rust/src/librustc/hir/map/definitions.rs

588 lines
20 KiB
Rust
Raw Normal View History

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! For each definition, we track the following data. A definition
//! here is defined somewhat circularly as "something with a def-id",
//! but it generally corresponds to things like structs, enums, etc.
//! There are also some rather random cases (like const initializer
//! expressions) that are mostly just leftovers.
use hir;
use hir::def_id::{CrateNum, DefId, DefIndex, LOCAL_CRATE, DefIndexAddressSpace};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::indexed_vec::IndexVec;
use rustc_data_structures::stable_hasher::StableHasher;
use serialize::{Encodable, Decodable, Encoder, Decoder};
use std::fmt::Write;
use std::hash::Hash;
use syntax::ast;
use syntax::symbol::{Symbol, InternedString};
use ty::TyCtxt;
use util::nodemap::NodeMap;
2016-12-16 18:12:37 -06:00
/// The DefPathTable maps DefIndexes to DefKeys and vice versa.
/// Internally the DefPathTable holds a tree of DefKeys, where each DefKey
/// stores the DefIndex of its parent.
/// There is one DefPathTable for each crate.
pub struct DefPathTable {
index_to_key: [Vec<DefKey>; 2],
key_to_index: FxHashMap<DefKey, DefIndex>,
def_path_hashes: [Vec<u64>; 2],
}
// Unfortunately we have to provide a manual impl of Clone because of the
// fixed-sized array field.
impl Clone for DefPathTable {
fn clone(&self) -> Self {
DefPathTable {
index_to_key: [self.index_to_key[0].clone(),
self.index_to_key[1].clone()],
key_to_index: self.key_to_index.clone(),
def_path_hashes: [self.def_path_hashes[0].clone(),
self.def_path_hashes[1].clone()],
}
}
}
impl DefPathTable {
fn allocate(&mut self,
key: DefKey,
def_path_hash: u64,
address_space: DefIndexAddressSpace)
-> DefIndex {
let index = {
let index_to_key = &mut self.index_to_key[address_space.index()];
let index = DefIndex::new(index_to_key.len() + address_space.start());
debug!("DefPathTable::insert() - {:?} <-> {:?}", key, index);
index_to_key.push(key.clone());
index
};
self.key_to_index.insert(key, index);
self.def_path_hashes[address_space.index()].push(def_path_hash);
debug_assert!(self.def_path_hashes[address_space.index()].len() ==
self.index_to_key[address_space.index()].len());
index
}
#[inline(always)]
pub fn def_key(&self, index: DefIndex) -> DefKey {
self.index_to_key[index.address_space().index()]
[index.as_array_index()].clone()
}
#[inline(always)]
pub fn def_path_hash(&self, index: DefIndex) -> u64 {
self.def_path_hashes[index.address_space().index()]
[index.as_array_index()]
}
#[inline(always)]
pub fn def_index_for_def_key(&self, key: &DefKey) -> Option<DefIndex> {
self.key_to_index.get(key).cloned()
}
#[inline(always)]
pub fn contains_key(&self, key: &DefKey) -> bool {
self.key_to_index.contains_key(key)
}
pub fn retrace_path(&self,
path_data: &[DisambiguatedDefPathData])
-> Option<DefIndex> {
let root_key = DefKey {
parent: None,
disambiguated_data: DisambiguatedDefPathData {
data: DefPathData::CrateRoot,
disambiguator: 0,
},
};
let root_index = self.key_to_index
.get(&root_key)
.expect("no root key?")
.clone();
debug!("retrace_path: root_index={:?}", root_index);
let mut index = root_index;
for data in path_data {
let key = DefKey { parent: Some(index), disambiguated_data: data.clone() };
debug!("retrace_path: key={:?}", key);
match self.key_to_index.get(&key) {
Some(&i) => index = i,
None => return None,
}
}
Some(index)
}
}
impl Encodable for DefPathTable {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
// Index to key
self.index_to_key[DefIndexAddressSpace::Low.index()].encode(s)?;
self.index_to_key[DefIndexAddressSpace::High.index()].encode(s)?;
// DefPath hashes
self.def_path_hashes[DefIndexAddressSpace::Low.index()].encode(s)?;
self.def_path_hashes[DefIndexAddressSpace::High.index()].encode(s)?;
Ok(())
}
}
impl Decodable for DefPathTable {
fn decode<D: Decoder>(d: &mut D) -> Result<DefPathTable, D::Error> {
let index_to_key_lo: Vec<DefKey> = Decodable::decode(d)?;
let index_to_key_hi: Vec<DefKey> = Decodable::decode(d)?;
let def_path_hashes_lo: Vec<u64> = Decodable::decode(d)?;
let def_path_hashes_hi: Vec<u64> = Decodable::decode(d)?;
let index_to_key = [index_to_key_lo, index_to_key_hi];
let def_path_hashes = [def_path_hashes_lo, def_path_hashes_hi];
let mut key_to_index = FxHashMap();
for space in &[DefIndexAddressSpace::Low, DefIndexAddressSpace::High] {
key_to_index.extend(index_to_key[space.index()]
.iter()
.enumerate()
.map(|(index, key)| (key.clone(),
DefIndex::new(index + space.start()))))
}
Ok(DefPathTable {
index_to_key: index_to_key,
key_to_index: key_to_index,
def_path_hashes: def_path_hashes,
})
}
}
2016-12-16 18:12:37 -06:00
/// The definition table containing node definitions.
/// It holds the DefPathTable for local DefIds/DefPaths and it also stores a
/// mapping from NodeIds to local DefIds.
pub struct Definitions {
table: DefPathTable,
node_to_def_index: NodeMap<DefIndex>,
def_index_to_node: [Vec<ast::NodeId>; 2],
pub(super) node_to_hir_id: IndexVec<ast::NodeId, hir::HirId>,
}
// Unfortunately we have to provide a manual impl of Clone because of the
// fixed-sized array field.
impl Clone for Definitions {
fn clone(&self) -> Self {
Definitions {
table: self.table.clone(),
node_to_def_index: self.node_to_def_index.clone(),
def_index_to_node: [
self.def_index_to_node[0].clone(),
self.def_index_to_node[1].clone(),
],
node_to_hir_id: self.node_to_hir_id.clone(),
}
}
}
/// A unique identifier that we can use to lookup a definition
/// precisely. It combines the index of the definition's parent (if
/// any) with a `DisambiguatedDefPathData`.
#[derive(Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct DefKey {
/// Parent path.
pub parent: Option<DefIndex>,
/// Identifier of this node.
pub disambiguated_data: DisambiguatedDefPathData,
}
impl DefKey {
fn compute_stable_hash(&self, parent_hash: u64) -> u64 {
let mut hasher = StableHasher::new();
// We hash a 0u8 here to disambiguate between regular DefPath hashes,
// and the special "root_parent" below.
0u8.hash(&mut hasher);
parent_hash.hash(&mut hasher);
self.disambiguated_data.hash(&mut hasher);
hasher.finish()
}
fn root_parent_stable_hash(crate_name: &str, crate_disambiguator: &str) -> u64 {
let mut hasher = StableHasher::new();
// Disambiguate this from a regular DefPath hash,
// see compute_stable_hash() above.
1u8.hash(&mut hasher);
crate_name.hash(&mut hasher);
crate_disambiguator.hash(&mut hasher);
hasher.finish()
}
}
/// Pair of `DefPathData` and an integer disambiguator. The integer is
/// normally 0, but in the event that there are multiple defs with the
/// same `parent` and `data`, we use this field to disambiguate
/// between them. This introduces some artificial ordering dependency
/// but means that if you have (e.g.) two impls for the same type in
/// the same module, they do get distinct def-ids.
#[derive(Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct DisambiguatedDefPathData {
pub data: DefPathData,
pub disambiguator: u32
}
#[derive(Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct DefPath {
/// the path leading from the crate root to the item
pub data: Vec<DisambiguatedDefPathData>,
/// what krate root is this path relative to?
pub krate: CrateNum,
}
impl DefPath {
pub fn is_local(&self) -> bool {
self.krate == LOCAL_CRATE
}
pub fn make<FN>(krate: CrateNum,
start_index: DefIndex,
mut get_key: FN) -> DefPath
where FN: FnMut(DefIndex) -> DefKey
{
let mut data = vec![];
let mut index = Some(start_index);
loop {
debug!("DefPath::make: krate={:?} index={:?}", krate, index);
let p = index.unwrap();
let key = get_key(p);
debug!("DefPath::make: key={:?}", key);
match key.disambiguated_data.data {
DefPathData::CrateRoot => {
assert!(key.parent.is_none());
break;
}
_ => {
data.push(key.disambiguated_data);
index = key.parent;
}
}
}
data.reverse();
DefPath { data: data, krate: krate }
}
pub fn to_string(&self, tcx: TyCtxt) -> String {
let mut s = String::with_capacity(self.data.len() * 16);
s.push_str(&tcx.original_crate_name(self.krate).as_str());
s.push_str("/");
s.push_str(&tcx.crate_disambiguator(self.krate).as_str());
for component in &self.data {
write!(s,
"::{}[{}]",
component.data.as_interned_str(),
component.disambiguator)
.unwrap();
}
s
}
/// Returns a string representation of the DefPath without
/// the crate-prefix. This method is useful if you don't have
/// a TyCtxt available.
pub fn to_string_no_crate(&self) -> String {
let mut s = String::with_capacity(self.data.len() * 16);
for component in &self.data {
write!(s,
"::{}[{}]",
component.data.as_interned_str(),
component.disambiguator)
.unwrap();
}
s
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub enum DefPathData {
// Root: these should only be used for the root nodes, because
// they are treated specially by the `def_path` function.
/// The crate root (marker)
CrateRoot,
// Catch-all for random DefId things like DUMMY_NODE_ID
Misc,
// Different kinds of items and item-like things:
/// An impl
Impl,
/// Something in the type NS
TypeNs(InternedString),
/// Something in the value NS
ValueNs(InternedString),
/// A module declaration
Module(InternedString),
/// A macro rule
MacroDef(InternedString),
/// A closure expression
ClosureExpr,
// Subportions of items
/// A type parameter (generic parameter)
TypeParam(InternedString),
/// A lifetime definition
LifetimeDef(InternedString),
/// A variant of a enum
EnumVariant(InternedString),
/// A struct field
Field(InternedString),
/// Implicit ctor for a tuple-like struct
StructCtor,
/// Initializer for a const
Initializer,
/// Pattern binding
Binding(InternedString),
/// An `impl Trait` type node.
2017-03-01 16:04:01 -06:00
ImplTrait,
/// A `typeof` type node.
Typeof,
}
impl Definitions {
/// Create new empty definition map.
pub fn new() -> Definitions {
Definitions {
table: DefPathTable {
index_to_key: [vec![], vec![]],
key_to_index: FxHashMap(),
def_path_hashes: [vec![], vec![]],
},
node_to_def_index: NodeMap(),
def_index_to_node: [vec![], vec![]],
node_to_hir_id: IndexVec::new(),
}
}
pub fn def_path_table(&self) -> &DefPathTable {
&self.table
}
/// Get the number of definitions.
pub fn def_index_counts_lo_hi(&self) -> (usize, usize) {
(self.def_index_to_node[DefIndexAddressSpace::Low.index()].len(),
self.def_index_to_node[DefIndexAddressSpace::High.index()].len())
}
pub fn def_key(&self, index: DefIndex) -> DefKey {
self.table.def_key(index)
}
#[inline(always)]
pub fn def_path_hash(&self, index: DefIndex) -> u64 {
self.table.def_path_hash(index)
}
pub fn def_index_for_def_key(&self, key: DefKey) -> Option<DefIndex> {
self.table.def_index_for_def_key(&key)
}
/// Returns the path from the crate root to `index`. The root
/// nodes are not included in the path (i.e., this will be an
/// empty vector for the crate root). For an inlined item, this
/// will be the path of the item in the external crate (but the
/// path will begin with the path to the external crate).
pub fn def_path(&self, index: DefIndex) -> DefPath {
DefPath::make(LOCAL_CRATE, index, |p| self.def_key(p))
}
pub fn opt_def_index(&self, node: ast::NodeId) -> Option<DefIndex> {
self.node_to_def_index.get(&node).cloned()
}
pub fn opt_local_def_id(&self, node: ast::NodeId) -> Option<DefId> {
self.opt_def_index(node).map(DefId::local)
}
2016-04-23 22:26:10 -05:00
pub fn local_def_id(&self, node: ast::NodeId) -> DefId {
self.opt_local_def_id(node).unwrap()
}
pub fn as_local_node_id(&self, def_id: DefId) -> Option<ast::NodeId> {
if def_id.krate == LOCAL_CRATE {
let space_index = def_id.index.address_space().index();
let array_index = def_id.index.as_array_index();
Some(self.def_index_to_node[space_index][array_index])
} else {
None
}
}
pub fn node_to_hir_id(&self, node_id: ast::NodeId) -> hir::HirId {
self.node_to_hir_id[node_id]
}
/// Add a definition with a parent definition.
pub fn create_root_def(&mut self,
crate_name: &str,
crate_disambiguator: &str)
-> DefIndex {
let key = DefKey {
parent: None,
disambiguated_data: DisambiguatedDefPathData {
data: DefPathData::CrateRoot,
disambiguator: 0
}
};
let parent_hash = DefKey::root_parent_stable_hash(crate_name,
crate_disambiguator);
let def_path_hash = key.compute_stable_hash(parent_hash);
// Create the definition.
let address_space = super::ITEM_LIKE_SPACE;
let index = self.table.allocate(key, def_path_hash, address_space);
assert!(self.def_index_to_node[address_space.index()].is_empty());
self.def_index_to_node[address_space.index()].push(ast::CRATE_NODE_ID);
self.node_to_def_index.insert(ast::CRATE_NODE_ID, index);
index
}
/// Add a definition with a parent definition.
pub fn create_def_with_parent(&mut self,
parent: DefIndex,
node_id: ast::NodeId,
data: DefPathData,
address_space: DefIndexAddressSpace)
-> DefIndex {
debug!("create_def_with_parent(parent={:?}, node_id={:?}, data={:?})",
parent, node_id, data);
assert!(!self.node_to_def_index.contains_key(&node_id),
"adding a def'n for node-id {:?} and data {:?} but a previous def'n exists: {:?}",
node_id,
data,
self.table.def_key(self.node_to_def_index[&node_id]));
// The root node must be created with create_root_def()
assert!(data != DefPathData::CrateRoot);
// Find a unique DefKey. This basically means incrementing the disambiguator
// until we get no match.
let mut key = DefKey {
parent: Some(parent),
disambiguated_data: DisambiguatedDefPathData {
data: data,
disambiguator: 0
}
};
while self.table.contains_key(&key) {
key.disambiguated_data.disambiguator += 1;
}
let parent_hash = self.table.def_path_hash(parent);
let def_path_hash = key.compute_stable_hash(parent_hash);
debug!("create_def_with_parent: after disambiguation, key = {:?}", key);
// Create the definition.
let index = self.table.allocate(key, def_path_hash, address_space);
assert_eq!(index.as_array_index(),
self.def_index_to_node[address_space.index()].len());
self.def_index_to_node[address_space.index()].push(node_id);
debug!("create_def_with_parent: def_index_to_node[{:?} <-> {:?}", index, node_id);
self.node_to_def_index.insert(node_id, index);
index
}
/// Initialize the ast::NodeId to HirId mapping once it has been generated during
/// AST to HIR lowering.
pub fn init_node_id_to_hir_id_mapping(&mut self,
mapping: IndexVec<ast::NodeId, hir::HirId>) {
assert!(self.node_to_hir_id.is_empty(),
"Trying initialize NodeId -> HirId mapping twice");
self.node_to_hir_id = mapping;
}
}
impl DefPathData {
pub fn get_opt_name(&self) -> Option<ast::Name> {
use self::DefPathData::*;
match *self {
TypeNs(ref name) |
ValueNs(ref name) |
Module(ref name) |
MacroDef(ref name) |
TypeParam(ref name) |
LifetimeDef(ref name) |
EnumVariant(ref name) |
Binding(ref name) |
Field(ref name) => Some(Symbol::intern(name)),
Impl |
CrateRoot |
Misc |
ClosureExpr |
StructCtor |
Initializer |
2017-03-01 16:04:01 -06:00
ImplTrait |
Typeof => None
}
}
pub fn as_interned_str(&self) -> InternedString {
use self::DefPathData::*;
2016-11-17 08:04:20 -06:00
let s = match *self {
TypeNs(ref name) |
ValueNs(ref name) |
Module(ref name) |
MacroDef(ref name) |
TypeParam(ref name) |
LifetimeDef(ref name) |
EnumVariant(ref name) |
Binding(ref name) |
Field(ref name) => {
2016-11-17 08:04:20 -06:00
return name.clone();
}
// note that this does not show up in user printouts
2016-11-17 08:04:20 -06:00
CrateRoot => "{{root}}",
2016-11-17 08:04:20 -06:00
Impl => "{{impl}}",
Misc => "{{?}}",
ClosureExpr => "{{closure}}",
StructCtor => "{{constructor}}",
Initializer => "{{initializer}}",
ImplTrait => "{{impl-Trait}}",
2017-03-01 16:04:01 -06:00
Typeof => "{{typeof}}",
2016-11-17 08:04:20 -06:00
};
2016-11-17 08:04:20 -06:00
Symbol::intern(s).as_str()
}
pub fn to_string(&self) -> String {
self.as_interned_str().to_string()
}
}