rust/src/librustc/middle/trans/context.rs

442 lines
18 KiB
Rust
Raw Normal View History

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2013-06-12 21:02:33 -05:00
use driver::config::NoDebugInfo;
2014-03-05 08:36:01 -06:00
use driver::session::Session;
2013-06-16 05:52:44 -05:00
use lib::llvm::{ContextRef, ModuleRef, ValueRef};
use lib::llvm::{llvm, TargetData, TypeNames};
use lib::llvm::mk_target_data;
2013-06-12 21:02:33 -05:00
use metadata::common::LinkMeta;
use middle::resolve;
use middle::trans::adt;
use middle::trans::base;
use middle::trans::builder::Builder;
2014-04-21 19:25:56 -05:00
use middle::trans::common::{ExternMap,tydesc_info,BuilderRef_res};
use middle::trans::debuginfo;
2014-04-20 11:29:56 -05:00
use middle::trans::monomorphize::MonoId;
2013-06-15 05:16:47 -05:00
use middle::trans::type_::Type;
use middle::ty;
use util::sha2::Sha256;
use util::nodemap::{NodeMap, NodeSet, DefIdMap};
use std::cell::{Cell, RefCell};
use std::c_str::ToCStr;
use std::ptr;
2014-04-21 19:03:02 -05:00
use std::rc::Rc;
use collections::{HashMap, HashSet};
use syntax::ast;
use syntax::parse::token::InternedString;
2014-04-21 19:25:56 -05:00
pub struct Stats {
pub n_static_tydescs: Cell<uint>,
pub n_glues_created: Cell<uint>,
pub n_null_glues: Cell<uint>,
pub n_real_glues: Cell<uint>,
pub n_fns: Cell<uint>,
pub n_monos: Cell<uint>,
pub n_inlines: Cell<uint>,
pub n_closures: Cell<uint>,
pub n_llvm_insns: Cell<uint>,
pub llvm_insns: RefCell<HashMap<String, uint>>,
2014-04-21 19:25:56 -05:00
// (ident, time-in-ms, llvm-instructions)
pub fn_stats: RefCell<Vec<(String, uint, uint)> >,
2014-04-21 19:25:56 -05:00
}
pub struct CrateContext {
pub llmod: ModuleRef,
pub llcx: ContextRef,
pub metadata_llmod: ModuleRef,
pub td: TargetData,
pub tn: TypeNames,
pub externs: RefCell<ExternMap>,
pub item_vals: RefCell<NodeMap<ValueRef>>,
pub exp_map2: resolve::ExportMap2,
pub reachable: NodeSet,
pub item_symbols: RefCell<NodeMap<String>>,
pub link_meta: LinkMeta,
pub drop_glues: RefCell<HashMap<ty::t, ValueRef>>,
2014-04-21 19:45:16 -05:00
pub tydescs: RefCell<HashMap<ty::t, Rc<tydesc_info>>>,
/// Set when running emit_tydescs to enforce that no more tydescs are
/// created.
pub finished_tydescs: Cell<bool>,
/// Track mapping of external ids to local items imported for inlining
pub external: RefCell<DefIdMap<Option<ast::NodeId>>>,
/// Backwards version of the `external` map (inlined items to where they
/// came from)
pub external_srcs: RefCell<NodeMap<ast::DefId>>,
/// A set of static items which cannot be inlined into other crates. This
2014-05-22 07:50:31 -05:00
/// will prevent in IIItem() structures from being encoded into the metadata
/// that is generated
pub non_inlineable_statics: RefCell<NodeSet>,
/// Cache instances of monomorphized functions
2014-04-20 11:29:56 -05:00
pub monomorphized: RefCell<HashMap<MonoId, ValueRef>>,
pub monomorphizing: RefCell<DefIdMap<uint>>,
/// Cache generated vtables
2014-04-20 11:29:56 -05:00
pub vtables: RefCell<HashMap<(ty::t, MonoId), ValueRef>>,
/// Cache of constant strings,
pub const_cstr_cache: RefCell<HashMap<InternedString, ValueRef>>,
2013-06-12 21:02:33 -05:00
/// Reverse-direction for const ptrs cast from globals.
/// Key is an int, cast from a ValueRef holding a *T,
/// Val is a ValueRef holding a *[T].
///
/// Needed because LLVM loses pointer->pointee association
/// when we ptrcast, and we have to ptrcast during translation
/// of a [T] const because we form a slice, a [*T,int] pair, not
/// a pointer to an LLVM array type.
pub const_globals: RefCell<HashMap<int, ValueRef>>,
2013-06-12 21:02:33 -05:00
/// Cache of emitted const values
pub const_values: RefCell<NodeMap<ValueRef>>,
2013-06-12 21:02:33 -05:00
/// Cache of external const values
pub extern_const_values: RefCell<DefIdMap<ValueRef>>,
2013-06-12 21:02:33 -05:00
pub impl_method_cache: RefCell<HashMap<(ast::DefId, ast::Name), ast::DefId>>,
2013-06-14 00:38:17 -05:00
/// Cache of closure wrappers for bare fn's.
pub closure_bare_wrapper_cache: RefCell<HashMap<ValueRef, ValueRef>>,
pub lltypes: RefCell<HashMap<ty::t, Type>>,
pub llsizingtypes: RefCell<HashMap<ty::t, Type>>,
2014-04-21 19:03:02 -05:00
pub adt_reprs: RefCell<HashMap<ty::t, Rc<adt::Repr>>>,
pub symbol_hasher: RefCell<Sha256>,
pub type_hashcodes: RefCell<HashMap<ty::t, String>>,
pub all_llvm_symbols: RefCell<HashSet<String>>,
pub tcx: ty::ctxt,
2014-04-21 19:25:56 -05:00
pub stats: Stats,
pub int_type: Type,
pub opaque_vec_type: Type,
pub builder: BuilderRef_res,
/// Set when at least one function uses GC. Needed so that
/// decl_gc_metadata knows whether to link to the module metadata, which
/// is not emitted by LLVM's GC pass when no functions use GC.
pub uses_gc: bool,
pub dbg_cx: Option<debuginfo::CrateDebugContext>,
2014-04-09 18:56:31 -05:00
rustc: Add official support for weak failure This commit is part of the ongoing libstd facade efforts (cc #13851). The compiler now recognizes some language items as "extern { fn foo(...); }" and will automatically perform the following actions: 1. The foreign function has a pre-defined name. 2. The crate and downstream crates can only be built as rlibs until a crate defines the lang item itself. 3. The actual lang item has a pre-defined name. This is essentially nicer compiler support for the hokey core-depends-on-std-failure scheme today, but it is implemented the same way. The details are a little more hidden under the covers. In addition to failure, this commit promotes the eh_personality and rust_stack_exhausted functions to official lang items. The compiler can generate calls to these functions, causing linkage errors if they are left undefined. The checking for these items is not as precise as it could be. Crates compiling with `-Z no-landing-pads` will not need the eh_personality lang item, and crates compiling with no split stacks won't need the stack exhausted lang item. For ease, however, these items are checked for presence in all final outputs of the compiler. It is quite easy to define dummy versions of the functions necessary: #[lang = "stack_exhausted"] extern fn stack_exhausted() { /* ... */ } #[lang = "eh_personality"] extern fn eh_personality() { /* ... */ } cc #11922, rust_stack_exhausted is now a lang item cc #13851, libcollections is blocked on eh_personality becoming weak
2014-05-19 11:30:09 -05:00
pub eh_personality: RefCell<Option<ValueRef>>,
2014-04-09 18:56:31 -05:00
intrinsics: RefCell<HashMap<&'static str, ValueRef>>,
2013-06-12 21:02:33 -05:00
}
impl CrateContext {
2014-03-05 08:36:01 -06:00
pub fn new(name: &str,
tcx: ty::ctxt,
emap2: resolve::ExportMap2,
symbol_hasher: Sha256,
link_meta: LinkMeta,
reachable: NodeSet)
-> CrateContext {
unsafe {
let llcx = llvm::LLVMContextCreate();
let llmod = name.with_c_str(|buf| {
llvm::LLVMModuleCreateWithNameInContext(buf, llcx)
});
Store metadata separately in rlib files Right now whenever an rlib file is linked against, all of the metadata from the rlib is pulled in to the final staticlib or binary. The reason for this is that the metadata is currently stored in a section of the object file. Note that this is intentional for dynamic libraries in order to distribute metadata bundled with static libraries. This commit alters the situation for rlib libraries to instead store the metadata in a separate file in the archive. In doing so, when the archive is passed to the linker, none of the metadata will get pulled into the result executable. Furthermore, the metadata file is skipped when assembling rlibs into an archive. The snag in this implementation comes with multiple output formats. When generating a dylib, the metadata needs to be in the object file, but when generating an rlib this needs to be separate. In order to accomplish this, the metadata variable is inserted into an entirely separate LLVM Module which is then codegen'd into a different location (foo.metadata.o). This is then linked into dynamic libraries and silently ignored for rlib files. While changing how metadata is inserted into archives, I have also stopped compressing metadata when inserted into rlib files. We have wanted to stop compressing metadata, but the sections it creates in object file sections are apparently too large. Thankfully if it's just an arbitrary file it doesn't matter how large it is. I have seen massive reductions in executable sizes, as well as staticlib output sizes (to confirm that this is all working).
2013-12-03 19:41:01 -06:00
let metadata_llmod = format!("{}_metadata", name).with_c_str(|buf| {
llvm::LLVMModuleCreateWithNameInContext(buf, llcx)
});
tcx.sess
.targ_cfg
.target_strs
.data_layout
.as_slice()
.with_c_str(|buf| {
Store metadata separately in rlib files Right now whenever an rlib file is linked against, all of the metadata from the rlib is pulled in to the final staticlib or binary. The reason for this is that the metadata is currently stored in a section of the object file. Note that this is intentional for dynamic libraries in order to distribute metadata bundled with static libraries. This commit alters the situation for rlib libraries to instead store the metadata in a separate file in the archive. In doing so, when the archive is passed to the linker, none of the metadata will get pulled into the result executable. Furthermore, the metadata file is skipped when assembling rlibs into an archive. The snag in this implementation comes with multiple output formats. When generating a dylib, the metadata needs to be in the object file, but when generating an rlib this needs to be separate. In order to accomplish this, the metadata variable is inserted into an entirely separate LLVM Module which is then codegen'd into a different location (foo.metadata.o). This is then linked into dynamic libraries and silently ignored for rlib files. While changing how metadata is inserted into archives, I have also stopped compressing metadata when inserted into rlib files. We have wanted to stop compressing metadata, but the sections it creates in object file sections are apparently too large. Thankfully if it's just an arbitrary file it doesn't matter how large it is. I have seen massive reductions in executable sizes, as well as staticlib output sizes (to confirm that this is all working).
2013-12-03 19:41:01 -06:00
llvm::LLVMSetDataLayout(llmod, buf);
llvm::LLVMSetDataLayout(metadata_llmod, buf);
});
tcx.sess
.targ_cfg
.target_strs
.target_triple
.as_slice()
.with_c_str(|buf| {
Store metadata separately in rlib files Right now whenever an rlib file is linked against, all of the metadata from the rlib is pulled in to the final staticlib or binary. The reason for this is that the metadata is currently stored in a section of the object file. Note that this is intentional for dynamic libraries in order to distribute metadata bundled with static libraries. This commit alters the situation for rlib libraries to instead store the metadata in a separate file in the archive. In doing so, when the archive is passed to the linker, none of the metadata will get pulled into the result executable. Furthermore, the metadata file is skipped when assembling rlibs into an archive. The snag in this implementation comes with multiple output formats. When generating a dylib, the metadata needs to be in the object file, but when generating an rlib this needs to be separate. In order to accomplish this, the metadata variable is inserted into an entirely separate LLVM Module which is then codegen'd into a different location (foo.metadata.o). This is then linked into dynamic libraries and silently ignored for rlib files. While changing how metadata is inserted into archives, I have also stopped compressing metadata when inserted into rlib files. We have wanted to stop compressing metadata, but the sections it creates in object file sections are apparently too large. Thankfully if it's just an arbitrary file it doesn't matter how large it is. I have seen massive reductions in executable sizes, as well as staticlib output sizes (to confirm that this is all working).
2013-12-03 19:41:01 -06:00
llvm::LLVMRustSetNormalizedTarget(llmod, buf);
llvm::LLVMRustSetNormalizedTarget(metadata_llmod, buf);
});
2013-06-14 21:31:52 -05:00
let td = mk_target_data(tcx.sess
.targ_cfg
.target_strs
.data_layout
.as_slice());
2013-06-14 21:31:52 -05:00
2014-03-05 08:36:01 -06:00
let dbg_cx = if tcx.sess.opts.debuginfo != NoDebugInfo {
Some(debuginfo::CrateDebugContext::new(llmod))
} else {
None
};
let mut ccx = CrateContext {
llmod: llmod,
llcx: llcx,
metadata_llmod: metadata_llmod,
td: td,
tn: TypeNames::new(),
externs: RefCell::new(HashMap::new()),
item_vals: RefCell::new(NodeMap::new()),
exp_map2: emap2,
reachable: reachable,
item_symbols: RefCell::new(NodeMap::new()),
link_meta: link_meta,
drop_glues: RefCell::new(HashMap::new()),
tydescs: RefCell::new(HashMap::new()),
finished_tydescs: Cell::new(false),
external: RefCell::new(DefIdMap::new()),
external_srcs: RefCell::new(NodeMap::new()),
non_inlineable_statics: RefCell::new(NodeSet::new()),
monomorphized: RefCell::new(HashMap::new()),
monomorphizing: RefCell::new(DefIdMap::new()),
vtables: RefCell::new(HashMap::new()),
const_cstr_cache: RefCell::new(HashMap::new()),
const_globals: RefCell::new(HashMap::new()),
const_values: RefCell::new(NodeMap::new()),
extern_const_values: RefCell::new(DefIdMap::new()),
impl_method_cache: RefCell::new(HashMap::new()),
closure_bare_wrapper_cache: RefCell::new(HashMap::new()),
lltypes: RefCell::new(HashMap::new()),
llsizingtypes: RefCell::new(HashMap::new()),
adt_reprs: RefCell::new(HashMap::new()),
symbol_hasher: RefCell::new(symbol_hasher),
type_hashcodes: RefCell::new(HashMap::new()),
all_llvm_symbols: RefCell::new(HashSet::new()),
tcx: tcx,
2014-04-21 19:25:56 -05:00
stats: Stats {
n_static_tydescs: Cell::new(0u),
n_glues_created: Cell::new(0u),
n_null_glues: Cell::new(0u),
n_real_glues: Cell::new(0u),
n_fns: Cell::new(0u),
n_monos: Cell::new(0u),
n_inlines: Cell::new(0u),
n_closures: Cell::new(0u),
n_llvm_insns: Cell::new(0u),
llvm_insns: RefCell::new(HashMap::new()),
fn_stats: RefCell::new(Vec::new()),
},
int_type: Type::from_ref(ptr::null()),
opaque_vec_type: Type::from_ref(ptr::null()),
builder: BuilderRef_res(llvm::LLVMCreateBuilderInContext(llcx)),
uses_gc: false,
dbg_cx: dbg_cx,
rustc: Add official support for weak failure This commit is part of the ongoing libstd facade efforts (cc #13851). The compiler now recognizes some language items as "extern { fn foo(...); }" and will automatically perform the following actions: 1. The foreign function has a pre-defined name. 2. The crate and downstream crates can only be built as rlibs until a crate defines the lang item itself. 3. The actual lang item has a pre-defined name. This is essentially nicer compiler support for the hokey core-depends-on-std-failure scheme today, but it is implemented the same way. The details are a little more hidden under the covers. In addition to failure, this commit promotes the eh_personality and rust_stack_exhausted functions to official lang items. The compiler can generate calls to these functions, causing linkage errors if they are left undefined. The checking for these items is not as precise as it could be. Crates compiling with `-Z no-landing-pads` will not need the eh_personality lang item, and crates compiling with no split stacks won't need the stack exhausted lang item. For ease, however, these items are checked for presence in all final outputs of the compiler. It is quite easy to define dummy versions of the functions necessary: #[lang = "stack_exhausted"] extern fn stack_exhausted() { /* ... */ } #[lang = "eh_personality"] extern fn eh_personality() { /* ... */ } cc #11922, rust_stack_exhausted is now a lang item cc #13851, libcollections is blocked on eh_personality becoming weak
2014-05-19 11:30:09 -05:00
eh_personality: RefCell::new(None),
2014-04-09 18:56:31 -05:00
intrinsics: RefCell::new(HashMap::new()),
};
ccx.int_type = Type::int(&ccx);
ccx.opaque_vec_type = Type::opaque_vec(&ccx);
ccx.tn.associate_type("tydesc", &Type::tydesc(&ccx));
let mut str_slice_ty = Type::named_struct(&ccx, "str_slice");
str_slice_ty.set_struct_body([Type::i8p(&ccx), ccx.int_type], false);
ccx.tn.associate_type("str_slice", &str_slice_ty);
if ccx.sess().count_llvm_insns() {
base::init_insn_ctxt()
}
ccx
}
}
pub fn tcx<'a>(&'a self) -> &'a ty::ctxt {
&self.tcx
}
2014-03-05 08:36:01 -06:00
pub fn sess<'a>(&'a self) -> &'a Session {
&self.tcx.sess
}
2014-02-06 16:38:33 -06:00
pub fn builder<'a>(&'a self) -> Builder<'a> {
Builder::new(self)
}
pub fn tydesc_type(&self) -> Type {
self.tn.find_type("tydesc").unwrap()
}
2014-04-09 18:56:31 -05:00
pub fn get_intrinsic(&self, key: & &'static str) -> ValueRef {
match self.intrinsics.borrow().find_copy(key) {
Some(v) => return v,
_ => {}
}
match declare_intrinsic(self, key) {
Some(v) => return v,
None => fail!()
}
}
}
fn declare_intrinsic(ccx: &CrateContext, key: & &'static str) -> Option<ValueRef> {
macro_rules! ifn (
($name:expr fn() -> $ret:expr) => (
if *key == $name {
let f = base::decl_cdecl_fn(ccx.llmod, $name, Type::func([], &$ret), ty::mk_nil());
ccx.intrinsics.borrow_mut().insert($name, f.clone());
return Some(f);
}
);
($name:expr fn($($arg:expr),*) -> $ret:expr) => (
if *key == $name {
let f = base::decl_cdecl_fn(ccx.llmod, $name,
Type::func([$($arg),*], &$ret), ty::mk_nil());
ccx.intrinsics.borrow_mut().insert($name, f.clone());
return Some(f);
}
)
)
macro_rules! mk_struct (
($($field_ty:expr),*) => (Type::struct_(ccx, [$($field_ty),*], false))
)
let i8p = Type::i8p(ccx);
let void = Type::void(ccx);
let i1 = Type::i1(ccx);
let t_i8 = Type::i8(ccx);
let t_i16 = Type::i16(ccx);
let t_i32 = Type::i32(ccx);
let t_i64 = Type::i64(ccx);
let t_f32 = Type::f32(ccx);
let t_f64 = Type::f64(ccx);
ifn!("llvm.memcpy.p0i8.p0i8.i32" fn(i8p, i8p, t_i32, t_i32, i1) -> void);
ifn!("llvm.memcpy.p0i8.p0i8.i64" fn(i8p, i8p, t_i64, t_i32, i1) -> void);
ifn!("llvm.memmove.p0i8.p0i8.i32" fn(i8p, i8p, t_i32, t_i32, i1) -> void);
ifn!("llvm.memmove.p0i8.p0i8.i64" fn(i8p, i8p, t_i64, t_i32, i1) -> void);
ifn!("llvm.memset.p0i8.i32" fn(i8p, t_i8, t_i32, t_i32, i1) -> void);
ifn!("llvm.memset.p0i8.i64" fn(i8p, t_i8, t_i64, t_i32, i1) -> void);
ifn!("llvm.trap" fn() -> void);
ifn!("llvm.debugtrap" fn() -> void);
ifn!("llvm.frameaddress" fn(t_i32) -> i8p);
ifn!("llvm.powi.f32" fn(t_f32, t_i32) -> t_f32);
ifn!("llvm.powi.f64" fn(t_f64, t_i32) -> t_f64);
ifn!("llvm.pow.f32" fn(t_f32, t_f32) -> t_f32);
ifn!("llvm.pow.f64" fn(t_f64, t_f64) -> t_f64);
ifn!("llvm.sqrt.f32" fn(t_f32) -> t_f32);
ifn!("llvm.sqrt.f64" fn(t_f64) -> t_f64);
ifn!("llvm.sin.f32" fn(t_f32) -> t_f32);
ifn!("llvm.sin.f64" fn(t_f64) -> t_f64);
ifn!("llvm.cos.f32" fn(t_f32) -> t_f32);
ifn!("llvm.cos.f64" fn(t_f64) -> t_f64);
ifn!("llvm.exp.f32" fn(t_f32) -> t_f32);
ifn!("llvm.exp.f64" fn(t_f64) -> t_f64);
ifn!("llvm.exp2.f32" fn(t_f32) -> t_f32);
ifn!("llvm.exp2.f64" fn(t_f64) -> t_f64);
ifn!("llvm.log.f32" fn(t_f32) -> t_f32);
ifn!("llvm.log.f64" fn(t_f64) -> t_f64);
ifn!("llvm.log10.f32" fn(t_f32) -> t_f32);
ifn!("llvm.log10.f64" fn(t_f64) -> t_f64);
ifn!("llvm.log2.f32" fn(t_f32) -> t_f32);
ifn!("llvm.log2.f64" fn(t_f64) -> t_f64);
ifn!("llvm.fma.f32" fn(t_f32, t_f32, t_f32) -> t_f32);
ifn!("llvm.fma.f64" fn(t_f64, t_f64, t_f64) -> t_f64);
ifn!("llvm.fabs.f32" fn(t_f32) -> t_f32);
ifn!("llvm.fabs.f64" fn(t_f64) -> t_f64);
ifn!("llvm.floor.f32" fn(t_f32) -> t_f32);
ifn!("llvm.floor.f64" fn(t_f64) -> t_f64);
ifn!("llvm.ceil.f32" fn(t_f32) -> t_f32);
ifn!("llvm.ceil.f64" fn(t_f64) -> t_f64);
ifn!("llvm.trunc.f32" fn(t_f32) -> t_f32);
ifn!("llvm.trunc.f64" fn(t_f64) -> t_f64);
ifn!("llvm.rint.f32" fn(t_f32) -> t_f32);
ifn!("llvm.rint.f64" fn(t_f64) -> t_f64);
ifn!("llvm.nearbyint.f32" fn(t_f32) -> t_f32);
ifn!("llvm.nearbyint.f64" fn(t_f64) -> t_f64);
ifn!("llvm.ctpop.i8" fn(t_i8) -> t_i8);
ifn!("llvm.ctpop.i16" fn(t_i16) -> t_i16);
ifn!("llvm.ctpop.i32" fn(t_i32) -> t_i32);
ifn!("llvm.ctpop.i64" fn(t_i64) -> t_i64);
ifn!("llvm.ctlz.i8" fn(t_i8 , i1) -> t_i8);
ifn!("llvm.ctlz.i16" fn(t_i16, i1) -> t_i16);
ifn!("llvm.ctlz.i32" fn(t_i32, i1) -> t_i32);
ifn!("llvm.ctlz.i64" fn(t_i64, i1) -> t_i64);
ifn!("llvm.cttz.i8" fn(t_i8 , i1) -> t_i8);
ifn!("llvm.cttz.i16" fn(t_i16, i1) -> t_i16);
ifn!("llvm.cttz.i32" fn(t_i32, i1) -> t_i32);
ifn!("llvm.cttz.i64" fn(t_i64, i1) -> t_i64);
ifn!("llvm.bswap.i16" fn(t_i16) -> t_i16);
ifn!("llvm.bswap.i32" fn(t_i32) -> t_i32);
ifn!("llvm.bswap.i64" fn(t_i64) -> t_i64);
ifn!("llvm.sadd.with.overflow.i8" fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.sadd.with.overflow.i16" fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.sadd.with.overflow.i32" fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.sadd.with.overflow.i64" fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.uadd.with.overflow.i8" fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.uadd.with.overflow.i16" fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.uadd.with.overflow.i32" fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.uadd.with.overflow.i64" fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.ssub.with.overflow.i8" fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.ssub.with.overflow.i16" fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.ssub.with.overflow.i32" fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.ssub.with.overflow.i64" fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.usub.with.overflow.i8" fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.usub.with.overflow.i16" fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.usub.with.overflow.i32" fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.usub.with.overflow.i64" fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.smul.with.overflow.i8" fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.smul.with.overflow.i16" fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.smul.with.overflow.i32" fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.smul.with.overflow.i64" fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.umul.with.overflow.i8" fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.umul.with.overflow.i16" fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.umul.with.overflow.i32" fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.umul.with.overflow.i64" fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.expect.i1" fn(i1, i1) -> i1);
// Some intrinsics were introduced in later versions of LLVM, but they have
// fallbacks in libc or libm and such. Currently, all of these intrinsics
// were introduced in LLVM 3.4, so we case on that.
macro_rules! compatible_ifn (
($name:expr, $cname:ident ($($arg:expr),*) -> $ret:expr) => (
if unsafe { llvm::LLVMVersionMinor() >= 4 } {
// The `if key == $name` is already in ifn!
ifn!($name fn($($arg),*) -> $ret);
} else if *key == $name {
let f = base::decl_cdecl_fn(ccx.llmod, stringify!($cname),
Type::func([$($arg),*], &$ret),
ty::mk_nil());
ccx.intrinsics.borrow_mut().insert($name, f.clone());
return Some(f);
}
)
)
compatible_ifn!("llvm.copysign.f32", copysignf(t_f32, t_f32) -> t_f32);
compatible_ifn!("llvm.copysign.f64", copysign(t_f64, t_f64) -> t_f64);
compatible_ifn!("llvm.round.f32", roundf(t_f32) -> t_f32);
compatible_ifn!("llvm.round.f64", round(t_f64) -> t_f64);
if ccx.sess().opts.debuginfo != NoDebugInfo {
ifn!("llvm.dbg.declare" fn(Type::metadata(ccx), Type::metadata(ccx)) -> void);
ifn!("llvm.dbg.value" fn(Type::metadata(ccx), t_i64, Type::metadata(ccx)) -> void);
}
return None;
}