rust/src/libcore/iterator.rs

679 lines
18 KiB
Rust
Raw Normal View History

2013-04-09 09:54:32 -05:00
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2013-04-19 11:17:24 -05:00
/*! Composable external iterators
The `Iterator` trait defines an interface for objects which implement iteration as a state machine.
Algorithms like `zip` are provided as `Iterator` implementations which wrap other objects
implementing the `Iterator` trait.
*/
2013-04-09 09:54:32 -05:00
use prelude::*;
2013-04-15 09:30:16 -05:00
pub trait Iterator<A> {
2013-04-09 09:54:32 -05:00
/// Advance the iterator and return the next value. Return `None` when the end is reached.
2013-04-15 09:30:16 -05:00
fn next(&mut self) -> Option<A>;
2013-04-09 09:54:32 -05:00
}
2013-04-19 11:17:24 -05:00
/// Iterator adaptors provided for every `Iterator` implementation. The adaptor objects are also
/// implementations of the `Iterator` trait.
///
/// In the future these will be default methods instead of a utility trait.
2013-04-15 09:30:16 -05:00
pub trait IteratorUtil<A> {
fn chain<U: Iterator<A>>(self, other: U) -> ChainIterator<Self, U>;
2013-04-15 09:30:16 -05:00
fn zip<B, U: Iterator<B>>(self, other: U) -> ZipIterator<Self, U>;
// FIXME: #5898: should be called map
fn transform<'r, B>(self, f: &'r fn(A) -> B) -> MapIterator<'r, A, B, Self>;
fn filter<'r>(self, predicate: &'r fn(&A) -> bool) -> FilterIterator<'r, A, Self>;
fn filter_map<'r, B>(self, f: &'r fn(A) -> Option<B>) -> FilterMapIterator<'r, A, B, Self>;
2013-04-19 08:18:22 -05:00
fn enumerate(self) -> EnumerateIterator<Self>;
fn skip_while<'r>(self, predicate: &'r fn(&A) -> bool) -> SkipWhileIterator<'r, A, Self>;
fn take_while<'r>(self, predicate: &'r fn(&A) -> bool) -> TakeWhileIterator<'r, A, Self>;
2013-04-19 05:06:33 -05:00
fn skip(self, n: uint) -> SkipIterator<Self>;
fn take(self, n: uint) -> TakeIterator<Self>;
fn scan<'r, St, B>(self, initial_state: St, f: &'r fn(&mut St, A) -> Option<B>)
-> ScanIterator<'r, A, B, Self, St>;
2013-05-02 17:33:18 -05:00
#[cfg(stage0)]
2013-04-15 09:30:16 -05:00
fn advance(&mut self, f: &fn(A) -> bool);
2013-05-02 17:33:18 -05:00
#[cfg(not(stage0))]
fn advance(&mut self, f: &fn(A) -> bool) -> bool;
fn to_vec(self) -> ~[A];
fn nth(&mut self, n: uint) -> A;
fn first(&mut self) -> A;
fn last(&mut self) -> A;
fn fold<B>(&mut self, start: B, f: &fn(B, A) -> B) -> B;
fn count(&mut self) -> uint;
2013-04-15 09:30:16 -05:00
}
2013-04-19 11:17:24 -05:00
/// Iterator adaptors provided for every `Iterator` implementation. The adaptor objects are also
/// implementations of the `Iterator` trait.
///
/// In the future these will be default methods instead of a utility trait.
2013-04-15 09:30:16 -05:00
impl<A, T: Iterator<A>> IteratorUtil<A> for T {
2013-04-19 10:29:38 -05:00
#[inline(always)]
fn chain<U: Iterator<A>>(self, other: U) -> ChainIterator<T, U> {
2013-04-19 10:29:38 -05:00
ChainIterator{a: self, b: other, flag: false}
}
2013-04-15 09:30:16 -05:00
#[inline(always)]
fn zip<B, U: Iterator<B>>(self, other: U) -> ZipIterator<T, U> {
ZipIterator{a: self, b: other}
}
// FIXME: #5898: should be called map
#[inline(always)]
fn transform<'r, B>(self, f: &'r fn(A) -> B) -> MapIterator<'r, A, B, T> {
MapIterator{iter: self, f: f}
}
#[inline(always)]
fn filter<'r>(self, predicate: &'r fn(&A) -> bool) -> FilterIterator<'r, A, T> {
FilterIterator{iter: self, predicate: predicate}
}
#[inline(always)]
fn filter_map<'r, B>(self, f: &'r fn(A) -> Option<B>) -> FilterMapIterator<'r, A, B, T> {
FilterMapIterator { iter: self, f: f }
}
#[inline(always)]
fn enumerate(self) -> EnumerateIterator<T> {
EnumerateIterator{iter: self, count: 0}
}
2013-04-18 07:15:40 -05:00
#[inline(always)]
fn skip_while<'r>(self, predicate: &'r fn(&A) -> bool) -> SkipWhileIterator<'r, A, T> {
SkipWhileIterator{iter: self, flag: false, predicate: predicate}
2013-04-18 07:15:40 -05:00
}
#[inline(always)]
fn take_while<'r>(self, predicate: &'r fn(&A) -> bool) -> TakeWhileIterator<'r, A, T> {
2013-04-18 07:15:40 -05:00
TakeWhileIterator{iter: self, flag: false, predicate: predicate}
}
2013-04-19 05:06:33 -05:00
#[inline(always)]
fn skip(self, n: uint) -> SkipIterator<T> {
SkipIterator{iter: self, n: n}
}
#[inline(always)]
fn take(self, n: uint) -> TakeIterator<T> {
TakeIterator{iter: self, n: n}
}
#[inline(always)]
fn scan<'r, St, B>(self, initial_state: St, f: &'r fn(&mut St, A) -> Option<B>)
-> ScanIterator<'r, A, B, T, St> {
ScanIterator{iter: self, f: f, state: initial_state}
}
2013-04-15 09:30:16 -05:00
/// A shim implementing the `for` loop iteration protocol for iterator objects
#[inline]
2013-05-02 17:33:18 -05:00
#[cfg(stage0)]
2013-04-15 09:30:16 -05:00
fn advance(&mut self, f: &fn(A) -> bool) {
loop {
match self.next() {
Some(x) => {
2013-05-02 17:33:18 -05:00
if !f(x) { return; }
2013-04-15 09:30:16 -05:00
}
2013-05-02 17:33:18 -05:00
None => { return; }
}
}
}
/// A shim implementing the `for` loop iteration protocol for iterator objects
#[inline]
#[cfg(not(stage0))]
fn advance(&mut self, f: &fn(A) -> bool) -> bool {
loop {
match self.next() {
Some(x) => {
if !f(x) { return false; }
}
None => { return true; }
2013-04-09 09:54:32 -05:00
}
}
}
#[inline(always)]
fn to_vec(self) -> ~[A] {
let mut v = ~[];
let mut it = self;
for it.advance() |x| { v.push(x); }
return v;
}
/// Get `n`th element of an iterator.
#[inline(always)]
fn nth(&mut self, n: uint) -> A {
let mut i = n;
loop {
match self.next() {
Some(x) => { if i == 0 { return x; }}
None => { fail!("cannot get %uth element", n) }
}
i -= 1;
}
}
// Get first elemet of an iterator.
#[inline(always)]
fn first(&mut self) -> A {
match self.next() {
Some(x) => x ,
None => fail!("cannot get first element")
}
}
// Get last element of an iterator.
//
// If the iterator have an infinite length, this method won't return.
#[inline(always)]
fn last(&mut self) -> A {
let mut elm = match self.next() {
Some(x) => x,
None => fail!("cannot get last element")
};
for self.advance |e| { elm = e; }
return elm;
}
/// Reduce an iterator to an accumulated value
#[inline]
fn fold<B>(&mut self, init: B, f: &fn(B, A) -> B) -> B {
let mut accum = init;
loop {
match self.next() {
Some(x) => { accum = f(accum, x); }
None => { break; }
}
}
return accum;
}
/// Count the number of an iterator elemenrs
#[inline(always)]
fn count(&mut self) -> uint { self.fold(0, |cnt, _x| cnt + 1) }
2013-04-09 09:54:32 -05:00
}
pub struct ChainIterator<T, U> {
2013-04-19 10:29:38 -05:00
priv a: T,
priv b: U,
2013-04-19 10:29:38 -05:00
priv flag: bool
}
impl<A, T: Iterator<A>, U: Iterator<A>> Iterator<A> for ChainIterator<T, U> {
2013-04-19 10:29:38 -05:00
#[inline]
fn next(&mut self) -> Option<A> {
if self.flag {
self.b.next()
} else {
match self.a.next() {
Some(x) => return Some(x),
_ => ()
}
self.flag = true;
self.b.next()
}
}
}
2013-04-09 09:54:32 -05:00
pub struct ZipIterator<T, U> {
priv a: T,
priv b: U
}
impl<A, B, T: Iterator<A>, U: Iterator<B>> Iterator<(A, B)> for ZipIterator<T, U> {
#[inline]
fn next(&mut self) -> Option<(A, B)> {
match (self.a.next(), self.b.next()) {
(Some(x), Some(y)) => Some((x, y)),
_ => None
}
}
}
2013-04-19 08:18:22 -05:00
pub struct MapIterator<'self, A, B, T> {
priv iter: T,
priv f: &'self fn(A) -> B
}
impl<'self, A, B, T: Iterator<A>> Iterator<B> for MapIterator<'self, A, B, T> {
#[inline]
fn next(&mut self) -> Option<B> {
match self.iter.next() {
Some(a) => Some((self.f)(a)),
_ => None
}
}
}
2013-04-09 09:54:32 -05:00
pub struct FilterIterator<'self, A, T> {
priv iter: T,
priv predicate: &'self fn(&A) -> bool
}
impl<'self, A, T: Iterator<A>> Iterator<A> for FilterIterator<'self, A, T> {
#[inline]
fn next(&mut self) -> Option<A> {
2013-04-15 09:30:16 -05:00
for self.iter.advance |x| {
2013-04-09 09:54:32 -05:00
if (self.predicate)(&x) {
return Some(x);
} else {
loop
}
}
None
}
}
pub struct FilterMapIterator<'self, A, B, T> {
priv iter: T,
priv f: &'self fn(A) -> Option<B>
}
impl<'self, A, B, T: Iterator<A>> Iterator<B> for FilterMapIterator<'self, A, B, T> {
#[inline]
fn next(&mut self) -> Option<B> {
loop {
match self.iter.next() {
None => { return None; }
Some(a) => {
match (self.f)(a) {
Some(b) => { return Some(b); }
None => { loop; }
}
}
}
}
}
}
pub struct EnumerateIterator<T> {
priv iter: T,
priv count: uint
}
impl<A, T: Iterator<A>> Iterator<(uint, A)> for EnumerateIterator<T> {
#[inline]
fn next(&mut self) -> Option<(uint, A)> {
match self.iter.next() {
Some(a) => {
let ret = Some((self.count, a));
self.count += 1;
ret
}
_ => None
}
}
}
2013-04-18 07:15:40 -05:00
pub struct SkipWhileIterator<'self, A, T> {
2013-04-18 07:15:40 -05:00
priv iter: T,
priv flag: bool,
priv predicate: &'self fn(&A) -> bool
}
impl<'self, A, T: Iterator<A>> Iterator<A> for SkipWhileIterator<'self, A, T> {
2013-04-18 07:15:40 -05:00
#[inline]
fn next(&mut self) -> Option<A> {
let mut next = self.iter.next();
if self.flag {
next
} else {
loop {
match next {
Some(x) => {
if (self.predicate)(&x) {
next = self.iter.next();
loop
} else {
self.flag = true;
return Some(x)
}
}
None => return None
}
}
}
}
}
pub struct TakeWhileIterator<'self, A, T> {
priv iter: T,
priv flag: bool,
priv predicate: &'self fn(&A) -> bool
}
impl<'self, A, T: Iterator<A>> Iterator<A> for TakeWhileIterator<'self, A, T> {
#[inline]
fn next(&mut self) -> Option<A> {
if self.flag {
None
} else {
match self.iter.next() {
Some(x) => {
if (self.predicate)(&x) {
Some(x)
} else {
self.flag = true;
None
}
}
None => None
}
}
}
}
2013-04-19 05:06:33 -05:00
pub struct SkipIterator<T> {
priv iter: T,
priv n: uint
}
impl<A, T: Iterator<A>> Iterator<A> for SkipIterator<T> {
#[inline]
fn next(&mut self) -> Option<A> {
let mut next = self.iter.next();
if self.n == 0 {
next
} else {
let n = self.n;
for n.times {
match next {
Some(_) => {
next = self.iter.next();
loop
}
None => {
self.n = 0;
return None
}
}
}
self.n = 0;
next
}
}
}
pub struct TakeIterator<T> {
priv iter: T,
priv n: uint
}
impl<A, T: Iterator<A>> Iterator<A> for TakeIterator<T> {
#[inline]
fn next(&mut self) -> Option<A> {
let next = self.iter.next();
if self.n != 0 {
self.n -= 1;
next
} else {
None
}
}
}
2013-04-24 18:54:13 -05:00
pub struct ScanIterator<'self, A, B, T, St> {
priv iter: T,
priv f: &'self fn(&mut St, A) -> Option<B>,
state: St
}
impl<'self, A, B, T: Iterator<A>, St> Iterator<B> for ScanIterator<'self, A, B, T, St> {
#[inline]
fn next(&mut self) -> Option<B> {
self.iter.next().chain(|a| (self.f)(&mut self.state, a))
}
}
pub struct UnfoldrIterator<'self, A, St> {
priv f: &'self fn(&mut St) -> Option<A>,
state: St
}
pub impl<'self, A, St> UnfoldrIterator<'self, A, St> {
#[inline]
fn new(f: &'self fn(&mut St) -> Option<A>, initial_state: St)
-> UnfoldrIterator<'self, A, St> {
UnfoldrIterator {
f: f,
state: initial_state
}
}
}
impl<'self, A, St> Iterator<A> for UnfoldrIterator<'self, A, St> {
#[inline]
fn next(&mut self) -> Option<A> {
(self.f)(&mut self.state)
}
}
2013-04-24 18:54:13 -05:00
/// An infinite iterator starting at `start` and advancing by `step` with each iteration
pub struct Counter<A> {
state: A,
step: A
}
2013-04-24 18:54:13 -05:00
pub impl<A> Counter<A> {
#[inline(always)]
fn new(start: A, step: A) -> Counter<A> {
Counter{state: start, step: step}
}
}
impl<A: Add<A, A> + Clone> Iterator<A> for Counter<A> {
#[inline(always)]
fn next(&mut self) -> Option<A> {
let result = self.state.clone();
self.state = self.state.add(&self.step); // FIXME: #6050
Some(result)
}
}
#[cfg(test)]
mod tests {
use super::*;
use prelude::*;
2013-04-24 18:54:13 -05:00
#[test]
fn test_counter_to_vec() {
let mut it = Counter::new(0, 5).take(10);
let xs = iter::to_vec(|f| it.advance(f));
2013-04-24 18:54:13 -05:00
assert_eq!(xs, ~[0, 5, 10, 15, 20, 25, 30, 35, 40, 45]);
}
2013-04-19 10:29:38 -05:00
#[test]
fn test_iterator_chain() {
let xs = [0u, 1, 2, 3, 4, 5];
let ys = [30u, 40, 50, 60];
2013-04-19 10:29:38 -05:00
let expected = [0, 1, 2, 3, 4, 5, 30, 40, 50, 60];
let mut it = xs.iter().chain(ys.iter());
let mut i = 0;
for it.advance |&x: &uint| {
assert_eq!(x, expected[i]);
i += 1;
}
assert_eq!(i, expected.len());
let ys = Counter::new(30u, 10).take(4);
let mut it = xs.iter().transform(|&x| x).chain(ys);
let mut i = 0;
for it.advance |x: uint| {
assert_eq!(x, expected[i]);
i += 1;
}
assert_eq!(i, expected.len());
2013-04-19 10:29:38 -05:00
}
#[test]
fn test_filter_map() {
let it = Counter::new(0u, 1u).take(10)
.filter_map(|x: uint| if x.is_even() { Some(x*x) } else { None });
assert_eq!(it.to_vec(), ~[0*0, 2*2, 4*4, 6*6, 8*8]);
}
#[test]
fn test_iterator_enumerate() {
let xs = [0u, 1, 2, 3, 4, 5];
let mut it = xs.iter().enumerate();
for it.advance |(i, &x): (uint, &uint)| {
assert_eq!(i, x);
}
}
#[test]
fn test_iterator_take_while() {
let xs = [0u, 1, 2, 3, 5, 13, 15, 16, 17, 19];
let ys = [0u, 1, 2, 3, 5, 13];
let mut it = xs.iter().take_while(|&x| *x < 15u);
let mut i = 0;
for it.advance |&x: &uint| {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, ys.len());
}
#[test]
fn test_iterator_skip_while() {
let xs = [0u, 1, 2, 3, 5, 13, 15, 16, 17, 19];
let ys = [15, 16, 17, 19];
let mut it = xs.iter().skip_while(|&x| *x < 15u);
let mut i = 0;
for it.advance |&x: &uint| {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, ys.len());
}
#[test]
fn test_iterator_skip() {
let xs = [0u, 1, 2, 3, 5, 13, 15, 16, 17, 19, 20, 30];
let ys = [13, 15, 16, 17, 19, 20, 30];
let mut it = xs.iter().skip(5);
let mut i = 0;
for it.advance |&x: &uint| {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, ys.len());
}
#[test]
fn test_iterator_take() {
let xs = [0u, 1, 2, 3, 5, 13, 15, 16, 17, 19];
let ys = [0u, 1, 2, 3, 5];
let mut it = xs.iter().take(5);
let mut i = 0;
for it.advance |&x: &uint| {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, ys.len());
}
#[test]
fn test_iterator_scan() {
// test the type inference
fn add(old: &mut int, new: &uint) -> Option<float> {
*old += *new as int;
Some(*old as float)
}
let xs = [0u, 1, 2, 3, 4];
let ys = [0f, 1f, 3f, 6f, 10f];
let mut it = xs.iter().scan(0, add);
let mut i = 0;
for it.advance |x| {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, ys.len());
}
#[test]
fn test_unfoldr() {
fn count(st: &mut uint) -> Option<uint> {
if *st < 10 {
let ret = Some(*st);
*st += 1;
ret
} else {
None
}
}
let mut it = UnfoldrIterator::new(count, 0);
let mut i = 0;
for it.advance |counted| {
assert_eq!(counted, i);
i += 1;
}
assert_eq!(i, 10);
}
#[test]
fn test_iterator_nth() {
let v = &[0, 1, 2, 3, 4];
for uint::range(0, v.len()) |i| {
assert_eq!(v.iter().nth(i), &v[i]);
}
}
#[test]
#[should_fail]
fn test_iterator_nth_fail() {
let v = &[0, 1, 2, 3, 4];
v.iter().nth(5);
}
#[test]
fn test_iterator_first() {
let v = &[0, 1, 2, 3, 4];
assert_eq!(v.iter().first(), &0);
assert_eq!(v.slice(2, 5).iter().first(), &2);
}
#[test]
#[should_fail]
fn test_iterator_first_fail() {
let v: &[uint] = &[];
v.iter().first();
}
#[test]
fn test_iterator_last() {
let v = &[0, 1, 2, 3, 4];
assert_eq!(v.iter().last(), &4);
assert_eq!(v.slice(0, 1).iter().last(), &0);
}
#[test]
#[should_fail]
fn test_iterator_last_fail() {
let v: &[uint] = &[];
v.iter().last();
}
#[test]
fn test_iterator_count() {
let v = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert_eq!(v.slice(0, 4).iter().count(), 4);
assert_eq!(v.slice(0, 10).iter().count(), 10);
assert_eq!(v.slice(0, 0).iter().count(), 0);
}
}