rust/src/librustc/middle/traits/mod.rs

557 lines
21 KiB
Rust
Raw Normal View History

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Trait Resolution. See the Book for more.
pub use self::SelectionError::*;
pub use self::FulfillmentErrorCode::*;
pub use self::Vtable::*;
pub use self::ObligationCauseCode::*;
use middle::free_region::FreeRegionMap;
use middle::subst;
use middle::ty::{self, HasTypeFlags, Ty};
use middle::ty_fold::TypeFoldable;
use middle::infer::{self, fixup_err_to_string, InferCtxt};
use std::rc::Rc;
use syntax::ast;
use syntax::codemap::{Span, DUMMY_SP};
2014-12-06 10:39:25 -06:00
pub use self::error_reporting::report_fulfillment_errors;
pub use self::error_reporting::report_overflow_error;
pub use self::error_reporting::report_selection_error;
pub use self::error_reporting::suggest_new_overflow_limit;
Fix orphan checking (cc #19470). (This is not a complete fix of #19470 because of the backwards compatibility feature gate.) This is a [breaking-change]. The new rules require that, for an impl of a trait defined in some other crate, two conditions must hold: 1. Some type must be local. 2. Every type parameter must appear "under" some local type. Here are some examples that are legal: ```rust struct MyStruct<T> { ... } // Here `T` appears "under' `MyStruct`. impl<T> Clone for MyStruct<T> { } // Here `T` appears "under' `MyStruct` as well. Note that it also appears // elsewhere. impl<T> Iterator<T> for MyStruct<T> { } ``` Here is an illegal example: ```rust // Here `U` does not appear "under" `MyStruct` or any other local type. // We call `U` "uncovered". impl<T,U> Iterator<U> for MyStruct<T> { } ``` There are a couple of ways to rewrite this last example so that it is legal: 1. In some cases, the uncovered type parameter (here, `U`) should be converted into an associated type. This is however a non-local change that requires access to the original trait. Also, associated types are not fully baked. 2. Add `U` as a type parameter of `MyStruct`: ```rust struct MyStruct<T,U> { ... } impl<T,U> Iterator<U> for MyStruct<T,U> { } ``` 3. Create a newtype wrapper for `U` ```rust impl<T,U> Iterator<Wrapper<U>> for MyStruct<T,U> { } ``` Because associated types are not fully baked, which in the case of the `Hash` trait makes adhering to this rule impossible, you can temporarily disable this rule in your crate by using `#![feature(old_orphan_check)]`. Note that the `old_orphan_check` feature will be removed before 1.0 is released.
2014-12-26 02:30:51 -06:00
pub use self::coherence::orphan_check;
pub use self::coherence::overlapping_impls;
Fix orphan checking (cc #19470). (This is not a complete fix of #19470 because of the backwards compatibility feature gate.) This is a [breaking-change]. The new rules require that, for an impl of a trait defined in some other crate, two conditions must hold: 1. Some type must be local. 2. Every type parameter must appear "under" some local type. Here are some examples that are legal: ```rust struct MyStruct<T> { ... } // Here `T` appears "under' `MyStruct`. impl<T> Clone for MyStruct<T> { } // Here `T` appears "under' `MyStruct` as well. Note that it also appears // elsewhere. impl<T> Iterator<T> for MyStruct<T> { } ``` Here is an illegal example: ```rust // Here `U` does not appear "under" `MyStruct` or any other local type. // We call `U` "uncovered". impl<T,U> Iterator<U> for MyStruct<T> { } ``` There are a couple of ways to rewrite this last example so that it is legal: 1. In some cases, the uncovered type parameter (here, `U`) should be converted into an associated type. This is however a non-local change that requires access to the original trait. Also, associated types are not fully baked. 2. Add `U` as a type parameter of `MyStruct`: ```rust struct MyStruct<T,U> { ... } impl<T,U> Iterator<U> for MyStruct<T,U> { } ``` 3. Create a newtype wrapper for `U` ```rust impl<T,U> Iterator<Wrapper<U>> for MyStruct<T,U> { } ``` Because associated types are not fully baked, which in the case of the `Hash` trait makes adhering to this rule impossible, you can temporarily disable this rule in your crate by using `#![feature(old_orphan_check)]`. Note that the `old_orphan_check` feature will be removed before 1.0 is released.
2014-12-26 02:30:51 -06:00
pub use self::coherence::OrphanCheckErr;
pub use self::fulfill::{FulfillmentContext, FulfilledPredicates, RegionObligation};
pub use self::project::MismatchedProjectionTypes;
pub use self::project::normalize;
pub use self::project::Normalized;
pub use self::object_safety::is_object_safe;
pub use self::object_safety::object_safety_violations;
pub use self::object_safety::ObjectSafetyViolation;
pub use self::object_safety::MethodViolationCode;
pub use self::object_safety::is_vtable_safe_method;
pub use self::select::SelectionContext;
pub use self::select::SelectionCache;
pub use self::select::{MethodMatchResult, MethodMatched, MethodAmbiguous, MethodDidNotMatch};
pub use self::select::{MethodMatchedData}; // intentionally don't export variants
pub use self::util::elaborate_predicates;
pub use self::util::get_vtable_index_of_object_method;
pub use self::util::trait_ref_for_builtin_bound;
pub use self::util::predicate_for_trait_def;
pub use self::util::supertraits;
pub use self::util::Supertraits;
pub use self::util::supertrait_def_ids;
pub use self::util::SupertraitDefIds;
pub use self::util::transitive_bounds;
pub use self::util::upcast;
mod coherence;
2014-12-06 10:39:25 -06:00
mod error_reporting;
mod fulfill;
mod project;
mod object_safety;
mod select;
mod util;
/// An `Obligation` represents some trait reference (e.g. `int:Eq`) for
/// which the vtable must be found. The process of finding a vtable is
/// called "resolving" the `Obligation`. This process consists of
/// either identifying an `impl` (e.g., `impl Eq for int`) that
/// provides the required vtable, or else finding a bound that is in
/// scope. The eventual result is usually a `Selection` (defined below).
#[derive(Clone, PartialEq, Eq)]
pub struct Obligation<'tcx, T> {
pub cause: ObligationCause<'tcx>,
pub recursion_depth: usize,
pub predicate: T,
}
pub type PredicateObligation<'tcx> = Obligation<'tcx, ty::Predicate<'tcx>>;
pub type TraitObligation<'tcx> = Obligation<'tcx, ty::PolyTraitPredicate<'tcx>>;
/// Why did we incur this obligation? Used for error reporting.
#[derive(Clone, PartialEq, Eq)]
pub struct ObligationCause<'tcx> {
pub span: Span,
2014-12-05 00:59:17 -06:00
2014-12-11 03:35:51 -06:00
// The id of the fn body that triggered this obligation. This is
// used for region obligations to determine the precise
// environment in which the region obligation should be evaluated
// (in particular, closures can add new assumptions). See the
// field `region_obligations` of the `FulfillmentContext` for more
// information.
pub body_id: ast::NodeId,
2014-12-05 00:59:17 -06:00
pub code: ObligationCauseCode<'tcx>
}
#[derive(Clone, PartialEq, Eq)]
pub enum ObligationCauseCode<'tcx> {
/// Not well classified or should be obvious from span.
MiscObligation,
/// In an impl of trait X for type Y, type Y must
/// also implement all supertraits of X.
ItemObligation(ast::DefId),
/// Obligation incurred due to an object cast.
ObjectCastObligation(/* Object type */ Ty<'tcx>),
/// Various cases where expressions must be sized/copy/etc:
AssignmentLhsSized, // L = X implies that L is Sized
StructInitializerSized, // S { ... } must be Sized
VariableType(ast::NodeId), // Type of each variable must be Sized
ReturnType, // Return type must be Sized
RepeatVec, // [T,..n] --> T must be Copy
// Captures of variable the given id by a closure (span is the
// span of the closure)
ClosureCapture(ast::NodeId, Span, ty::BuiltinBound),
// Types of fields (other than the last) in a struct must be sized.
FieldSized,
2014-12-06 10:39:25 -06:00
// static items must have `Sync` type
SharedStatic,
BuiltinDerivedObligation(DerivedObligationCause<'tcx>),
2014-12-06 10:39:25 -06:00
ImplDerivedObligation(DerivedObligationCause<'tcx>),
CompareImplMethodObligation,
}
#[derive(Clone, PartialEq, Eq)]
pub struct DerivedObligationCause<'tcx> {
2014-12-30 07:59:33 -06:00
/// The trait reference of the parent obligation that led to the
/// current obligation. Note that only trait obligations lead to
/// derived obligations, so we just store the trait reference here
/// directly.
parent_trait_ref: ty::PolyTraitRef<'tcx>,
/// The parent trait had this cause
parent_code: Rc<ObligationCauseCode<'tcx>>
}
pub type Obligations<'tcx, O> = Vec<Obligation<'tcx, O>>;
pub type PredicateObligations<'tcx> = Vec<PredicateObligation<'tcx>>;
pub type TraitObligations<'tcx> = Vec<TraitObligation<'tcx>>;
pub type Selection<'tcx> = Vtable<'tcx, PredicateObligation<'tcx>>;
2015-01-28 07:34:18 -06:00
#[derive(Clone,Debug)]
pub enum SelectionError<'tcx> {
Unimplemented,
OutputTypeParameterMismatch(ty::PolyTraitRef<'tcx>,
ty::PolyTraitRef<'tcx>,
ty::type_err<'tcx>),
TraitNotObjectSafe(ast::DefId),
}
pub struct FulfillmentError<'tcx> {
pub obligation: PredicateObligation<'tcx>,
pub code: FulfillmentErrorCode<'tcx>
}
#[derive(Clone)]
pub enum FulfillmentErrorCode<'tcx> {
CodeSelectionError(SelectionError<'tcx>),
CodeProjectionError(MismatchedProjectionTypes<'tcx>),
CodeAmbiguity,
}
/// When performing resolution, it is typically the case that there
/// can be one of three outcomes:
///
/// - `Ok(Some(r))`: success occurred with result `r`
/// - `Ok(None)`: could not definitely determine anything, usually due
/// to inconclusive type inference.
/// - `Err(e)`: error `e` occurred
pub type SelectionResult<'tcx, T> = Result<Option<T>, SelectionError<'tcx>>;
/// Given the successful resolution of an obligation, the `Vtable`
/// indicates where the vtable comes from. Note that while we call this
/// a "vtable", it does not necessarily indicate dynamic dispatch at
/// runtime. `Vtable` instances just tell the compiler where to find
/// methods, but in generic code those methods are typically statically
/// dispatched -- only when an object is constructed is a `Vtable`
/// instance reified into an actual vtable.
///
/// For example, the vtable may be tied to a specific impl (case A),
/// or it may be relative to some bound that is in scope (case B).
///
///
/// ```
/// impl<T:Clone> Clone<T> for Option<T> { ... } // Impl_1
/// impl<T:Clone> Clone<T> for Box<T> { ... } // Impl_2
/// impl Clone for int { ... } // Impl_3
///
/// fn foo<T:Clone>(concrete: Option<Box<int>>,
/// param: T,
/// mixed: Option<T>) {
///
/// // Case A: Vtable points at a specific impl. Only possible when
/// // type is concretely known. If the impl itself has bounded
/// // type parameters, Vtable will carry resolutions for those as well:
/// concrete.clone(); // Vtable(Impl_1, [Vtable(Impl_2, [Vtable(Impl_3)])])
///
/// // Case B: Vtable must be provided by caller. This applies when
/// // type is a type parameter.
/// param.clone(); // VtableParam
///
/// // Case C: A mix of cases A and B.
/// mixed.clone(); // Vtable(Impl_1, [VtableParam])
/// }
/// ```
///
/// ### The type parameter `N`
///
/// See explanation on `VtableImplData`.
#[derive(Clone)]
pub enum Vtable<'tcx, N> {
/// Vtable identifying a particular impl.
VtableImpl(VtableImplData<'tcx, N>),
2015-01-24 07:17:24 -06:00
/// Vtable for default trait implementations
2015-02-07 07:46:08 -06:00
/// This carries the information and nested obligations with regards
/// to a default implementation for a trait `Trait`. The nested obligations
/// ensure the trait implementation holds for all the constituent types.
2015-02-07 07:24:34 -06:00
VtableDefaultImpl(VtableDefaultImplData<N>),
2015-01-24 07:17:24 -06:00
/// Successful resolution to an obligation provided by the caller
/// for some type parameter. The `Vec<N>` represents the
/// obligations incurred from normalizing the where-clause (if
/// any).
VtableParam(Vec<N>),
/// Virtual calls through an object
VtableObject(VtableObjectData<'tcx>),
/// Successful resolution for a builtin trait.
VtableBuiltin(VtableBuiltinData<N>),
/// Vtable automatically generated for a closure. The def ID is the ID
/// of the closure expression. This is a `VtableImpl` in spirit, but the
/// impl is generated by the compiler and does not appear in the source.
VtableClosure(VtableClosureData<'tcx, N>),
/// Same as above, but for a fn pointer type with the given signature.
VtableFnPointer(ty::Ty<'tcx>),
}
/// Identifies a particular impl in the source, along with a set of
/// substitutions from the impl's type/lifetime parameters. The
/// `nested` vector corresponds to the nested obligations attached to
/// the impl's type parameters.
///
/// The type parameter `N` indicates the type used for "nested
/// obligations" that are required by the impl. During type check, this
/// is `Obligation`, as one might expect. During trans, however, this
/// is `()`, because trans only requires a shallow resolution of an
/// impl, and nested obligations are satisfied later.
#[derive(Clone, PartialEq, Eq)]
pub struct VtableImplData<'tcx, N> {
pub impl_def_id: ast::DefId,
pub substs: subst::Substs<'tcx>,
pub nested: Vec<N>
}
#[derive(Clone, PartialEq, Eq)]
pub struct VtableClosureData<'tcx, N> {
pub closure_def_id: ast::DefId,
pub substs: subst::Substs<'tcx>,
/// Nested obligations. This can be non-empty if the closure
/// signature contains associated types.
pub nested: Vec<N>
}
#[derive(Clone)]
2015-02-07 07:24:34 -06:00
pub struct VtableDefaultImplData<N> {
2015-02-02 05:14:01 -06:00
pub trait_def_id: ast::DefId,
pub nested: Vec<N>
2015-02-02 05:14:01 -06:00
}
#[derive(Clone)]
pub struct VtableBuiltinData<N> {
pub nested: Vec<N>
}
/// A vtable for some object-safe trait `Foo` automatically derived
/// for the object type `Foo`.
#[derive(PartialEq,Eq,Clone)]
pub struct VtableObjectData<'tcx> {
/// the object type `Foo`.
pub object_ty: Ty<'tcx>,
/// `Foo` upcast to the obligation trait. This will be some supertrait of `Foo`.
pub upcast_trait_ref: ty::PolyTraitRef<'tcx>,
}
/// Creates predicate obligations from the generic bounds.
pub fn predicates_for_generics<'tcx>(cause: ObligationCause<'tcx>,
generic_bounds: &ty::InstantiatedPredicates<'tcx>)
-> PredicateObligations<'tcx>
{
util::predicates_for_generics(cause, 0, generic_bounds)
}
/// Determines whether the type `ty` is known to meet `bound` and
/// returns true if so. Returns false if `ty` either does not meet
/// `bound` or is not known to meet bound (note that this is
/// conservative towards *no impl*, which is the opposite of the
/// `evaluate` methods).
pub fn type_known_to_meet_builtin_bound<'a,'tcx>(infcx: &InferCtxt<'a,'tcx>,
typer: &ty::ClosureTyper<'tcx>,
ty: Ty<'tcx>,
bound: ty::BuiltinBound,
span: Span)
-> bool
{
2015-06-18 12:25:05 -05:00
debug!("type_known_to_meet_builtin_bound(ty={:?}, bound={:?})",
ty,
bound);
let mut fulfill_cx = infcx.fulfillment_cx.borrow_mut();
// We can use a dummy node-id here because we won't pay any mind
// to region obligations that arise (there shouldn't really be any
// anyhow).
let cause = ObligationCause::misc(span, ast::DUMMY_NODE_ID);
fulfill_cx.register_builtin_bound(infcx, ty, bound, cause);
// Note: we only assume something is `Copy` if we can
// *definitively* show that it implements `Copy`. Otherwise,
// assume it is move; linear is always ok.
match fulfill_cx.select_all_or_error(infcx, typer) {
Ok(()) => {
2015-06-18 12:25:05 -05:00
debug!("type_known_to_meet_builtin_bound: ty={:?} bound={:?} success",
ty,
bound);
true
}
Err(e) => {
2015-06-18 12:25:05 -05:00
debug!("type_known_to_meet_builtin_bound: ty={:?} bound={:?} errors={:?}",
ty,
bound,
2015-06-18 12:25:05 -05:00
e);
false
}
}
}
2015-06-26 14:23:41 -05:00
// FIXME: this is gonna need to be removed ...
/// Normalizes the parameter environment, reporting errors if they occur.
pub fn normalize_param_env_or_error<'a,'tcx>(unnormalized_env: ty::ParameterEnvironment<'a,'tcx>,
cause: ObligationCause<'tcx>)
-> ty::ParameterEnvironment<'a,'tcx>
{
// I'm not wild about reporting errors here; I'd prefer to
// have the errors get reported at a defined place (e.g.,
// during typeck). Instead I have all parameter
// environments, in effect, going through this function
// and hence potentially reporting errors. This ensurse of
// course that we never forget to normalize (the
// alternative seemed like it would involve a lot of
// manual invocations of this fn -- and then we'd have to
// deal with the errors at each of those sites).
//
// In any case, in practice, typeck constructs all the
// parameter environments once for every fn as it goes,
// and errors will get reported then; so after typeck we
// can be sure that no errors should occur.
let tcx = unnormalized_env.tcx;
let span = cause.span;
let body_id = cause.body_id;
2015-06-18 12:25:05 -05:00
debug!("normalize_param_env_or_error(unnormalized_env={:?})",
unnormalized_env);
let predicates: Vec<_> =
util::elaborate_predicates(tcx, unnormalized_env.caller_bounds.clone())
.filter(|p| !p.is_global()) // (*)
.collect();
// (*) Any predicate like `i32: Trait<u32>` or whatever doesn't
// need to be in the *environment* to be proven, so screen those
// out. This is important for the soundness of inter-fn
// caching. Note though that we should probably check that these
// predicates hold at the point where the environment is
// constructed, but I am not currently doing so out of laziness.
// -nmatsakis
2015-06-18 12:25:05 -05:00
debug!("normalize_param_env_or_error: elaborated-predicates={:?}",
predicates);
let elaborated_env = unnormalized_env.with_caller_bounds(predicates);
let infcx = infer::new_infer_ctxt(tcx, &tcx.tables, Some(elaborated_env), false);
let predicates = match fully_normalize(&infcx, &infcx.parameter_environment, cause,
&infcx.parameter_environment.caller_bounds) {
Ok(predicates) => predicates,
Err(errors) => {
report_fulfillment_errors(&infcx, &errors);
return infcx.parameter_environment; // an unnormalized env is better than nothing
}
};
let free_regions = FreeRegionMap::new();
infcx.resolve_regions_and_report_errors(&free_regions, body_id);
let predicates = match infcx.fully_resolve(&predicates) {
Ok(predicates) => predicates,
Err(fixup_err) => {
// If we encounter a fixup error, it means that some type
// variable wound up unconstrained. I actually don't know
// if this can happen, and I certainly don't expect it to
// happen often, but if it did happen it probably
// represents a legitimate failure due to some kind of
// unconstrained variable, and it seems better not to ICE,
// all things considered.
let err_msg = fixup_err_to_string(fixup_err);
tcx.sess.span_err(span, &err_msg);
return infcx.parameter_environment; // an unnormalized env is better than nothing
}
};
infcx.parameter_environment.with_caller_bounds(predicates)
}
pub fn fully_normalize<'a,'tcx,T>(infcx: &InferCtxt<'a,'tcx>,
closure_typer: &ty::ClosureTyper<'tcx>,
cause: ObligationCause<'tcx>,
value: &T)
-> Result<T, Vec<FulfillmentError<'tcx>>>
where T : TypeFoldable<'tcx> + HasTypeFlags
{
2015-06-18 12:25:05 -05:00
debug!("normalize_param_env(value={:?})", value);
let mut selcx = &mut SelectionContext::new(infcx, closure_typer);
let mut fulfill_cx = infcx.fulfillment_cx.borrow_mut();
let Normalized { value: normalized_value, obligations } =
project::normalize(selcx, cause, value);
2015-06-18 12:25:05 -05:00
debug!("normalize_param_env: normalized_value={:?} obligations={:?}",
normalized_value,
obligations);
for obligation in obligations {
fulfill_cx.register_predicate_obligation(selcx.infcx(), obligation);
}
try!(fulfill_cx.select_all_or_error(infcx, closure_typer));
let resolved_value = infcx.resolve_type_vars_if_possible(&normalized_value);
2015-06-18 12:25:05 -05:00
debug!("normalize_param_env: resolved_value={:?}", resolved_value);
Ok(resolved_value)
}
impl<'tcx,O> Obligation<'tcx,O> {
pub fn new(cause: ObligationCause<'tcx>,
trait_ref: O)
-> Obligation<'tcx, O>
{
Obligation { cause: cause,
recursion_depth: 0,
predicate: trait_ref }
}
fn with_depth(cause: ObligationCause<'tcx>,
recursion_depth: usize,
trait_ref: O)
-> Obligation<'tcx, O>
{
Obligation { cause: cause,
recursion_depth: recursion_depth,
predicate: trait_ref }
}
pub fn misc(span: Span, body_id: ast::NodeId, trait_ref: O) -> Obligation<'tcx, O> {
Obligation::new(ObligationCause::misc(span, body_id), trait_ref)
}
pub fn with<P>(&self, value: P) -> Obligation<'tcx,P> {
Obligation { cause: self.cause.clone(),
recursion_depth: self.recursion_depth,
predicate: value }
}
}
impl<'tcx> ObligationCause<'tcx> {
2014-12-05 00:59:17 -06:00
pub fn new(span: Span,
body_id: ast::NodeId,
2014-12-05 00:59:17 -06:00
code: ObligationCauseCode<'tcx>)
-> ObligationCause<'tcx> {
ObligationCause { span: span, body_id: body_id, code: code }
}
pub fn misc(span: Span, body_id: ast::NodeId) -> ObligationCause<'tcx> {
ObligationCause { span: span, body_id: body_id, code: MiscObligation }
}
pub fn dummy() -> ObligationCause<'tcx> {
ObligationCause { span: DUMMY_SP, body_id: 0, code: MiscObligation }
}
}
impl<'tcx, N> Vtable<'tcx, N> {
pub fn nested_obligations(self) -> Vec<N> {
match self {
VtableImpl(i) => i.nested,
VtableParam(n) => n,
VtableBuiltin(i) => i.nested,
VtableDefaultImpl(d) => d.nested,
VtableClosure(c) => c.nested,
VtableObject(_) | VtableFnPointer(..) => vec![]
}
}
pub fn map<M, F>(self, f: F) -> Vtable<'tcx, M> where F: FnMut(N) -> M {
match self {
VtableImpl(i) => VtableImpl(VtableImplData {
impl_def_id: i.impl_def_id,
substs: i.substs,
nested: i.nested.into_iter().map(f).collect()
}),
VtableParam(n) => VtableParam(n.into_iter().map(f).collect()),
VtableBuiltin(i) => VtableBuiltin(VtableBuiltinData {
nested: i.nested.into_iter().map(f).collect()
}),
VtableObject(o) => VtableObject(o),
VtableDefaultImpl(d) => VtableDefaultImpl(VtableDefaultImplData {
trait_def_id: d.trait_def_id,
nested: d.nested.into_iter().map(f).collect()
}),
VtableFnPointer(f) => VtableFnPointer(f),
VtableClosure(c) => VtableClosure(VtableClosureData {
closure_def_id: c.closure_def_id,
substs: c.substs,
nested: c.nested.into_iter().map(f).collect()
})
}
}
}
impl<'tcx> FulfillmentError<'tcx> {
fn new(obligation: PredicateObligation<'tcx>,
code: FulfillmentErrorCode<'tcx>)
-> FulfillmentError<'tcx>
{
FulfillmentError { obligation: obligation, code: code }
}
}
impl<'tcx> TraitObligation<'tcx> {
fn self_ty(&self) -> ty::Binder<Ty<'tcx>> {
ty::Binder(self.predicate.skip_binder().self_ty())
}
}