().is_none());
/// ~~~
fn take_(self, n: uint) -> Take<Self>;
/// Creates a new iterator which behaves in a similar fashion to foldl.
/// There is a state which is passed between each iteration and can be
/// mutated as necessary. The yielded values from the closure are yielded
/// from the Scan instance when not None.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2, 3, 4, 5];
/// let mut it = a.iter().scan(1, |fac, &x| {
/// *fac = *fac * x;
/// Some(*fac)
/// });
/// assert_eq!(it.next().get(), 1);
/// assert_eq!(it.next().get(), 2);
/// assert_eq!(it.next().get(), 6);
/// assert_eq!(it.next().get(), 24);
/// assert_eq!(it.next().get(), 120);
/// assert!(it.next().is_none());
/// ~~~
fn scan<'r, St, B>(self, initial_state: St, f: &'r fn(&mut St, A) -> Option<B>)
-> Scan<'r, A, B, Self, St>;
/// Creates an iterator that maps each element to an iterator,
/// and yields the elements of the produced iterators
///
/// # Example
///
/// ~~~ {.rust}
/// let xs = [2u, 3];
/// let ys = [0u, 1, 0, 1, 2];
/// let mut it = xs.iter().flat_map_(|&x| Counter::new(0u, 1).take_(x));
/// // Check that `it` has the same elements as `ys`
/// let mut i = 0;
/// for x: uint in it {
/// assert_eq!(x, ys[i]);
/// i += 1;
/// }
/// ~~~
// FIXME: #5898: should be called `flat_map`
fn flat_map_<'r, B, U: Iterator<B>>(self, f: &'r fn(A) -> U)
-> FlatMap<'r, A, Self, U>;
/// Creates an iterator that calls a function with a reference to each
/// element before yielding it. This is often useful for debugging an
/// iterator pipeline.
///
/// # Example
///
/// ~~~ {.rust}
///let xs = [1u, 4, 2, 3, 8, 9, 6];
///let sum = xs.iter()
/// .transform(|&x| x)
/// .peek_(|&x| debug!("filtering %u", x))
/// .filter(|&x| x % 2 == 0)
/// .peek_(|&x| debug!("%u made it through", x))
/// .sum();
///println(sum.to_str());
/// ~~~
// FIXME: #5898: should be called `peek`
fn peek_<'r>(self, f: &'r fn(&A)) -> Peek<'r, A, Self>;
/// An adaptation of an external iterator to the for-loop protocol of rust.
///
/// # Example
///
/// ~~~ {.rust}
2013-06-11 22:54:05 -05:00
/// use std::iterator::Counter;
///
/// for i in Counter::new(0, 10) {
/// printfln!("%d", i);
/// }
/// ~~~
2013-05-02 17:33:18 -05:00
fn advance(&mut self, f: &fn(A) -> bool) -> bool;
2013-06-03 16:48:52 -05:00
/// Loops through the entire iterator, collecting all of the elements into
/// a container implementing `FromIterator`.
2013-06-03 16:48:52 -05:00
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2, 3, 4, 5];
/// let b: ~[int] = a.iter().transform(|&x| x).collect();
/// assert!(a == b);
/// ~~~
fn collect<B: FromIterator<A, Self>>(&mut self) -> B;
2013-06-03 16:48:52 -05:00
/// Loops through the entire iterator, collecting all of the elements into
/// a unique vector. This is simply collect() specialized for vectors.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2, 3, 4, 5];
/// let b: ~[int] = a.iter().transform(|&x| x).to_owned_vec();
/// assert!(a == b);
/// ~~~
fn to_owned_vec(&mut self) -> ~[A];
/// Loops through `n` iterations, returning the `n`th element of the
/// iterator.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2, 3, 4, 5];
/// let mut it = a.iter();
/// assert!(it.nth(2).get() == &3);
/// assert!(it.nth(2) == None);
/// ~~~
fn nth(&mut self, n: uint) -> Option<A>;
/// Loops through the entire iterator, returning the last element of the
/// iterator.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2, 3, 4, 5];
/// assert!(a.iter().last().get() == &5);
/// ~~~
// FIXME: #5898: should be called `last`
fn last_(&mut self) -> Option<A>;
/// Performs a fold operation over the entire iterator, returning the
/// eventual state at the end of the iteration.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2, 3, 4, 5];
/// assert!(a.iter().fold(0, |a, &b| a + b) == 15);
/// ~~~
fn fold<B>(&mut self, start: B, f: &fn(B, A) -> B) -> B;
// FIXME: #5898: should be called len
/// Counts the number of elements in this iterator.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2, 3, 4, 5];
/// let mut it = a.iter();
/// assert!(it.len_() == 5);
/// assert!(it.len_() == 0);
/// ~~~
fn len_(&mut self) -> uint;
/// Tests whether the predicate holds true for all elements in the iterator.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2, 3, 4, 5];
/// assert!(a.iter().all(|&x| *x > 0));
/// assert!(!a.iter().all(|&x| *x > 2));
/// ~~~
fn all(&mut self, f: &fn(A) -> bool) -> bool;
/// Tests whether any element of an iterator satisfies the specified
/// predicate.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2, 3, 4, 5];
/// let mut it = a.iter();
2013-07-04 21:13:26 -05:00
/// assert!(it.any(|&x| *x == 3));
/// assert!(!it.any(|&x| *x == 3));
/// ~~~
2013-07-04 21:13:26 -05:00
fn any(&mut self, f: &fn(A) -> bool) -> bool;
2013-06-15 16:42:31 -05:00
/// Return the first element satisfying the specified predicate
fn find_(&mut self, predicate: &fn(&A) -> bool) -> Option<A>;
2013-06-15 16:56:26 -05:00
/// Return the index of the first element satisfying the specified predicate
2013-07-04 21:13:26 -05:00
fn position(&mut self, predicate: &fn(A) -> bool) -> Option<uint>;
/// Count the number of elements satisfying the specified predicate
fn count(&mut self, predicate: &fn(A) -> bool) -> uint;
/// Return the element that gives the maximum value from the specfied function
///
/// # Example
///
/// ~~~ {.rust}
/// let xs = [-3, 0, 1, 5, -10];
/// assert_eq!(*xs.iter().max_by(|x| x.abs()).unwrap(), -10);
/// ~~~
fn max_by<B: Ord>(&mut self, f: &fn(&A) -> B) -> Option<A>;
/// Return the element that gives the minimum value from the specfied function
///
/// # Example
///
/// ~~~ {.rust}
/// let xs = [-3, 0, 1, 5, -10];
/// assert_eq!(*xs.iter().min_by(|x| x.abs()).unwrap(), 0);
/// ~~~
fn min_by<B: Ord>(&mut self, f: &fn(&A) -> B) -> Option<A>;
2013-04-15 09:30:16 -05:00
}
2013-04-19 11:17:24 -05:00
/// Iterator adaptors provided for every `Iterator` implementation. The adaptor objects are also
/// implementations of the `Iterator` trait.
///
/// In the future these will be default methods instead of a utility trait.
2013-04-15 09:30:16 -05:00
impl<A, T: Iterator<A>> IteratorUtil<A> for T {
#[inline]
fn chain_<U: Iterator<A>>(self, other: U) -> Chain<T, U> {
Chain{a: self, b: other, flag: false}
2013-04-19 10:29:38 -05:00
}
#[inline]
fn zip<B, U: Iterator<B>>(self, other: U) -> Zip<T, U> {
Zip{a: self, b: other}
2013-04-15 09:30:16 -05:00
}
// FIXME: #5898: should be called map
#[inline]
fn transform<'r, B>(self, f: &'r fn(A) -> B) -> Map<'r, A, B, T> {
Map{iter: self, f: f}
2013-04-15 09:30:16 -05:00
}
#[inline]
fn filter<'r>(self, predicate: &'r fn(&A) -> bool) -> Filter<'r, A, T> {
Filter{iter: self, predicate: predicate}
2013-04-15 09:30:16 -05:00
}
#[inline]
fn filter_map<'r, B>(self, f: &'r fn(A) -> Option<B>) -> FilterMap<'r, A, B, T> {
FilterMap { iter: self, f: f }
}
#[inline]
fn enumerate(self) -> Enumerate<T> {
Enumerate{iter: self, count: 0}
}
#[inline]
fn skip_while<'r>(self, predicate: &'r fn(&A) -> bool) -> SkipWhile<'r, A, T> {
SkipWhile{iter: self, flag: false, predicate: predicate}
2013-04-18 07:15:40 -05:00
}
#[inline]
fn take_while<'r>(self, predicate: &'r fn(&A) -> bool) -> TakeWhile<'r, A, T> {
TakeWhile{iter: self, flag: false, predicate: predicate}
2013-04-18 07:15:40 -05:00
}
#[inline]
fn skip(self, n: uint) -> Skip<T> {
Skip{iter: self, n: n}
2013-04-19 05:06:33 -05:00
}
// FIXME: #5898: should be called take
#[inline]
fn take_(self, n: uint) -> Take<T> {
Take{iter: self, n: n}
2013-04-19 05:06:33 -05:00
}
#[inline]
fn scan<'r, St, B>(self, initial_state: St, f: &'r fn(&mut St, A) -> Option<B>)
-> Scan<'r, A, B, T, St> {
Scan{iter: self, f: f, state: initial_state}
}
#[inline]
fn flat_map_<'r, B, U: Iterator<B>>(self, f: &'r fn(A) -> U)
-> FlatMap<'r, A, T, U> {
FlatMap{iter: self, f: f, frontiter: None, backiter: None }
}
// FIXME: #5898: should be called `peek`
#[inline]
fn peek_<'r>(self, f: &'r fn(&A)) -> Peek<'r, A, T> {
Peek{iter: self, f: f}
}
2013-04-15 09:30:16 -05:00
/// A shim implementing the `for` loop iteration protocol for iterator objects
#[inline]
2013-05-02 17:33:18 -05:00
fn advance(&mut self, f: &fn(A) -> bool) -> bool {
loop {
match self.next() {
Some(x) => {
if !f(x) { return false; }
}
None => { return true; }
2013-04-09 09:54:32 -05:00
}
}
}
#[inline]
fn collect<B: FromIterator<A, T>>(&mut self) -> B {
FromIterator::from_iterator(self)
2013-06-03 16:48:52 -05:00
}
#[inline]
fn to_owned_vec(&mut self) -> ~[A] {
self.collect()
}
/// Return the `n`th item yielded by an iterator.
#[inline]
fn nth(&mut self, mut n: uint) -> Option<A> {
loop {
match self.next() {
Some(x) => if n == 0 { return Some(x) },
None => return None
}
n -= 1;
}
}
/// Return the last item yielded by an iterator.
#[inline]
fn last_(&mut self) -> Option<A> {
let mut last = None;
for x in *self { last = Some(x); }
last
}
/// Reduce an iterator to an accumulated value
#[inline]
fn fold<B>(&mut self, init: B, f: &fn(B, A) -> B) -> B {
let mut accum = init;
loop {
match self.next() {
Some(x) => { accum = f(accum, x); }
None => { break; }
}
}
2013-06-15 16:42:31 -05:00
accum
}
2013-05-18 03:44:44 -05:00
/// Count the number of items yielded by an iterator
#[inline]
fn len_(&mut self) -> uint { self.fold(0, |cnt, _x| cnt + 1) }
#[inline]
fn all(&mut self, f: &fn(A) -> bool) -> bool {
for x in *self { if !f(x) { return false; } }
2013-06-15 16:42:31 -05:00
true
}
#[inline]
2013-07-04 21:13:26 -05:00
fn any(&mut self, f: &fn(A) -> bool) -> bool {
for x in *self { if f(x) { return true; } }
2013-06-15 16:42:31 -05:00
false
}
/// Return the first element satisfying the specified predicate
#[inline]
fn find_(&mut self, predicate: &fn(&A) -> bool) -> Option<A> {
for x in *self {
2013-06-15 16:42:31 -05:00
if predicate(&x) { return Some(x) }
}
None
}
2013-06-15 16:56:26 -05:00
/// Return the index of the first element satisfying the specified predicate
#[inline]
2013-07-04 21:13:26 -05:00
fn position(&mut self, predicate: &fn(A) -> bool) -> Option<uint> {
2013-06-15 16:56:26 -05:00
let mut i = 0;
for x in *self {
2013-06-15 16:56:26 -05:00
if predicate(x) {
return Some(i);
}
i += 1;
}
None
}
#[inline]
fn count(&mut self, predicate: &fn(A) -> bool) -> uint {
let mut i = 0;
for x in *self {
if predicate(x) { i += 1 }
}
i
}
#[inline]
fn max_by<B: Ord>(&mut self, f: &fn(&A) -> B) -> Option<A> {
self.fold(None, |max: Option<(A, B)>, x| {
let x_val = f(&x);
match max {
None => Some((x, x_val)),
Some((y, y_val)) => if x_val > y_val {
Some((x, x_val))
} else {
Some((y, y_val))
}
}
}).map_consume(|(x, _)| x)
}
#[inline]
fn min_by<B: Ord>(&mut self, f: &fn(&A) -> B) -> Option<A> {
self.fold(None, |min: Option<(A, B)>, x| {
let x_val = f(&x);
match min {
None => Some((x, x_val)),
Some((y, y_val)) => if x_val < y_val {
Some((x, x_val))
} else {
Some((y, y_val))
}
}
}).map_consume(|(x, _)| x)
}
2013-04-09 09:54:32 -05:00
}
/// A trait for iterators over elements which can be added together
pub trait AdditiveIterator<A> {
/// Iterates over the entire iterator, summing up all the elements
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2, 3, 4, 5];
/// let mut it = a.iter().transform(|&x| x);
/// assert!(it.sum() == 15);
/// ~~~
fn sum(&mut self) -> A;
}
impl<A: Add<A, A> + Zero, T: Iterator<A>> AdditiveIterator<A> for T {
#[inline]
fn sum(&mut self) -> A { self.fold(Zero::zero::<A>(), |s, x| s + x) }
}
/// A trait for iterators over elements whose elements can be multiplied
/// together.
pub trait MultiplicativeIterator<A> {
/// Iterates over the entire iterator, multiplying all the elements
///
/// # Example
///
/// ~~~ {.rust}
2013-06-11 22:54:05 -05:00
/// use std::iterator::Counter;
///
/// fn factorial(n: uint) -> uint {
/// Counter::new(1u, 1).take_while(|&i| i <= n).product()
/// }
/// assert!(factorial(0) == 1);
/// assert!(factorial(1) == 1);
/// assert!(factorial(5) == 120);
/// ~~~
fn product(&mut self) -> A;
}
impl<A: Mul<A, A> + One, T: Iterator<A>> MultiplicativeIterator<A> for T {
#[inline]
fn product(&mut self) -> A { self.fold(One::one::<A>(), |p, x| p * x) }
}
/// A trait for iterators over elements which can be compared to one another.
/// The type of each element must ascribe to the `Ord` trait.
pub trait OrdIterator<A> {
/// Consumes the entire iterator to return the maximum element.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2, 3, 4, 5];
/// assert!(a.iter().max().get() == &5);
/// ~~~
fn max(&mut self) -> Option<A>;
/// Consumes the entire iterator to return the minimum element.
///
/// # Example
///
/// ~~~ {.rust}
/// let a = [1, 2, 3, 4, 5];
/// assert!(a.iter().min().get() == &1);
/// ~~~
fn min(&mut self) -> Option<A>;
}
impl<A: Ord, T: Iterator<A>> OrdIterator<A> for T {
#[inline]
fn max(&mut self) -> Option<A> {
self.fold(None, |max, x| {
match max {
None => Some(x),
Some(y) => Some(cmp::max(x, y))
}
})
}
#[inline]
fn min(&mut self) -> Option<A> {
self.fold(None, |min, x| {
match min {
None => Some(x),
Some(y) => Some(cmp::min(x, y))
}
})
}
}
/// A trait for iterators that are clonable.
pub trait ClonableIterator {
/// Repeats an iterator endlessly
///
/// # Example
///
/// ~~~ {.rust}
/// let a = Counter::new(1,1).take_(1);
/// let mut cy = a.cycle();
/// assert_eq!(cy.next(), Some(1));
/// assert_eq!(cy.next(), Some(1));
/// ~~~
fn cycle(self) -> Cycle<Self>;
}
impl<A, T: Clone + Iterator<A>> ClonableIterator for T {
#[inline]
fn cycle(self) -> Cycle<T> {
Cycle{orig: self.clone(), iter: self}
}
}
/// An iterator that repeats endlessly
#[deriving(Clone)]
pub struct Cycle<T> {
priv orig: T,
priv iter: T,
}
impl<A, T: Clone + Iterator<A>> Iterator<A> for Cycle<T> {
#[inline]
fn next(&mut self) -> Option<A> {
match self.iter.next() {
None => { self.iter = self.orig.clone(); self.iter.next() }
y => y
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
// the cycle iterator is either empty or infinite
match self.orig.size_hint() {
sz @ (0, Some(0)) => sz,
(0, _) => (0, None),
_ => (uint::max_value, None)
}
}
}
impl<A, T: Clone + RandomAccessIterator<A>> RandomAccessIterator<A> for Cycle<T> {
#[inline]
fn indexable(&self) -> uint {
if self.orig.indexable() > 0 {
uint::max_value
} else {
0
}
}
#[inline]
fn idx(&self, index: uint) -> Option<A> {
let liter = self.iter.indexable();
let lorig = self.orig.indexable();
if lorig == 0 {
None
} else if index < liter {
self.iter.idx(index)
} else {
self.orig.idx((index - liter) % lorig)
}
}
}
/// An iterator which strings two iterators together
#[deriving(Clone)]
pub struct Chain<T, U> {
2013-04-19 10:29:38 -05:00
priv a: T,
priv b: U,
2013-04-19 10:29:38 -05:00
priv flag: bool
}
impl<A, T: Iterator<A>, U: Iterator<A>> Iterator<A> for Chain<T, U> {
2013-04-19 10:29:38 -05:00
#[inline]
fn next(&mut self) -> Option<A> {
if self.flag {
self.b.next()
} else {
match self.a.next() {
Some(x) => return Some(x),
_ => ()
}
self.flag = true;
self.b.next()
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let (a_lower, a_upper) = self.a.size_hint();
let (b_lower, b_upper) = self.b.size_hint();
let lower = a_lower.saturating_add(b_lower);
let upper = match (a_upper, b_upper) {
(Some(x), Some(y)) => Some(x.saturating_add(y)),
_ => None
};
(lower, upper)
}
2013-04-19 10:29:38 -05:00
}
impl<A, T: DoubleEndedIterator<A>, U: DoubleEndedIterator<A>> DoubleEndedIterator<A>
for Chain<T, U> {
#[inline]
fn next_back(&mut self) -> Option<A> {
match self.b.next_back() {
Some(x) => Some(x),
None => self.a.next_back()
}
}
}
2013-07-22 19:11:24 -05:00
impl<A, T: RandomAccessIterator<A>, U: RandomAccessIterator<A>> RandomAccessIterator<A>
for Chain<T, U> {
2013-07-22 19:11:24 -05:00
#[inline]
fn indexable(&self) -> uint {
let (a, b) = (self.a.indexable(), self.b.indexable());
a.saturating_add(b)
2013-07-22 19:11:24 -05:00
}
#[inline]
fn idx(&self, index: uint) -> Option<A> {
let len = self.a.indexable();
if index < len {
self.a.idx(index)
} else {
self.b.idx(index - len)
}
}
}
/// An iterator which iterates two other iterators simultaneously
#[deriving(Clone)]
pub struct Zip<T, U> {
2013-04-09 09:54:32 -05:00
priv a: T,
priv b: U
}
impl<A, B, T: Iterator<A>, U: Iterator<B>> Iterator<(A, B)> for Zip<T, U> {
2013-04-09 09:54:32 -05:00
#[inline]
fn next(&mut self) -> Option<(A, B)> {
match (self.a.next(), self.b.next()) {
(Some(x), Some(y)) => Some((x, y)),
_ => None
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let (a_lower, a_upper) = self.a.size_hint();
let (b_lower, b_upper) = self.b.size_hint();
let lower = cmp::min(a_lower, b_lower);
let upper = match (a_upper, b_upper) {
(Some(x), Some(y)) => Some(cmp::min(x,y)),
(Some(x), None) => Some(x),
(None, Some(y)) => Some(y),
(None, None) => None
};
(lower, upper)
}
2013-04-09 09:54:32 -05:00
}
impl<A, B, T: RandomAccessIterator<A>, U: RandomAccessIterator<B>>
RandomAccessIterator<(A, B)> for Zip<T, U> {
#[inline]
fn indexable(&self) -> uint {
cmp::min(self.a.indexable(), self.b.indexable())
}
#[inline]
fn idx(&self, index: uint) -> Option<(A, B)> {
match (self.a.idx(index), self.b.idx(index)) {
(Some(x), Some(y)) => Some((x, y)),
_ => None
}
}
}
/// An iterator which maps the values of `iter` with `f`
pub struct Map<'self, A, B, T> {
2013-04-19 08:18:22 -05:00
priv iter: T,
priv f: &'self fn(A) -> B
}
impl<'self, A, B, T> Map<'self, A, B, T> {
2013-04-19 08:18:22 -05:00
#[inline]
fn do_map(&self, elt: Option<A>) -> Option<B> {
match elt {
2013-04-19 08:18:22 -05:00
Some(a) => Some((self.f)(a)),
_ => None
}
}
}
impl<'self, A, B, T: Iterator<A>> Iterator<B> for Map<'self, A, B, T> {
#[inline]
fn next(&mut self) -> Option<B> {
let next = self.iter.next();
self.do_map(next)
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
self.iter.size_hint()
}
2013-04-19 08:18:22 -05:00
}
impl<'self, A, B, T: DoubleEndedIterator<A>> DoubleEndedIterator<B>
for Map<'self, A, B, T> {
#[inline]
fn next_back(&mut self) -> Option<B> {
let next = self.iter.next_back();
self.do_map(next)
}
}
impl<'self, A, B, T: RandomAccessIterator<A>> RandomAccessIterator<B>
for Map<'self, A, B, T> {
#[inline]
fn indexable(&self) -> uint {
self.iter.indexable()
}
#[inline]
fn idx(&self, index: uint) -> Option<B> {
self.do_map(self.iter.idx(index))
}
}
/// An iterator which filters the elements of `iter` with `predicate`
pub struct Filter<'self, A, T> {
2013-04-09 09:54:32 -05:00
priv iter: T,
priv predicate: &'self fn(&A) -> bool
}
impl<'self, A, T: Iterator<A>> Iterator<A> for Filter<'self, A, T> {
2013-04-09 09:54:32 -05:00
#[inline]
fn next(&mut self) -> Option<A> {
for x in self.iter {
2013-04-09 09:54:32 -05:00
if (self.predicate)(&x) {
return Some(x);
} else {
loop
}
}
None
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let (_, upper) = self.iter.size_hint();
(0, upper) // can't know a lower bound, due to the predicate
}
2013-04-09 09:54:32 -05:00
}
impl<'self, A, T: DoubleEndedIterator<A>> DoubleEndedIterator<A> for Filter<'self, A, T> {
#[inline]
fn next_back(&mut self) -> Option<A> {
loop {
match self.iter.next_back() {
None => return None,
Some(x) => {
if (self.predicate)(&x) {
return Some(x);
} else {
loop
}
}
}
}
}
}
/// An iterator which uses `f` to both filter and map elements from `iter`
pub struct FilterMap<'self, A, B, T> {
priv iter: T,
priv f: &'self fn(A) -> Option<B>
}
impl<'self, A, B, T: Iterator<A>> Iterator<B> for FilterMap<'self, A, B, T> {
#[inline]
fn next(&mut self) -> Option<B> {
for x in self.iter {
match (self.f)(x) {
Some(y) => return Some(y),
None => ()
}
}
None
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let (_, upper) = self.iter.size_hint();
(0, upper) // can't know a lower bound, due to the predicate
}
}
impl<'self, A, B, T: DoubleEndedIterator<A>> DoubleEndedIterator<B>
for FilterMap<'self, A, B, T> {
#[inline]
fn next_back(&mut self) -> Option<B> {
loop {
match self.iter.next_back() {
None => return None,
Some(x) => {
match (self.f)(x) {
Some(y) => return Some(y),
None => ()
}
}
}
}
}
}
/// An iterator which yields the current count and the element during iteration
#[deriving(Clone)]
pub struct Enumerate<T> {
priv iter: T,
priv count: uint
}
impl<A, T: Iterator<A>> Iterator<(uint, A)> for Enumerate<T> {
#[inline]
fn next(&mut self) -> Option<(uint, A)> {
match self.iter.next() {
Some(a) => {
let ret = Some((self.count, a));
self.count += 1;
ret
}
_ => None
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
self.iter.size_hint()
}
}
2013-04-18 07:15:40 -05:00
impl<A, T: RandomAccessIterator<A>> RandomAccessIterator<(uint, A)> for Enumerate<T> {
#[inline]
fn indexable(&self) -> uint {
self.iter.indexable()
}
#[inline]
fn idx(&self, index: uint) -> Option<(uint, A)> {
match self.iter.idx(index) {
Some(a) => Some((self.count + index, a)),
_ => None,
}
}
}
/// An iterator which rejects elements while `predicate` is true
pub struct SkipWhile<'self, A, T> {
2013-04-18 07:15:40 -05:00
priv iter: T,
priv flag: bool,
priv predicate: &'self fn(&A) -> bool
}
impl<'self, A, T: Iterator<A>> Iterator<A> for SkipWhile<'self, A, T> {
2013-04-18 07:15:40 -05:00
#[inline]
fn next(&mut self) -> Option<A> {
let mut next = self.iter.next();
if self.flag {
next
} else {
loop {
match next {
Some(x) => {
if (self.predicate)(&x) {
next = self.iter.next();
loop
} else {
self.flag = true;
return Some(x)
}
}
None => return None
}
}
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let (_, upper) = self.iter.size_hint();
(0, upper) // can't know a lower bound, due to the predicate
}
2013-04-18 07:15:40 -05:00
}
/// An iterator which only accepts elements while `predicate` is true
pub struct TakeWhile<'self, A, T> {
2013-04-18 07:15:40 -05:00
priv iter: T,
priv flag: bool,
priv predicate: &'self fn(&A) -> bool
}
impl<'self, A, T: Iterator<A>> Iterator<A> for TakeWhile<'self, A, T> {
2013-04-18 07:15:40 -05:00
#[inline]
fn next(&mut self) -> Option<A> {
if self.flag {
None
} else {
match self.iter.next() {
Some(x) => {
if (self.predicate)(&x) {
Some(x)
} else {
self.flag = true;
None
}
}
None => None
}
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let (_, upper) = self.iter.size_hint();
(0, upper) // can't know a lower bound, due to the predicate
}
2013-04-18 07:15:40 -05:00
}
2013-04-19 05:06:33 -05:00
/// An iterator which skips over `n` elements of `iter`.
#[deriving(Clone)]
pub struct Skip<T> {
2013-04-19 05:06:33 -05:00
priv iter: T,
priv n: uint
}
impl<A, T: Iterator<A>> Iterator<A> for Skip<T> {
2013-04-19 05:06:33 -05:00
#[inline]
fn next(&mut self) -> Option<A> {
let mut next = self.iter.next();
if self.n == 0 {
next
} else {
let mut n = self.n;
while n > 0 {
n -= 1;
2013-04-19 05:06:33 -05:00
match next {
Some(_) => {
next = self.iter.next();
loop
}
None => {
self.n = 0;
return None
}
}
}
self.n = 0;
next
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let (lower, upper) = self.iter.size_hint();
let lower = lower.saturating_sub(self.n);
let upper = match upper {
Some(x) => Some(x.saturating_sub(self.n)),
None => None
};
(lower, upper)
}
2013-04-19 05:06:33 -05:00
}
impl<A, T: RandomAccessIterator<A>> RandomAccessIterator<A> for Skip<T> {
#[inline]
fn indexable(&self) -> uint {
self.iter.indexable().saturating_sub(self.n)
}
#[inline]
fn idx(&self, index: uint) -> Option<A> {
if index >= self.indexable() {
None
} else {
self.iter.idx(index + self.n)
}
}
}
/// An iterator which only iterates over the first `n` iterations of `iter`.
#[deriving(Clone)]
pub struct Take<T> {
2013-04-19 05:06:33 -05:00
priv iter: T,
priv n: uint
}
impl<A, T: Iterator<A>> Iterator<A> for Take<T> {
2013-04-19 05:06:33 -05:00
#[inline]
fn next(&mut self) -> Option<A> {
let next = self.iter.next();
if self.n != 0 {
self.n -= 1;
next
} else {
None
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let (lower, upper) = self.iter.size_hint();
let lower = cmp::min(lower, self.n);
let upper = match upper {
Some(x) if x < self.n => Some(x),
_ => Some(self.n)
};
(lower, upper)
}
2013-04-19 05:06:33 -05:00
}
impl<A, T: RandomAccessIterator<A>> RandomAccessIterator<A> for Take<T> {
#[inline]
fn indexable(&self) -> uint {
cmp::min(self.iter.indexable(), self.n)
}
#[inline]
fn idx(&self, index: uint) -> Option<A> {
if index >= self.n {
None
} else {
self.iter.idx(index)
}
}
}
/// An iterator to maintain state while iterating another iterator
pub struct Scan<'self, A, B, T, St> {
2013-04-24 18:54:13 -05:00
priv iter: T,
priv f: &'self fn(&mut St, A) -> Option<B>,
/// The current internal state to be passed to the closure next.
2013-04-24 18:54:13 -05:00
state: St
}
impl<'self, A, B, T: Iterator<A>, St> Iterator<B> for Scan<'self, A, B, T, St> {
2013-04-24 18:54:13 -05:00
#[inline]
fn next(&mut self) -> Option<B> {
self.iter.next().chain(|a| (self.f)(&mut self.state, a))
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let (_, upper) = self.iter.size_hint();
(0, upper) // can't know a lower bound, due to the scan function
}
2013-04-24 18:54:13 -05:00
}
/// An iterator that maps each element to an iterator,
/// and yields the elements of the produced iterators
///
pub struct FlatMap<'self, A, T, U> {
priv iter: T,
priv f: &'self fn(A) -> U,
priv frontiter: Option<U>,
priv backiter: Option<U>,
}
impl<'self, A, T: Iterator<A>, B, U: Iterator<B>> Iterator<B> for
FlatMap<'self, A, T, U> {
#[inline]
fn next(&mut self) -> Option<B> {
loop {
for inner in self.frontiter.mut_iter() {
for x in *inner {
return Some(x)
}
}
match self.iter.next().map_consume(|x| (self.f)(x)) {
None => return self.backiter.chain_mut_ref(|it| it.next()),
next => self.frontiter = next,
}
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let (flo, fhi) = self.frontiter.map_default((0, Some(0)), |it| it.size_hint());
let (blo, bhi) = self.backiter.map_default((0, Some(0)), |it| it.size_hint());
let lo = flo.saturating_add(blo);
match (self.iter.size_hint(), fhi, bhi) {
((0, Some(0)), Some(a), Some(b)) => (lo, Some(a.saturating_add(b))),
_ => (lo, None)
}
}
}
impl<'self,
A, T: DoubleEndedIterator<A>,
B, U: DoubleEndedIterator<B>> DoubleEndedIterator<B>
for FlatMap<'self, A, T, U> {
#[inline]
fn next_back(&mut self) -> Option<B> {
loop {
for inner in self.backiter.mut_iter() {
match inner.next_back() {
None => (),
y => return y
}
}
match self.iter.next_back().map_consume(|x| (self.f)(x)) {
None => return self.frontiter.chain_mut_ref(|it| it.next_back()),
next => self.backiter = next,
}
}
}
}
/// An iterator that calls a function with a reference to each
/// element before yielding it.
pub struct Peek<'self, A, T> {
priv iter: T,
priv f: &'self fn(&A)
}
impl<'self, A, T> Peek<'self, A, T> {
#[inline]
fn do_peek(&self, elt: Option<A>) -> Option<A> {
match elt {
Some(ref a) => (self.f)(a),
None => ()
}
elt
}
}
impl<'self, A, T: Iterator<A>> Iterator<A> for Peek<'self, A, T> {
#[inline]
fn next(&mut self) -> Option<A> {
let next = self.iter.next();
self.do_peek(next)
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
self.iter.size_hint()
}
}
impl<'self, A, T: DoubleEndedIterator<A>> DoubleEndedIterator<A> for Peek<'self, A, T> {
#[inline]
fn next_back(&mut self) -> Option<A> {
let next = self.iter.next_back();
self.do_peek(next)
}
}
impl<'self, A, T: RandomAccessIterator<A>> RandomAccessIterator<A> for Peek<'self, A, T> {
#[inline]
fn indexable(&self) -> uint {
self.iter.indexable()
}
#[inline]
fn idx(&self, index: uint) -> Option<A> {
self.do_peek(self.iter.idx(index))
}
}
/// An iterator which just modifies the contained state throughout iteration.
pub struct Unfoldr<'self, A, St> {
priv f: &'self fn(&mut St) -> Option<A>,
/// Internal state that will be yielded on the next iteration
state: St
}
impl<'self, A, St> Unfoldr<'self, A, St> {
/// Creates a new iterator with the specified closure as the "iterator
/// function" and an initial state to eventually pass to the iterator
#[inline]
pub fn new<'a>(initial_state: St, f: &'a fn(&mut St) -> Option<A>)
-> Unfoldr<'a, A, St> {
Unfoldr {
f: f,
state: initial_state
}
}
}
impl<'self, A, St> Iterator<A> for Unfoldr<'self, A, St> {
#[inline]
fn next(&mut self) -> Option<A> {
(self.f)(&mut self.state)
}
}
/// An infinite iterator starting at `start` and advancing by `step` with each
/// iteration
#[deriving(Clone)]
2013-04-24 18:54:13 -05:00
pub struct Counter<A> {
/// The current state the counter is at (next value to be yielded)
2013-04-24 18:54:13 -05:00
state: A,
/// The amount that this iterator is stepping by
2013-04-24 18:54:13 -05:00
step: A
}
impl<A> Counter<A> {
/// Creates a new counter with the specified start/step
#[inline]
pub fn new(start: A, step: A) -> Counter<A> {
2013-04-24 18:54:13 -05:00
Counter{state: start, step: step}
}
}
/// A range of numbers from [0, N)
#[deriving(Clone, DeepClone)]
pub struct Range<A> {
priv state: A,
priv stop: A,
priv one: A
}
/// Return an iterator over the range [start, stop)
#[inline]
pub fn range<A: Add<A, A> + Ord + Clone + One>(start: A, stop: A) -> Range<A> {
Range{state: start, stop: stop, one: One::one()}
}
impl<A: Add<A, A> + Ord + Clone + One> Iterator<A> for Range<A> {
#[inline]
fn next(&mut self) -> Option<A> {
if self.state < self.stop {
let result = self.state.clone();
self.state = self.state + self.one;
Some(result)
} else {
None
}
}
}
2013-04-24 18:54:13 -05:00
impl<A: Add<A, A> + Clone> Iterator<A> for Counter<A> {
#[inline]
2013-04-24 18:54:13 -05:00
fn next(&mut self) -> Option<A> {
let result = self.state.clone();
self.state = self.state + self.step;
2013-04-24 18:54:13 -05:00
Some(result)
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
(uint::max_value, None) // Too bad we can't specify an infinite lower bound
}
}
/// An iterator that repeats an element endlessly
#[deriving(Clone, DeepClone)]
pub struct Repeat<A> {
priv element: A
}
impl<A: Clone> Repeat<A> {
/// Create a new `Repeat` that enlessly repeats the element `elt`.
#[inline]
pub fn new(elt: A) -> Repeat<A> {
Repeat{element: elt}
}
}
impl<A: Clone> Iterator<A> for Repeat<A> {
#[inline]
fn next(&mut self) -> Option<A> { self.idx(0) }
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) { (uint::max_value, None) }
}
impl<A: Clone> DoubleEndedIterator<A> for Repeat<A> {
#[inline]
fn next_back(&mut self) -> Option<A> { self.idx(0) }
}
impl<A: Clone> RandomAccessIterator<A> for Repeat<A> {
#[inline]
fn indexable(&self) -> uint { uint::max_value }
#[inline]
fn idx(&self, _: uint) -> Option<A> { Some(self.element.clone()) }
}
#[cfg(test)]
mod tests {
use super::*;
use prelude::*;
2013-07-29 12:18:45 -05:00
use cmp;
use uint;
2013-04-24 18:54:13 -05:00
#[test]
2013-06-06 15:34:50 -05:00
fn test_counter_from_iter() {
let mut it = Counter::new(0, 5).take_(10);
let xs: ~[int] = FromIterator::from_iterator(&mut it);
2013-04-24 18:54:13 -05:00
assert_eq!(xs, ~[0, 5, 10, 15, 20, 25, 30, 35, 40, 45]);
}
2013-04-19 10:29:38 -05:00
#[test]
fn test_iterator_chain() {
let xs = [0u, 1, 2, 3, 4, 5];
let ys = [30u, 40, 50, 60];
2013-04-19 10:29:38 -05:00
let expected = [0, 1, 2, 3, 4, 5, 30, 40, 50, 60];
let mut it = xs.iter().chain_(ys.iter());
2013-04-19 10:29:38 -05:00
let mut i = 0;
for &x in it {
2013-04-19 10:29:38 -05:00
assert_eq!(x, expected[i]);
i += 1;
}
assert_eq!(i, expected.len());
let ys = Counter::new(30u, 10).take_(4);
let mut it = xs.iter().transform(|&x| x).chain_(ys);
let mut i = 0;
for x in it {
assert_eq!(x, expected[i]);
i += 1;
}
assert_eq!(i, expected.len());
2013-04-19 10:29:38 -05:00
}
#[test]
fn test_filter_map() {
let mut it = Counter::new(0u, 1u).take_(10)
.filter_map(|x| if x.is_even() { Some(x*x) } else { None });
2013-06-06 15:34:50 -05:00
assert_eq!(it.collect::<~[uint]>(), ~[0*0, 2*2, 4*4, 6*6, 8*8]);
}
#[test]
fn test_iterator_enumerate() {
let xs = [0u, 1, 2, 3, 4, 5];
let mut it = xs.iter().enumerate();
for (i, &x) in it {
assert_eq!(i, x);
}
}
#[test]
fn test_iterator_take_while() {
let xs = [0u, 1, 2, 3, 5, 13, 15, 16, 17, 19];
let ys = [0u, 1, 2, 3, 5, 13];
let mut it = xs.iter().take_while(|&x| *x < 15u);
let mut i = 0;
for &x in it {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, ys.len());
}
#[test]
fn test_iterator_skip_while() {
let xs = [0u, 1, 2, 3, 5, 13, 15, 16, 17, 19];
let ys = [15, 16, 17, 19];
let mut it = xs.iter().skip_while(|&x| *x < 15u);
let mut i = 0;
for &x in it {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, ys.len());
}
#[test]
fn test_iterator_skip() {
let xs = [0u, 1, 2, 3, 5, 13, 15, 16, 17, 19, 20, 30];
let ys = [13, 15, 16, 17, 19, 20, 30];
let mut it = xs.iter().skip(5);
let mut i = 0;
for &x in it {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, ys.len());
}
#[test]
fn test_iterator_take() {
let xs = [0u, 1, 2, 3, 5, 13, 15, 16, 17, 19];
let ys = [0u, 1, 2, 3, 5];
let mut it = xs.iter().take_(5);
let mut i = 0;
for &x in it {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, ys.len());
}
#[test]
fn test_iterator_scan() {
// test the type inference
fn add(old: &mut int, new: &uint) -> Option<float> {
*old += *new as int;
Some(*old as float)
}
let xs = [0u, 1, 2, 3, 4];
let ys = [0f, 1f, 3f, 6f, 10f];
let mut it = xs.iter().scan(0, add);
let mut i = 0;
for x in it {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, ys.len());
}
#[test]
fn test_iterator_flat_map() {
let xs = [0u, 3, 6];
let ys = [0u, 1, 2, 3, 4, 5, 6, 7, 8];
let mut it = xs.iter().flat_map_(|&x| Counter::new(x, 1).take_(3));
let mut i = 0;
for x in it {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, ys.len());
}
#[test]
fn test_peek() {
let xs = [1u, 2, 3, 4];
let mut n = 0;
let ys = xs.iter()
.transform(|&x| x)
.peek_(|_| n += 1)
.collect::<~[uint]>();
assert_eq!(n, xs.len());
assert_eq!(xs, ys.as_slice());
}
#[test]
fn test_unfoldr() {
fn count(st: &mut uint) -> Option<uint> {
if *st < 10 {
let ret = Some(*st);
*st += 1;
ret
} else {
None
}
}
let mut it = Unfoldr::new(0, count);
let mut i = 0;
for counted in it {
assert_eq!(counted, i);
i += 1;
}
assert_eq!(i, 10);
}
2013-07-18 10:34:28 -05:00
#[test]
fn test_cycle() {
let cycle_len = 3;
let it = Counter::new(0u, 1).take_(cycle_len).cycle();
2013-07-18 10:34:28 -05:00
assert_eq!(it.size_hint(), (uint::max_value, None));
for (i, x) in it.take_(100).enumerate() {
2013-07-18 10:34:28 -05:00
assert_eq!(i % cycle_len, x);
}
let mut it = Counter::new(0u, 1).take_(0).cycle();
2013-07-18 10:34:28 -05:00
assert_eq!(it.size_hint(), (0, Some(0)));
assert_eq!(it.next(), None);
}
#[test]
fn test_iterator_nth() {
let v = &[0, 1, 2, 3, 4];
for i in range(0u, v.len()) {
assert_eq!(v.iter().nth(i).unwrap(), &v[i]);
}
}
#[test]
fn test_iterator_last() {
let v = &[0, 1, 2, 3, 4];
assert_eq!(v.iter().last_().unwrap(), &4);
assert_eq!(v.slice(0, 1).iter().last_().unwrap(), &0);
}
#[test]
fn test_iterator_len() {
let v = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert_eq!(v.slice(0, 4).iter().len_(), 4);
assert_eq!(v.slice(0, 10).iter().len_(), 10);
assert_eq!(v.slice(0, 0).iter().len_(), 0);
}
#[test]
fn test_iterator_sum() {
let v = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert_eq!(v.slice(0, 4).iter().transform(|&x| x).sum(), 6);
assert_eq!(v.iter().transform(|&x| x).sum(), 55);
assert_eq!(v.slice(0, 0).iter().transform(|&x| x).sum(), 0);
}
#[test]
fn test_iterator_product() {
let v = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert_eq!(v.slice(0, 4).iter().transform(|&x| x).product(), 0);
assert_eq!(v.slice(1, 5).iter().transform(|&x| x).product(), 24);
assert_eq!(v.slice(0, 0).iter().transform(|&x| x).product(), 1);
}
#[test]
fn test_iterator_max() {
let v = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert_eq!(v.slice(0, 4).iter().transform(|&x| x).max(), Some(3));
assert_eq!(v.iter().transform(|&x| x).max(), Some(10));
assert_eq!(v.slice(0, 0).iter().transform(|&x| x).max(), None);
}
#[test]
fn test_iterator_min() {
let v = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert_eq!(v.slice(0, 4).iter().transform(|&x| x).min(), Some(0));
assert_eq!(v.iter().transform(|&x| x).min(), Some(0));
assert_eq!(v.slice(0, 0).iter().transform(|&x| x).min(), None);
}
#[test]
fn test_iterator_size_hint() {
let c = Counter::new(0, 1);
let v = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
let v2 = &[10, 11, 12];
let vi = v.iter();
assert_eq!(c.size_hint(), (uint::max_value, None));
assert_eq!(vi.size_hint(), (10, Some(10)));
assert_eq!(c.take_(5).size_hint(), (5, Some(5)));
assert_eq!(c.skip(5).size_hint().second(), None);
assert_eq!(c.take_while(|_| false).size_hint(), (0, None));
assert_eq!(c.skip_while(|_| false).size_hint(), (0, None));
assert_eq!(c.enumerate().size_hint(), (uint::max_value, None));
assert_eq!(c.chain_(vi.transform(|&i| i)).size_hint(), (uint::max_value, None));
assert_eq!(c.zip(vi).size_hint(), (10, Some(10)));
assert_eq!(c.scan(0, |_,_| Some(0)).size_hint(), (0, None));
assert_eq!(c.filter(|_| false).size_hint(), (0, None));
assert_eq!(c.transform(|_| 0).size_hint(), (uint::max_value, None));
assert_eq!(c.filter_map(|_| Some(0)).size_hint(), (0, None));
assert_eq!(vi.take_(5).size_hint(), (5, Some(5)));
assert_eq!(vi.take_(12).size_hint(), (10, Some(10)));
assert_eq!(vi.skip(3).size_hint(), (7, Some(7)));
assert_eq!(vi.skip(12).size_hint(), (0, Some(0)));
assert_eq!(vi.take_while(|_| false).size_hint(), (0, Some(10)));
assert_eq!(vi.skip_while(|_| false).size_hint(), (0, Some(10)));
assert_eq!(vi.enumerate().size_hint(), (10, Some(10)));
assert_eq!(vi.chain_(v2.iter()).size_hint(), (13, Some(13)));
assert_eq!(vi.zip(v2.iter()).size_hint(), (3, Some(3)));
assert_eq!(vi.scan(0, |_,_| Some(0)).size_hint(), (0, Some(10)));
assert_eq!(vi.filter(|_| false).size_hint(), (0, Some(10)));
assert_eq!(vi.transform(|i| i+1).size_hint(), (10, Some(10)));
assert_eq!(vi.filter_map(|_| Some(0)).size_hint(), (0, Some(10)));
}
2013-06-03 16:48:52 -05:00
#[test]
fn test_collect() {
2013-06-06 15:34:50 -05:00
let a = ~[1, 2, 3, 4, 5];
2013-06-03 16:48:52 -05:00
let b: ~[int] = a.iter().transform(|&x| x).collect();
assert_eq!(a, b);
}
#[test]
fn test_all() {
let v = ~&[1, 2, 3, 4, 5];
assert!(v.iter().all(|&x| x < 10));
assert!(!v.iter().all(|&x| x.is_even()));
assert!(!v.iter().all(|&x| x > 100));
assert!(v.slice(0, 0).iter().all(|_| fail!()));
}
#[test]
fn test_any() {
let v = ~&[1, 2, 3, 4, 5];
2013-07-04 21:13:26 -05:00
assert!(v.iter().any(|&x| x < 10));
assert!(v.iter().any(|&x| x.is_even()));
assert!(!v.iter().any(|&x| x > 100));
assert!(!v.slice(0, 0).iter().any(|_| fail!()));
}
2013-06-15 16:42:31 -05:00
#[test]
fn test_find() {
let v = &[1, 3, 9, 27, 103, 14, 11];
assert_eq!(*v.iter().find_(|x| *x & 1 == 0).unwrap(), 14);
assert_eq!(*v.iter().find_(|x| *x % 3 == 0).unwrap(), 3);
assert!(v.iter().find_(|x| *x % 12 == 0).is_none());
2013-06-15 16:42:31 -05:00
}
2013-06-15 16:56:26 -05:00
#[test]
fn test_position() {
let v = &[1, 3, 9, 27, 103, 14, 11];
2013-07-04 21:13:26 -05:00
assert_eq!(v.iter().position(|x| *x & 1 == 0).unwrap(), 5);
assert_eq!(v.iter().position(|x| *x % 3 == 0).unwrap(), 1);
assert!(v.iter().position(|x| *x % 12 == 0).is_none());
2013-06-15 16:56:26 -05:00
}
#[test]
fn test_count() {
let xs = &[1, 2, 2, 1, 5, 9, 0, 2];
assert_eq!(xs.iter().count(|x| *x == 2), 3);
assert_eq!(xs.iter().count(|x| *x == 5), 1);
assert_eq!(xs.iter().count(|x| *x == 95), 0);
}
#[test]
fn test_max_by() {
let xs = [-3, 0, 1, 5, -10];
assert_eq!(*xs.iter().max_by(|x| x.abs()).unwrap(), -10);
}
#[test]
fn test_min_by() {
let xs = [-3, 0, 1, 5, -10];
assert_eq!(*xs.iter().min_by(|x| x.abs()).unwrap(), 0);
}
#[test]
fn test_invert() {
let xs = [2, 4, 6, 8, 10, 12, 14, 16];
let mut it = xs.iter();
it.next();
it.next();
assert_eq!(it.invert().transform(|&x| x).collect::<~[int]>(), ~[16, 14, 12, 10, 8, 6]);
}
#[test]
fn test_double_ended_map() {
let xs = [1, 2, 3, 4, 5, 6];
let mut it = xs.iter().transform(|&x| x * -1);
assert_eq!(it.next(), Some(-1));
assert_eq!(it.next(), Some(-2));
assert_eq!(it.next_back(), Some(-6));
assert_eq!(it.next_back(), Some(-5));
assert_eq!(it.next(), Some(-3));
assert_eq!(it.next_back(), Some(-4));
assert_eq!(it.next(), None);
}
#[test]
fn test_double_ended_filter() {
let xs = [1, 2, 3, 4, 5, 6];
let mut it = xs.iter().filter(|&x| *x & 1 == 0);
assert_eq!(it.next_back().unwrap(), &6);
assert_eq!(it.next_back().unwrap(), &4);
assert_eq!(it.next().unwrap(), &2);
assert_eq!(it.next_back(), None);
}
#[test]
fn test_double_ended_filter_map() {
let xs = [1, 2, 3, 4, 5, 6];
let mut it = xs.iter().filter_map(|&x| if x & 1 == 0 { Some(x * 2) } else { None });
assert_eq!(it.next_back().unwrap(), 12);
assert_eq!(it.next_back().unwrap(), 8);
assert_eq!(it.next().unwrap(), 4);
assert_eq!(it.next_back(), None);
}
#[test]
fn test_double_ended_chain() {
let xs = [1, 2, 3, 4, 5];
let ys = ~[7, 9, 11];
let mut it = xs.iter().chain_(ys.iter()).invert();
assert_eq!(it.next().unwrap(), &11)
assert_eq!(it.next().unwrap(), &9)
assert_eq!(it.next_back().unwrap(), &1)
assert_eq!(it.next_back().unwrap(), &2)
assert_eq!(it.next_back().unwrap(), &3)
assert_eq!(it.next_back().unwrap(), &4)
assert_eq!(it.next_back().unwrap(), &5)
assert_eq!(it.next_back().unwrap(), &7)
assert_eq!(it.next_back(), None)
}
2013-07-22 19:11:24 -05:00
2013-07-29 12:18:45 -05:00
#[cfg(test)]
fn check_randacc_iter<A: Eq, T: Clone + RandomAccessIterator<A>>(a: T, len: uint)
{
let mut b = a.clone();
assert_eq!(len, b.indexable());
let mut n = 0;
for (i, elt) in a.enumerate() {
2013-07-29 12:18:45 -05:00
assert_eq!(Some(elt), b.idx(i));
n += 1;
}
assert_eq!(n, len);
assert_eq!(None, b.idx(n));
// call recursively to check after picking off an element
if len > 0 {
b.next();
check_randacc_iter(b, len-1);
}
}
#[test]
fn test_double_ended_flat_map() {
let u = [0u,1];
let v = [5,6,7,8];
let mut it = u.iter().flat_map_(|x| v.slice(*x, v.len()).iter());
assert_eq!(it.next_back().unwrap(), &8);
assert_eq!(it.next().unwrap(), &5);
assert_eq!(it.next_back().unwrap(), &7);
assert_eq!(it.next_back().unwrap(), &6);
assert_eq!(it.next_back().unwrap(), &8);
assert_eq!(it.next().unwrap(), &6);
assert_eq!(it.next_back().unwrap(), &7);
assert_eq!(it.next_back(), None);
assert_eq!(it.next(), None);
assert_eq!(it.next_back(), None);
}
2013-07-22 19:11:24 -05:00
#[test]
fn test_random_access_chain() {
let xs = [1, 2, 3, 4, 5];
let ys = ~[7, 9, 11];
let mut it = xs.iter().chain_(ys.iter());
assert_eq!(it.idx(0).unwrap(), &1);
assert_eq!(it.idx(5).unwrap(), &7);
assert_eq!(it.idx(7).unwrap(), &11);
assert!(it.idx(8).is_none());
it.next();
it.next();
it.next_back();
assert_eq!(it.idx(0).unwrap(), &3);
assert_eq!(it.idx(4).unwrap(), &9);
assert!(it.idx(6).is_none());
2013-07-29 12:18:45 -05:00
check_randacc_iter(it, xs.len() + ys.len() - 3);
}
#[test]
fn test_random_access_enumerate() {
let xs = [1, 2, 3, 4, 5];
check_randacc_iter(xs.iter().enumerate(), xs.len());
}
#[test]
fn test_random_access_invert() {
let xs = [1, 2, 3, 4, 5];
check_randacc_iter(xs.iter().invert(), xs.len());
let mut it = xs.iter().invert();
it.next();
it.next_back();
it.next();
check_randacc_iter(it, xs.len() - 3);
}
2013-07-29 12:18:45 -05:00
#[test]
fn test_random_access_zip() {
let xs = [1, 2, 3, 4, 5];
let ys = [7, 9, 11];
check_randacc_iter(xs.iter().zip(ys.iter()), cmp::min(xs.len(), ys.len()));
}
#[test]
fn test_random_access_take() {
let xs = [1, 2, 3, 4, 5];
let empty: &[int] = [];
check_randacc_iter(xs.iter().take_(3), 3);
check_randacc_iter(xs.iter().take_(20), xs.len());
check_randacc_iter(xs.iter().take_(0), 0);
check_randacc_iter(empty.iter().take_(2), 0);
}
#[test]
fn test_random_access_skip() {
let xs = [1, 2, 3, 4, 5];
let empty: &[int] = [];
check_randacc_iter(xs.iter().skip(2), xs.len() - 2);
check_randacc_iter(empty.iter().skip(2), 0);
}
#[test]
fn test_random_access_peek() {
let xs = [1, 2, 3, 4, 5];
// test .transform and .peek_ that don't implement Clone
let it = xs.iter().peek_(|_| {});
assert_eq!(xs.len(), it.indexable());
for (i, elt) in xs.iter().enumerate() {
2013-07-29 12:18:45 -05:00
assert_eq!(Some(elt), it.idx(i));
}
}
#[test]
fn test_random_access_transform() {
let xs = [1, 2, 3, 4, 5];
// test .transform and .peek_ that don't implement Clone
let it = xs.iter().transform(|x| *x);
assert_eq!(xs.len(), it.indexable());
for (i, elt) in xs.iter().enumerate() {
2013-07-29 12:18:45 -05:00
assert_eq!(Some(*elt), it.idx(i));
}
}
#[test]
fn test_random_access_cycle() {
let xs = [1, 2, 3, 4, 5];
let empty: &[int] = [];
check_randacc_iter(xs.iter().cycle().take_(27), 27);
check_randacc_iter(empty.iter().cycle(), 0);
2013-07-22 19:11:24 -05:00
}
}