rust/src/librustc/hir/map/definitions.rs

782 lines
27 KiB
Rust
Raw Normal View History

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! For each definition, we track the following data. A definition
//! here is defined somewhat circularly as "something with a def-id",
//! but it generally corresponds to things like structs, enums, etc.
//! There are also some rather random cases (like const initializer
//! expressions) that are mostly just leftovers.
use hir;
use hir::def_id::{CrateNum, DefId, DefIndex, LOCAL_CRATE, DefIndexAddressSpace,
CRATE_DEF_INDEX};
use ich::Fingerprint;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::indexed_vec::{IndexVec};
use rustc_data_structures::stable_hasher::StableHasher;
use serialize::{Encodable, Decodable, Encoder, Decoder};
use session::CrateDisambiguator;
use std::borrow::Borrow;
use std::fmt::Write;
use std::hash::Hash;
use syntax::ast;
use syntax::ext::hygiene::Mark;
use syntax::symbol::{Symbol, InternedString};
use syntax_pos::{Span, DUMMY_SP};
use util::nodemap::NodeMap;
2016-12-16 18:12:37 -06:00
/// The DefPathTable maps DefIndexes to DefKeys and vice versa.
/// Internally the DefPathTable holds a tree of DefKeys, where each DefKey
/// stores the DefIndex of its parent.
/// There is one DefPathTable for each crate.
pub struct DefPathTable {
index_to_key: [Vec<DefKey>; 2],
def_path_hashes: [Vec<DefPathHash>; 2],
}
// Unfortunately we have to provide a manual impl of Clone because of the
// fixed-sized array field.
impl Clone for DefPathTable {
fn clone(&self) -> Self {
DefPathTable {
index_to_key: [self.index_to_key[0].clone(),
self.index_to_key[1].clone()],
def_path_hashes: [self.def_path_hashes[0].clone(),
self.def_path_hashes[1].clone()],
}
}
}
impl DefPathTable {
fn allocate(&mut self,
key: DefKey,
def_path_hash: DefPathHash,
address_space: DefIndexAddressSpace)
-> DefIndex {
let index = {
let index_to_key = &mut self.index_to_key[address_space.index()];
let index = DefIndex::from_array_index(index_to_key.len(), address_space);
debug!("DefPathTable::insert() - {:?} <-> {:?}", key, index);
index_to_key.push(key);
index
};
self.def_path_hashes[address_space.index()].push(def_path_hash);
debug_assert!(self.def_path_hashes[address_space.index()].len() ==
self.index_to_key[address_space.index()].len());
index
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 15:16:55 -06:00
pub fn next_id(&self, address_space: DefIndexAddressSpace) -> DefIndex {
DefIndex::from_array_index(self.index_to_key[address_space.index()].len(), address_space)
}
#[inline(always)]
pub fn def_key(&self, index: DefIndex) -> DefKey {
self.index_to_key[index.address_space().index()]
[index.as_array_index()].clone()
}
#[inline(always)]
pub fn def_path_hash(&self, index: DefIndex) -> DefPathHash {
let ret = self.def_path_hashes[index.address_space().index()]
[index.as_array_index()];
debug!("def_path_hash({:?}) = {:?}", index, ret);
return ret
}
pub fn add_def_path_hashes_to(&self,
cnum: CrateNum,
out: &mut FxHashMap<DefPathHash, DefId>) {
for &address_space in &[DefIndexAddressSpace::Low, DefIndexAddressSpace::High] {
out.extend(
(&self.def_path_hashes[address_space.index()])
.iter()
.enumerate()
.map(|(index, &hash)| {
let def_id = DefId {
krate: cnum,
index: DefIndex::from_array_index(index, address_space),
};
(hash, def_id)
})
);
}
}
pub fn size(&self) -> usize {
self.index_to_key.iter().map(|v| v.len()).sum()
}
}
impl Encodable for DefPathTable {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
// Index to key
self.index_to_key[DefIndexAddressSpace::Low.index()].encode(s)?;
self.index_to_key[DefIndexAddressSpace::High.index()].encode(s)?;
// DefPath hashes
self.def_path_hashes[DefIndexAddressSpace::Low.index()].encode(s)?;
self.def_path_hashes[DefIndexAddressSpace::High.index()].encode(s)?;
Ok(())
}
}
impl Decodable for DefPathTable {
fn decode<D: Decoder>(d: &mut D) -> Result<DefPathTable, D::Error> {
let index_to_key_lo: Vec<DefKey> = Decodable::decode(d)?;
let index_to_key_hi: Vec<DefKey> = Decodable::decode(d)?;
let def_path_hashes_lo: Vec<DefPathHash> = Decodable::decode(d)?;
let def_path_hashes_hi: Vec<DefPathHash> = Decodable::decode(d)?;
let index_to_key = [index_to_key_lo, index_to_key_hi];
let def_path_hashes = [def_path_hashes_lo, def_path_hashes_hi];
Ok(DefPathTable {
index_to_key,
def_path_hashes,
})
}
}
2016-12-16 18:12:37 -06:00
/// The definition table containing node definitions.
/// It holds the DefPathTable for local DefIds/DefPaths and it also stores a
/// mapping from NodeIds to local DefIds.
#[derive(Clone)]
pub struct Definitions {
table: DefPathTable,
node_to_def_index: NodeMap<DefIndex>,
def_index_to_node: [Vec<ast::NodeId>; 2],
pub(super) node_to_hir_id: IndexVec<ast::NodeId, hir::HirId>,
/// If `Mark` is an ID of some macro expansion,
/// then `DefId` is the normal module (`mod`) in which the expanded macro was defined.
parent_modules_of_macro_defs: FxHashMap<Mark, DefId>,
/// Item with a given `DefIndex` was defined during macro expansion with ID `Mark`.
expansions_that_defined: FxHashMap<DefIndex, Mark>,
next_disambiguator: FxHashMap<(DefIndex, DefPathData), u32>,
def_index_to_span: FxHashMap<DefIndex, Span>,
}
/// A unique identifier that we can use to lookup a definition
/// precisely. It combines the index of the definition's parent (if
/// any) with a `DisambiguatedDefPathData`.
#[derive(Clone, PartialEq, Debug, Hash, RustcEncodable, RustcDecodable)]
pub struct DefKey {
/// Parent path.
pub parent: Option<DefIndex>,
/// Identifier of this node.
pub disambiguated_data: DisambiguatedDefPathData,
}
impl DefKey {
fn compute_stable_hash(&self, parent_hash: DefPathHash) -> DefPathHash {
let mut hasher = StableHasher::new();
// We hash a 0u8 here to disambiguate between regular DefPath hashes,
// and the special "root_parent" below.
0u8.hash(&mut hasher);
parent_hash.hash(&mut hasher);
let DisambiguatedDefPathData {
ref data,
disambiguator,
} = self.disambiguated_data;
::std::mem::discriminant(data).hash(&mut hasher);
2018-05-22 07:31:56 -05:00
if let Some(name) = data.get_opt_name() {
name.hash(&mut hasher);
}
disambiguator.hash(&mut hasher);
DefPathHash(hasher.finish())
}
fn root_parent_stable_hash(crate_name: &str,
crate_disambiguator: CrateDisambiguator)
-> DefPathHash {
let mut hasher = StableHasher::new();
// Disambiguate this from a regular DefPath hash,
// see compute_stable_hash() above.
1u8.hash(&mut hasher);
crate_name.hash(&mut hasher);
crate_disambiguator.hash(&mut hasher);
DefPathHash(hasher.finish())
}
}
/// Pair of `DefPathData` and an integer disambiguator. The integer is
/// normally 0, but in the event that there are multiple defs with the
/// same `parent` and `data`, we use this field to disambiguate
/// between them. This introduces some artificial ordering dependency
/// but means that if you have (e.g.) two impls for the same type in
/// the same module, they do get distinct def-ids.
#[derive(Clone, PartialEq, Debug, Hash, RustcEncodable, RustcDecodable)]
pub struct DisambiguatedDefPathData {
pub data: DefPathData,
pub disambiguator: u32
}
#[derive(Clone, Debug, Hash, RustcEncodable, RustcDecodable)]
pub struct DefPath {
/// the path leading from the crate root to the item
pub data: Vec<DisambiguatedDefPathData>,
/// what krate root is this path relative to?
pub krate: CrateNum,
}
impl DefPath {
pub fn is_local(&self) -> bool {
self.krate == LOCAL_CRATE
}
pub fn make<FN>(krate: CrateNum,
start_index: DefIndex,
mut get_key: FN) -> DefPath
where FN: FnMut(DefIndex) -> DefKey
{
let mut data = vec![];
let mut index = Some(start_index);
loop {
debug!("DefPath::make: krate={:?} index={:?}", krate, index);
let p = index.unwrap();
let key = get_key(p);
debug!("DefPath::make: key={:?}", key);
match key.disambiguated_data.data {
DefPathData::CrateRoot => {
assert!(key.parent.is_none());
break;
}
_ => {
data.push(key.disambiguated_data);
index = key.parent;
}
}
}
data.reverse();
DefPath { data: data, krate: krate }
}
/// Returns a string representation of the DefPath without
/// the crate-prefix. This method is useful if you don't have
/// a TyCtxt available.
pub fn to_string_no_crate(&self) -> String {
let mut s = String::with_capacity(self.data.len() * 16);
for component in &self.data {
write!(s,
"::{}[{}]",
component.data.as_interned_str(),
component.disambiguator)
.unwrap();
}
s
}
/// Return filename friendly string of the DefPah with the
/// crate-prefix.
pub fn to_string_friendly<F>(&self, crate_imported_name: F) -> String
where F: FnOnce(CrateNum) -> Symbol
{
let crate_name_str = crate_imported_name(self.krate).as_str();
let mut s = String::with_capacity(crate_name_str.len() + self.data.len() * 16);
write!(s, "::{}", crate_name_str).unwrap();
for component in &self.data {
if component.disambiguator == 0 {
write!(s, "::{}", component.data.as_interned_str()).unwrap();
} else {
write!(s,
"{}[{}]",
component.data.as_interned_str(),
component.disambiguator)
.unwrap();
}
}
s
}
/// Return filename friendly string of the DefPah without
/// the crate-prefix. This method is useful if you don't have
/// a TyCtxt available.
pub fn to_filename_friendly_no_crate(&self) -> String {
let mut s = String::with_capacity(self.data.len() * 16);
2017-11-05 02:14:00 -06:00
let mut opt_delimiter = None;
for component in &self.data {
2017-11-05 02:14:00 -06:00
opt_delimiter.map(|d| s.push(d));
opt_delimiter = Some('-');
if component.disambiguator == 0 {
2017-11-05 02:14:00 -06:00
write!(s, "{}", component.data.as_interned_str()).unwrap();
} else {
write!(s,
2017-11-05 02:14:00 -06:00
"{}[{}]",
component.data.as_interned_str(),
component.disambiguator)
.unwrap();
}
}
s
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub enum DefPathData {
// Root: these should only be used for the root nodes, because
// they are treated specially by the `def_path` function.
/// The crate root (marker)
CrateRoot,
// Catch-all for random DefId things like DUMMY_NODE_ID
Misc,
// Different kinds of items and item-like things:
/// An impl
Impl,
/// A trait
Trait(InternedString),
/// An associated type **declaration** (i.e., in a trait)
AssocTypeInTrait(InternedString),
/// An associated type **value** (i.e., in an impl)
AssocTypeInImpl(InternedString),
2018-07-03 12:38:14 -05:00
/// An existential associated type **value** (i.e., in an impl)
AssocExistentialInImpl(InternedString),
/// Something in the type NS
TypeNs(InternedString),
/// Something in the value NS
ValueNs(InternedString),
/// A module declaration
Module(InternedString),
/// A macro rule
MacroDef(InternedString),
/// A closure expression
ClosureExpr,
// Subportions of items
/// A type parameter (generic parameter)
TypeParam(InternedString),
/// A lifetime definition
LifetimeParam(InternedString),
/// A variant of a enum
EnumVariant(InternedString),
/// A struct field
Field(InternedString),
/// Implicit ctor for a tuple-like struct
StructCtor,
/// A constant expression (see {ast,hir}::AnonConst).
AnonConst,
/// An `impl Trait` type node
ImplTrait,
/// GlobalMetaData identifies a piece of crate metadata that is global to
/// a whole crate (as opposed to just one item). GlobalMetaData components
/// are only supposed to show up right below the crate root.
GlobalMetaData(InternedString)
}
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord, Debug,
RustcEncodable, RustcDecodable)]
pub struct DefPathHash(pub Fingerprint);
impl_stable_hash_for!(tuple_struct DefPathHash { fingerprint });
impl Borrow<Fingerprint> for DefPathHash {
#[inline]
fn borrow(&self) -> &Fingerprint {
&self.0
}
}
impl Definitions {
/// Create new empty definition map.
///
/// The DefIndex returned from a new Definitions are as follows:
/// 1. At DefIndexAddressSpace::Low,
/// CRATE_ROOT has index 0:0, and then new indexes are allocated in
/// ascending order.
/// 2. At DefIndexAddressSpace::High,
/// the first FIRST_FREE_HIGH_DEF_INDEX indexes are reserved for
/// internal use, then 1:FIRST_FREE_HIGH_DEF_INDEX are allocated in
/// ascending order.
///
/// FIXME: there is probably a better place to put this comment.
pub fn new() -> Definitions {
Definitions {
table: DefPathTable {
index_to_key: [vec![], vec![]],
def_path_hashes: [vec![], vec![]],
},
node_to_def_index: NodeMap(),
def_index_to_node: [vec![], vec![]],
node_to_hir_id: IndexVec::new(),
parent_modules_of_macro_defs: FxHashMap(),
expansions_that_defined: FxHashMap(),
next_disambiguator: FxHashMap(),
def_index_to_span: FxHashMap(),
}
}
pub fn def_path_table(&self) -> &DefPathTable {
&self.table
}
/// Get the number of definitions.
pub fn def_index_counts_lo_hi(&self) -> (usize, usize) {
(self.table.index_to_key[DefIndexAddressSpace::Low.index()].len(),
self.table.index_to_key[DefIndexAddressSpace::High.index()].len())
}
pub fn def_key(&self, index: DefIndex) -> DefKey {
self.table.def_key(index)
}
#[inline(always)]
pub fn def_path_hash(&self, index: DefIndex) -> DefPathHash {
self.table.def_path_hash(index)
}
/// Returns the path from the crate root to `index`. The root
/// nodes are not included in the path (i.e., this will be an
/// empty vector for the crate root). For an inlined item, this
/// will be the path of the item in the external crate (but the
/// path will begin with the path to the external crate).
pub fn def_path(&self, index: DefIndex) -> DefPath {
DefPath::make(LOCAL_CRATE, index, |p| self.def_key(p))
}
#[inline]
pub fn opt_def_index(&self, node: ast::NodeId) -> Option<DefIndex> {
self.node_to_def_index.get(&node).cloned()
}
#[inline]
pub fn opt_local_def_id(&self, node: ast::NodeId) -> Option<DefId> {
self.opt_def_index(node).map(DefId::local)
}
#[inline]
2016-04-23 22:26:10 -05:00
pub fn local_def_id(&self, node: ast::NodeId) -> DefId {
self.opt_local_def_id(node).unwrap()
}
#[inline]
pub fn as_local_node_id(&self, def_id: DefId) -> Option<ast::NodeId> {
if def_id.krate == LOCAL_CRATE {
let space_index = def_id.index.address_space().index();
let array_index = def_id.index.as_array_index();
let node_id = self.def_index_to_node[space_index][array_index];
if node_id != ast::DUMMY_NODE_ID {
Some(node_id)
} else {
None
}
} else {
None
}
}
#[inline]
pub fn node_to_hir_id(&self, node_id: ast::NodeId) -> hir::HirId {
self.node_to_hir_id[node_id]
}
#[inline]
pub fn def_index_to_hir_id(&self, def_index: DefIndex) -> hir::HirId {
let space_index = def_index.address_space().index();
let array_index = def_index.as_array_index();
let node_id = self.def_index_to_node[space_index][array_index];
self.node_to_hir_id[node_id]
}
/// Retrieve the span of the given `DefId` if `DefId` is in the local crate, the span exists and
/// it's not DUMMY_SP
#[inline]
pub fn opt_span(&self, def_id: DefId) -> Option<Span> {
if def_id.krate == LOCAL_CRATE {
2018-06-24 17:00:21 -05:00
self.def_index_to_span.get(&def_id.index).cloned()
} else {
None
}
}
/// Add a definition with a parent definition.
pub fn create_root_def(&mut self,
crate_name: &str,
crate_disambiguator: CrateDisambiguator)
-> DefIndex {
let key = DefKey {
parent: None,
disambiguated_data: DisambiguatedDefPathData {
data: DefPathData::CrateRoot,
disambiguator: 0
}
};
let parent_hash = DefKey::root_parent_stable_hash(crate_name,
crate_disambiguator);
let def_path_hash = key.compute_stable_hash(parent_hash);
// Create the definition.
let address_space = super::ITEM_LIKE_SPACE;
let root_index = self.table.allocate(key, def_path_hash, address_space);
assert_eq!(root_index, CRATE_DEF_INDEX);
assert!(self.def_index_to_node[address_space.index()].is_empty());
self.def_index_to_node[address_space.index()].push(ast::CRATE_NODE_ID);
self.node_to_def_index.insert(ast::CRATE_NODE_ID, root_index);
// Allocate some other DefIndices that always must exist.
GlobalMetaDataKind::allocate_def_indices(self);
root_index
}
/// Add a definition with a parent definition.
pub fn create_def_with_parent(&mut self,
parent: DefIndex,
node_id: ast::NodeId,
data: DefPathData,
2017-03-24 18:03:15 -05:00
address_space: DefIndexAddressSpace,
expansion: Mark,
span: Span)
-> DefIndex {
debug!("create_def_with_parent(parent={:?}, node_id={:?}, data={:?})",
parent, node_id, data);
assert!(!self.node_to_def_index.contains_key(&node_id),
"adding a def'n for node-id {:?} and data {:?} but a previous def'n exists: {:?}",
node_id,
data,
self.table.def_key(self.node_to_def_index[&node_id]));
// The root node must be created with create_root_def()
assert!(data != DefPathData::CrateRoot);
// Find the next free disambiguator for this key.
let disambiguator = {
let next_disamb = self.next_disambiguator.entry((parent, data.clone())).or_insert(0);
let disambiguator = *next_disamb;
*next_disamb = next_disamb.checked_add(1).expect("disambiguator overflow");
disambiguator
};
let key = DefKey {
parent: Some(parent),
disambiguated_data: DisambiguatedDefPathData {
data, disambiguator
}
};
let parent_hash = self.table.def_path_hash(parent);
let def_path_hash = key.compute_stable_hash(parent_hash);
debug!("create_def_with_parent: after disambiguation, key = {:?}", key);
// Create the definition.
let index = self.table.allocate(key, def_path_hash, address_space);
assert_eq!(index.as_array_index(),
self.def_index_to_node[address_space.index()].len());
self.def_index_to_node[address_space.index()].push(node_id);
// Some things for which we allocate DefIndices don't correspond to
// anything in the AST, so they don't have a NodeId. For these cases
// we don't need a mapping from NodeId to DefIndex.
if node_id != ast::DUMMY_NODE_ID {
debug!("create_def_with_parent: def_index_to_node[{:?} <-> {:?}", index, node_id);
self.node_to_def_index.insert(node_id, index);
}
2017-11-28 01:07:44 -06:00
if expansion != Mark::root() {
self.expansions_that_defined.insert(index, expansion);
2017-03-25 21:11:30 -05:00
}
2018-06-24 17:00:21 -05:00
// The span is added if it isn't dummy
if !span.is_dummy() {
self.def_index_to_span.insert(index, span);
}
index
}
/// Initialize the ast::NodeId to HirId mapping once it has been generated during
/// AST to HIR lowering.
pub fn init_node_id_to_hir_id_mapping(&mut self,
mapping: IndexVec<ast::NodeId, hir::HirId>) {
assert!(self.node_to_hir_id.is_empty(),
"Trying initialize NodeId -> HirId mapping twice");
self.node_to_hir_id = mapping;
}
2017-03-24 18:03:15 -05:00
pub fn expansion_that_defined(&self, index: DefIndex) -> Mark {
self.expansions_that_defined.get(&index).cloned().unwrap_or(Mark::root())
2017-03-24 18:03:15 -05:00
}
pub fn parent_module_of_macro_def(&self, mark: Mark) -> DefId {
self.parent_modules_of_macro_defs[&mark]
2017-03-24 18:03:15 -05:00
}
pub fn add_parent_module_of_macro_def(&mut self, mark: Mark, module: DefId) {
self.parent_modules_of_macro_defs.insert(mark, module);
2017-03-24 18:03:15 -05:00
}
}
impl DefPathData {
pub fn get_opt_name(&self) -> Option<InternedString> {
use self::DefPathData::*;
match *self {
TypeNs(name) |
Trait(name) |
AssocTypeInTrait(name) |
AssocTypeInImpl(name) |
2018-07-03 12:38:14 -05:00
AssocExistentialInImpl(name) |
ValueNs(name) |
Module(name) |
MacroDef(name) |
TypeParam(name) |
LifetimeParam(name) |
EnumVariant(name) |
Field(name) |
GlobalMetaData(name) => Some(name),
Impl |
CrateRoot |
Misc |
ClosureExpr |
StructCtor |
AnonConst |
ImplTrait => None
}
}
pub fn as_interned_str(&self) -> InternedString {
use self::DefPathData::*;
2016-11-17 08:04:20 -06:00
let s = match *self {
TypeNs(name) |
Trait(name) |
AssocTypeInTrait(name) |
AssocTypeInImpl(name) |
2018-07-03 12:38:14 -05:00
AssocExistentialInImpl(name) |
ValueNs(name) |
Module(name) |
MacroDef(name) |
TypeParam(name) |
LifetimeParam(name) |
EnumVariant(name) |
Field(name) |
GlobalMetaData(name) => {
return name
}
// note that this does not show up in user printouts
2016-11-17 08:04:20 -06:00
CrateRoot => "{{root}}",
Impl => "{{impl}}",
Misc => "{{?}}",
ClosureExpr => "{{closure}}",
StructCtor => "{{constructor}}",
AnonConst => "{{constant}}",
ImplTrait => "{{impl-Trait}}",
2016-11-17 08:04:20 -06:00
};
Symbol::intern(s).as_interned_str()
}
pub fn to_string(&self) -> String {
self.as_interned_str().to_string()
}
}
2017-03-26 19:46:00 -05:00
macro_rules! count {
() => (0usize);
( $x:tt $($xs:tt)* ) => (1usize + count!($($xs)*));
}
// We define the GlobalMetaDataKind enum with this macro because we want to
// make sure that we exhaustively iterate over all variants when registering
// the corresponding DefIndices in the DefTable.
macro_rules! define_global_metadata_kind {
(pub enum GlobalMetaDataKind {
$($variant:ident),*
}) => (
#[derive(Clone, Copy, Debug, Hash, RustcEncodable, RustcDecodable)]
pub enum GlobalMetaDataKind {
$($variant),*
}
const GLOBAL_MD_ADDRESS_SPACE: DefIndexAddressSpace = DefIndexAddressSpace::High;
pub const FIRST_FREE_HIGH_DEF_INDEX: usize = count!($($variant)*);
impl GlobalMetaDataKind {
fn allocate_def_indices(definitions: &mut Definitions) {
$({
let instance = GlobalMetaDataKind::$variant;
definitions.create_def_with_parent(
CRATE_DEF_INDEX,
ast::DUMMY_NODE_ID,
DefPathData::GlobalMetaData(instance.name().as_interned_str()),
GLOBAL_MD_ADDRESS_SPACE,
Mark::root(),
DUMMY_SP
);
// Make sure calling def_index does not crash.
instance.def_index(&definitions.table);
})*
}
pub fn def_index(&self, def_path_table: &DefPathTable) -> DefIndex {
let def_key = DefKey {
parent: Some(CRATE_DEF_INDEX),
disambiguated_data: DisambiguatedDefPathData {
data: DefPathData::GlobalMetaData(self.name().as_interned_str()),
disambiguator: 0,
}
};
// These DefKeys are all right after the root,
// so a linear search is fine.
let index = def_path_table.index_to_key[GLOBAL_MD_ADDRESS_SPACE.index()]
.iter()
.position(|k| *k == def_key)
.unwrap();
DefIndex::from_array_index(index, GLOBAL_MD_ADDRESS_SPACE)
}
fn name(&self) -> Symbol {
let string = match *self {
$(
GlobalMetaDataKind::$variant => {
concat!("{{GlobalMetaData::", stringify!($variant), "}}")
}
)*
};
Symbol::intern(string)
}
}
)
}
define_global_metadata_kind!(pub enum GlobalMetaDataKind {
Krate,
CrateDeps,
DylibDependencyFormats,
LangItems,
LangItemsMissing,
NativeLibraries,
2018-08-18 05:13:35 -05:00
SourceMap,
Impls,
ExportedSymbols
});