rust/src/libsyntax/test.rs

663 lines
22 KiB
Rust
Raw Normal View History

2014-02-13 19:49:11 -06:00
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Code that generates a test runner to run all the tests in a crate
#![allow(dead_code)]
#![allow(unused_imports)]
use self::HasTestSignature::*;
use std::slice;
use std::mem;
use std::vec;
2014-07-24 21:44:24 -05:00
use ast_util::*;
use attr::AttrMetaMethods;
use attr;
use codemap::{DUMMY_SP, Span, ExpnInfo, NameAndSpan, MacroAttribute};
use codemap;
use diagnostic;
use config;
use ext::base::ExtCtxt;
use ext::build::AstBuilder;
use ext::expand::ExpansionConfig;
use fold::{Folder, MoveMap};
use fold;
use owned_slice::OwnedSlice;
use parse::token::InternedString;
use parse::{token, ParseSess};
use print::pprust;
use {ast, ast_util};
use ptr::P;
use util::small_vector::SmallVector;
enum ShouldFail {
No,
Yes(Option<InternedString>),
}
struct Test {
span: Span,
path: Vec<ast::Ident> ,
bench: bool,
ignore: bool,
should_fail: ShouldFail
}
2013-12-25 12:10:33 -06:00
struct TestCtxt<'a> {
2014-07-24 21:44:24 -05:00
sess: &'a ParseSess,
span_diagnostic: &'a diagnostic::SpanHandler,
2014-07-20 20:05:59 -05:00
path: Vec<ast::Ident>,
2013-12-25 12:10:33 -06:00
ext_cx: ExtCtxt<'a>,
2014-07-20 20:05:59 -05:00
testfns: Vec<Test>,
reexport_test_harness_main: Option<InternedString>,
2014-02-13 19:49:11 -06:00
is_test_crate: bool,
2013-09-27 21:46:09 -05:00
config: ast::CrateConfig,
// top-level re-export submodule, filled out after folding is finished
toplevel_reexport: Option<ast::Ident>,
}
// Traverse the crate, collecting all the test functions, eliding any
// existing main functions, and synthesizing a main test harness
2014-07-24 21:44:24 -05:00
pub fn modify_for_testing(sess: &ParseSess,
cfg: &ast::CrateConfig,
krate: ast::Crate,
span_diagnostic: &diagnostic::SpanHandler) -> ast::Crate {
// We generate the test harness when building in the 'test'
// configuration, either with the '--test' or '--cfg test'
// command line options.
let should_test = attr::contains_name(&krate.config, "test");
// Check for #[reexport_test_harness_main = "some_name"] which
// creates a `use some_name = __test::main;`. This needs to be
// unconditional, so that the attribute is still marked as used in
// non-test builds.
let reexport_test_harness_main =
attr::first_attr_value_str_by_name(&krate.attrs,
"reexport_test_harness_main");
if should_test {
2014-07-24 21:44:24 -05:00
generate_test_harness(sess, reexport_test_harness_main, krate, cfg, span_diagnostic)
} else {
strip_test_functions(krate)
}
}
2013-12-25 12:10:33 -06:00
struct TestHarnessGenerator<'a> {
cx: TestCtxt<'a>,
tests: Vec<ast::Ident>,
// submodule name, gensym'd identifier for re-exports
tested_submods: Vec<(ast::Ident, ast::Ident)>,
}
2013-12-25 12:10:33 -06:00
impl<'a> fold::Folder for TestHarnessGenerator<'a> {
2013-12-27 21:34:51 -06:00
fn fold_crate(&mut self, c: ast::Crate) -> ast::Crate {
let mut folded = fold::noop_fold_crate(c, self);
// Add a special __test module to the crate that will contain code
// generated for the test harness
let (mod_, reexport) = mk_test_module(&mut self.cx);
match reexport {
Some(re) => folded.module.items.push(re),
None => {}
}
folded.module.items.push(mod_);
folded
}
2014-09-07 12:09:06 -05:00
fn fold_item(&mut self, i: P<ast::Item>) -> SmallVector<P<ast::Item>> {
let ident = i.ident;
if ident.name != token::special_idents::invalid.name {
self.cx.path.push(ident);
}
debug!("current path: {}",
2015-02-18 17:58:07 -06:00
ast_util::path_name_i(&self.cx.path));
2014-09-07 12:09:06 -05:00
if is_test_fn(&self.cx, &*i) || is_bench_fn(&self.cx, &*i) {
match i.node {
2014-12-09 09:36:46 -06:00
ast::ItemFn(_, ast::Unsafety::Unsafe, _, _, _) => {
2014-07-24 21:44:24 -05:00
let diag = self.cx.span_diagnostic;
diag.span_fatal(i.span,
"unsafe functions cannot be used for \
tests");
}
_ => {
debug!("this is a test function");
let test = Test {
span: i.span,
2014-07-20 20:05:59 -05:00
path: self.cx.path.clone(),
2014-09-07 12:09:06 -05:00
bench: is_bench_fn(&self.cx, &*i),
ignore: is_ignored(&*i),
2014-09-07 12:09:06 -05:00
should_fail: should_fail(&*i)
};
2014-07-20 20:05:59 -05:00
self.cx.testfns.push(test);
self.tests.push(i.ident);
// debug!("have {} test/bench functions",
// cx.testfns.len());
}
}
}
// We don't want to recurse into anything other than mods, since
// mods or tests inside of functions will break things
let res = match i.node {
2014-09-07 12:09:06 -05:00
ast::ItemMod(..) => fold::noop_fold_item(i, self),
_ => SmallVector::one(i),
};
if ident.name != token::special_idents::invalid.name {
self.cx.path.pop();
}
res
}
2014-09-07 12:09:06 -05:00
fn fold_mod(&mut self, m: ast::Mod) -> ast::Mod {
let tests = mem::replace(&mut self.tests, Vec::new());
let tested_submods = mem::replace(&mut self.tested_submods, Vec::new());
let mut mod_folded = fold::noop_fold_mod(m, self);
let tests = mem::replace(&mut self.tests, tests);
let tested_submods = mem::replace(&mut self.tested_submods, tested_submods);
// Remove any #[main] from the AST so it doesn't clash with
// the one we're going to add. Only if compiling an executable.
2014-09-07 12:09:06 -05:00
mod_folded.items = mem::replace(&mut mod_folded.items, vec![]).move_map(|item| {
item.map(|ast::Item {id, ident, attrs, node, vis, span}| {
ast::Item {
id: id,
ident: ident,
2014-09-14 22:27:36 -05:00
attrs: attrs.into_iter().filter_map(|attr| {
2014-09-07 12:09:06 -05:00
if !attr.check_name("main") {
Some(attr)
} else {
None
}
}).collect(),
node: node,
vis: vis,
span: span
}
})
});
if !tests.is_empty() || !tested_submods.is_empty() {
let (it, sym) = mk_reexport_mod(&mut self.cx, tests, tested_submods);
mod_folded.items.push(it);
if !self.cx.path.is_empty() {
self.tested_submods.push((self.cx.path[self.cx.path.len()-1], sym));
} else {
debug!("pushing nothing, sym: {:?}", sym);
self.cx.toplevel_reexport = Some(sym);
}
}
mod_folded
}
}
fn mk_reexport_mod(cx: &mut TestCtxt, tests: Vec<ast::Ident>,
2014-09-07 12:09:06 -05:00
tested_submods: Vec<(ast::Ident, ast::Ident)>) -> (P<ast::Item>, ast::Ident) {
let super_ = token::str_to_ident("super");
let items = tests.into_iter().map(|r| {
cx.ext_cx.item_use_simple(DUMMY_SP, ast::Public,
cx.ext_cx.path(DUMMY_SP, vec![super_, r]))
}).chain(tested_submods.into_iter().map(|(r, sym)| {
let path = cx.ext_cx.path(DUMMY_SP, vec![super_, r, sym]);
cx.ext_cx.item_use_simple_(DUMMY_SP, ast::Public, r, path)
}));
let reexport_mod = ast::Mod {
inner: DUMMY_SP,
items: items.collect(),
};
let sym = token::gensym_ident("__test_reexports");
2014-09-07 12:09:06 -05:00
let it = P(ast::Item {
ident: sym.clone(),
attrs: Vec::new(),
id: ast::DUMMY_NODE_ID,
node: ast::ItemMod(reexport_mod),
vis: ast::Public,
span: DUMMY_SP,
2014-09-07 12:09:06 -05:00
});
(it, sym)
}
2014-07-24 21:44:24 -05:00
fn generate_test_harness(sess: &ParseSess,
reexport_test_harness_main: Option<InternedString>,
2014-07-24 21:44:24 -05:00
krate: ast::Crate,
cfg: &ast::CrateConfig,
sd: &diagnostic::SpanHandler) -> ast::Crate {
2013-12-28 23:35:38 -06:00
let mut cx: TestCtxt = TestCtxt {
sess: sess,
2014-07-24 21:44:24 -05:00
span_diagnostic: sd,
ext_cx: ExtCtxt::new(sess, cfg.clone(),
ExpansionConfig::default("test".to_string())),
2014-07-20 20:05:59 -05:00
path: Vec::new(),
testfns: Vec::new(),
reexport_test_harness_main: reexport_test_harness_main,
2014-02-13 19:49:11 -06:00
is_test_crate: is_test_crate(&krate),
config: krate.config.clone(),
toplevel_reexport: None,
};
2011-07-27 07:19:39 -05:00
2013-12-27 18:17:36 -06:00
cx.ext_cx.bt_push(ExpnInfo {
call_site: DUMMY_SP,
callee: NameAndSpan {
name: "test".to_string(),
format: MacroAttribute,
span: None
}
});
2013-12-27 21:34:51 -06:00
let mut fold = TestHarnessGenerator {
cx: cx,
tests: Vec::new(),
tested_submods: Vec::new(),
};
let res = fold.fold_crate(krate);
2013-12-28 23:35:38 -06:00
fold.cx.ext_cx.bt_pop();
2012-08-01 19:30:05 -05:00
return res;
}
fn strip_test_functions(krate: ast::Crate) -> ast::Crate {
// When not compiling with --test we should not compile the
// #[test] functions
config::strip_items(krate, |attrs| {
!attr::contains_name(&attrs[..], "test") &&
!attr::contains_name(&attrs[..], "bench")
})
}
/// Craft a span that will be ignored by the stability lint's
/// call to codemap's is_internal check.
/// The expanded code calls some unstable functions in the test crate.
fn ignored_span(cx: &TestCtxt, sp: Span) -> Span {
let info = ExpnInfo {
call_site: DUMMY_SP,
callee: NameAndSpan {
name: "test".to_string(),
format: MacroAttribute,
span: None
}
};
let expn_id = cx.sess.span_diagnostic.cm.record_expansion(info);
let mut sp = sp;
sp.expn_id = expn_id;
return sp;
}
#[derive(PartialEq)]
enum HasTestSignature {
Yes,
No,
NotEvenAFunction,
}
2014-09-07 12:09:06 -05:00
fn is_test_fn(cx: &TestCtxt, i: &ast::Item) -> bool {
let has_test_attr = attr::contains_name(&i.attrs, "test");
fn has_test_signature(i: &ast::Item) -> HasTestSignature {
2013-01-16 21:28:52 -06:00
match &i.node {
&ast::ItemFn(ref decl, _, _, ref generics, _) => {
let no_output = match decl.output {
ast::DefaultReturn(..) => true,
ast::Return(ref t) if t.node == ast::TyTup(vec![]) => true,
_ => false
2012-08-27 18:26:35 -05:00
};
if decl.inputs.is_empty()
&& no_output
&& !generics.is_parameterized() {
Yes
} else {
No
}
2011-07-27 07:19:39 -05:00
}
_ => NotEvenAFunction,
}
}
if has_test_attr {
2014-07-24 21:44:24 -05:00
let diag = cx.span_diagnostic;
match has_test_signature(i) {
Yes => {},
No => diag.span_err(i.span, "functions used as tests must have signature fn() -> ()"),
NotEvenAFunction => diag.span_err(i.span,
"only functions may be used as tests"),
}
}
return has_test_attr && has_test_signature(i) == Yes;
}
2014-09-07 12:09:06 -05:00
fn is_bench_fn(cx: &TestCtxt, i: &ast::Item) -> bool {
let has_bench_attr = attr::contains_name(&i.attrs, "bench");
2014-09-07 12:09:06 -05:00
fn has_test_signature(i: &ast::Item) -> bool {
match i.node {
ast::ItemFn(ref decl, _, _, ref generics, _) => {
2013-05-14 04:52:12 -05:00
let input_cnt = decl.inputs.len();
let no_output = match decl.output {
ast::DefaultReturn(..) => true,
ast::Return(ref t) if t.node == ast::TyTup(vec![]) => true,
_ => false
};
let tparm_cnt = generics.ty_params.len();
// NB: inadequate check, but we're running
// well before resolve, can't get too deep.
input_cnt == 1
&& no_output && tparm_cnt == 0
}
_ => false
}
}
if has_bench_attr && !has_test_signature(i) {
2014-07-24 21:44:24 -05:00
let diag = cx.span_diagnostic;
diag.span_err(i.span, "functions used as benches must have signature \
`fn(&mut Bencher) -> ()`");
}
return has_bench_attr && has_test_signature(i);
}
fn is_ignored(i: &ast::Item) -> bool {
i.attrs.iter().any(|attr| attr.check_name("ignore"))
}
fn should_fail(i: &ast::Item) -> ShouldFail {
match i.attrs.iter().find(|attr| attr.check_name("should_fail")) {
Some(attr) => {
let msg = attr.meta_item_list()
2014-12-06 17:16:38 -06:00
.and_then(|list| list.iter().find(|mi| mi.check_name("expected")))
.and_then(|mi| mi.value_str());
ShouldFail::Yes(msg)
}
None => ShouldFail::No,
}
}
/*
We're going to be building a module that looks more or less like:
mod __test {
2014-02-13 19:49:11 -06:00
extern crate test (name = "test", vers = "...");
fn main() {
2015-01-07 10:58:31 -06:00
test::test_main_static(&::os::args()[], tests)
}
2014-02-13 19:49:11 -06:00
static tests : &'static [test::TestDescAndFn] = &[
... the list of tests in the crate ...
];
}
*/
fn mk_std(cx: &TestCtxt) -> P<ast::Item> {
2014-02-13 19:49:11 -06:00
let id_test = token::str_to_ident("test");
let (vi, vis, ident) = if cx.is_test_crate {
(ast::ItemUse(
2014-09-07 12:09:06 -05:00
P(nospan(ast::ViewPathSimple(id_test,
path_node(vec!(id_test)))))),
ast::Public, token::special_idents::invalid)
} else {
(ast::ItemExternCrate(None), ast::Inherited, id_test)
};
P(ast::Item {
id: ast::DUMMY_NODE_ID,
ident: ident,
node: vi,
attrs: vec![],
vis: vis,
span: DUMMY_SP
})
}
fn mk_main(cx: &mut TestCtxt) -> P<ast::Item> {
// Writing this out by hand with 'ignored_span':
// pub fn main() {
// #![main]
// use std::slice::AsSlice;
// test::test_main_static(::std::os::args().as_slice(), TESTS);
// }
let sp = ignored_span(cx, DUMMY_SP);
let ecx = &cx.ext_cx;
// test::test_main_static
let test_main_path = ecx.path(sp, vec![token::str_to_ident("test"),
token::str_to_ident("test_main_static")]);
// ::std::env::args
let os_args_path = ecx.path_global(sp, vec![token::str_to_ident("std"),
token::str_to_ident("env"),
token::str_to_ident("args")]);
// ::std::env::args()
let os_args_path_expr = ecx.expr_path(os_args_path);
let call_os_args = ecx.expr_call(sp, os_args_path_expr, vec![]);
// test::test_main_static(...)
let test_main_path_expr = ecx.expr_path(test_main_path);
let tests_ident_expr = ecx.expr_ident(sp, token::str_to_ident("TESTS"));
let call_test_main = ecx.expr_call(sp, test_main_path_expr,
vec![call_os_args, tests_ident_expr]);
let call_test_main = ecx.stmt_expr(call_test_main);
// #![main]
let main_meta = ecx.meta_word(sp, token::intern_and_get_ident("main"));
let main_attr = ecx.attribute(sp, main_meta);
// pub fn main() { ... }
let main_ret_ty = ecx.ty(sp, ast::TyTup(vec![]));
let main_body = ecx.block_all(sp, vec![call_test_main], None);
let main = ast::ItemFn(ecx.fn_decl(vec![], main_ret_ty),
ast::Unsafety::Normal, ::abi::Rust, empty_generics(), main_body);
let main = P(ast::Item {
ident: token::str_to_ident("main"),
attrs: vec![main_attr],
id: ast::DUMMY_NODE_ID,
node: main,
vis: ast::Public,
span: sp
});
return main;
}
fn mk_test_module(cx: &mut TestCtxt) -> (P<ast::Item>, Option<P<ast::Item>>) {
2014-02-13 19:49:11 -06:00
// Link to test crate
let import = mk_std(cx);
// A constant vector of test descriptors.
let tests = mk_tests(cx);
// The synthesized main function which will call the console test runner
// with our list of tests
let mainfn = mk_main(cx);
let testmod = ast::Mod {
inner: DUMMY_SP,
items: vec![import, mainfn, tests],
};
let item_ = ast::ItemMod(testmod);
let mod_ident = token::gensym_ident("__test");
let item = P(ast::Item {
id: ast::DUMMY_NODE_ID,
ident: mod_ident,
attrs: vec![],
node: item_,
vis: ast::Public,
span: DUMMY_SP,
});
let reexport = cx.reexport_test_harness_main.as_ref().map(|s| {
// building `use <ident> = __test::main`
let reexport_ident = token::str_to_ident(&s);
let use_path =
nospan(ast::ViewPathSimple(reexport_ident,
path_node(vec![mod_ident, token::str_to_ident("main")])));
P(ast::Item {
id: ast::DUMMY_NODE_ID,
ident: token::special_idents::invalid,
attrs: vec![],
node: ast::ItemUse(P(use_path)),
vis: ast::Inherited,
span: DUMMY_SP
})
});
debug!("Synthetic test module:\n{}\n", pprust::item_to_string(&*item));
(item, reexport)
}
fn nospan<T>(t: T) -> codemap::Spanned<T> {
codemap::Spanned { node: t, span: DUMMY_SP }
}
fn path_node(ids: Vec<ast::Ident> ) -> ast::Path {
ast::Path {
span: DUMMY_SP,
global: false,
2014-09-14 22:27:36 -05:00
segments: ids.into_iter().map(|identifier| ast::PathSegment {
identifier: identifier,
parameters: ast::PathParameters::none(),
}).collect()
}
}
2014-09-07 12:09:06 -05:00
fn mk_tests(cx: &TestCtxt) -> P<ast::Item> {
// The vector of test_descs for this crate
let test_descs = mk_test_descs(cx);
// FIXME #15962: should be using quote_item, but that stringifies
// __test_reexports, causing it to be reinterned, losing the
// gensym information.
let sp = DUMMY_SP;
let ecx = &cx.ext_cx;
let struct_type = ecx.ty_path(ecx.path(sp, vec![ecx.ident_of("self"),
ecx.ident_of("test"),
ecx.ident_of("TestDescAndFn")]));
let static_lt = ecx.lifetime(sp, token::special_idents::static_lifetime.name);
// &'static [self::test::TestDescAndFn]
let static_type = ecx.ty_rptr(sp,
ecx.ty(sp, ast::TyVec(struct_type)),
Some(static_lt),
ast::MutImmutable);
// static TESTS: $static_type = &[...];
rustc: Add `const` globals to the language This change is an implementation of [RFC 69][rfc] which adds a third kind of global to the language, `const`. This global is most similar to what the old `static` was, and if you're unsure about what to use then you should use a `const`. The semantics of these three kinds of globals are: * A `const` does not represent a memory location, but only a value. Constants are translated as rvalues, which means that their values are directly inlined at usage location (similar to a #define in C/C++). Constant values are, well, constant, and can not be modified. Any "modification" is actually a modification to a local value on the stack rather than the actual constant itself. Almost all values are allowed inside constants, whether they have interior mutability or not. There are a few minor restrictions listed in the RFC, but they should in general not come up too often. * A `static` now always represents a memory location (unconditionally). Any references to the same `static` are actually a reference to the same memory location. Only values whose types ascribe to `Sync` are allowed in a `static`. This restriction is in place because many threads may access a `static` concurrently. Lifting this restriction (and allowing unsafe access) is a future extension not implemented at this time. * A `static mut` continues to always represent a memory location. All references to a `static mut` continue to be `unsafe`. This is a large breaking change, and many programs will need to be updated accordingly. A summary of the breaking changes is: * Statics may no longer be used in patterns. Statics now always represent a memory location, which can sometimes be modified. To fix code, repurpose the matched-on-`static` to a `const`. static FOO: uint = 4; match n { FOO => { /* ... */ } _ => { /* ... */ } } change this code to: const FOO: uint = 4; match n { FOO => { /* ... */ } _ => { /* ... */ } } * Statics may no longer refer to other statics by value. Due to statics being able to change at runtime, allowing them to reference one another could possibly lead to confusing semantics. If you are in this situation, use a constant initializer instead. Note, however, that statics may reference other statics by address, however. * Statics may no longer be used in constant expressions, such as array lengths. This is due to the same restrictions as listed above. Use a `const` instead. [breaking-change] [rfc]: https://github.com/rust-lang/rfcs/pull/246
2014-10-06 10:17:01 -05:00
ecx.item_const(sp,
ecx.ident_of("TESTS"),
static_type,
test_descs)
}
2014-02-13 19:49:11 -06:00
fn is_test_crate(krate: &ast::Crate) -> bool {
match attr::find_crate_name(&krate.attrs) {
Some(ref s) if "test" == &s[..] => true,
_ => false
}
2012-12-28 15:41:14 -06:00
}
2014-09-07 12:09:06 -05:00
fn mk_test_descs(cx: &TestCtxt) -> P<ast::Expr> {
2014-07-20 20:05:59 -05:00
debug!("building test vector from {} tests", cx.testfns.len());
2013-01-15 15:51:43 -06:00
2014-09-07 12:09:06 -05:00
P(ast::Expr {
id: ast::DUMMY_NODE_ID,
2014-08-06 04:59:40 -05:00
node: ast::ExprAddrOf(ast::MutImmutable,
2014-09-07 12:09:06 -05:00
P(ast::Expr {
DST coercions and DST structs [breaking-change] 1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code. 2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible. 3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
2014-08-04 07:20:11 -05:00
id: ast::DUMMY_NODE_ID,
2014-08-06 04:59:40 -05:00
node: ast::ExprVec(cx.testfns.iter().map(|test| {
DST coercions and DST structs [breaking-change] 1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code. 2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible. 3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
2014-08-04 07:20:11 -05:00
mk_test_desc_and_fn_rec(cx, test)
2014-09-07 12:09:06 -05:00
}).collect()),
span: DUMMY_SP,
})),
span: DUMMY_SP,
2014-09-07 12:09:06 -05:00
})
}
2014-09-07 12:09:06 -05:00
fn mk_test_desc_and_fn_rec(cx: &TestCtxt, test: &Test) -> P<ast::Expr> {
// FIXME #15962: should be using quote_expr, but that stringifies
// __test_reexports, causing it to be reinterned, losing the
// gensym information.
let span = ignored_span(cx, test.span);
let path = test.path.clone();
let ecx = &cx.ext_cx;
let self_id = ecx.ident_of("self");
let test_id = ecx.ident_of("test");
// creates self::test::$name
let test_path = |name| {
ecx.path(span, vec![self_id, test_id, ecx.ident_of(name)])
};
// creates $name: $expr
let field = |name, expr| ecx.field_imm(span, ecx.ident_of(name), expr);
debug!("encoding {}", ast_util::path_name_i(&path[..]));
// path to the #[test] function: "foo::bar::baz"
let path_string = ast_util::path_name_i(&path[..]);
let name_expr = ecx.expr_str(span, token::intern_and_get_ident(&path_string[..]));
// self::test::StaticTestName($name_expr)
let name_expr = ecx.expr_call(span,
ecx.expr_path(test_path("StaticTestName")),
vec![name_expr]);
let ignore_expr = ecx.expr_bool(span, test.ignore);
let should_fail_path = |name| {
ecx.path(span, vec![self_id, test_id, ecx.ident_of("ShouldFail"), ecx.ident_of(name)])
};
let fail_expr = match test.should_fail {
ShouldFail::No => ecx.expr_path(should_fail_path("No")),
ShouldFail::Yes(ref msg) => {
let path = should_fail_path("Yes");
let arg = match *msg {
Some(ref msg) => ecx.expr_some(span, ecx.expr_str(span, msg.clone())),
None => ecx.expr_none(span),
};
ecx.expr_call(span, ecx.expr_path(path), vec![arg])
}
};
// self::test::TestDesc { ... }
let desc_expr = ecx.expr_struct(
span,
test_path("TestDesc"),
vec![field("name", name_expr),
field("ignore", ignore_expr),
field("should_fail", fail_expr)]);
let mut visible_path = match cx.toplevel_reexport {
Some(id) => vec![id],
None => {
2014-07-24 21:44:24 -05:00
let diag = cx.span_diagnostic;
diag.handler.bug("expected to find top-level re-export name, but found None");
}
};
2014-09-14 22:27:36 -05:00
visible_path.extend(path.into_iter());
let fn_expr = ecx.expr_path(ecx.path_global(span, visible_path));
let variant_name = if test.bench { "StaticBenchFn" } else { "StaticTestFn" };
// self::test::$variant_name($fn_expr)
let testfn_expr = ecx.expr_call(span, ecx.expr_path(test_path(variant_name)), vec![fn_expr]);
// self::test::TestDescAndFn { ... }
ecx.expr_struct(span,
test_path("TestDescAndFn"),
vec![field("desc", desc_expr),
field("testfn", testfn_expr)])
}