rust/src/test/run-pass/issue-15734.rs

71 lines
1.7 KiB
Rust
Raw Normal View History

2014-11-03 00:58:00 +01:00
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
Fix orphan checking (cc #19470). (This is not a complete fix of #19470 because of the backwards compatibility feature gate.) This is a [breaking-change]. The new rules require that, for an impl of a trait defined in some other crate, two conditions must hold: 1. Some type must be local. 2. Every type parameter must appear "under" some local type. Here are some examples that are legal: ```rust struct MyStruct<T> { ... } // Here `T` appears "under' `MyStruct`. impl<T> Clone for MyStruct<T> { } // Here `T` appears "under' `MyStruct` as well. Note that it also appears // elsewhere. impl<T> Iterator<T> for MyStruct<T> { } ``` Here is an illegal example: ```rust // Here `U` does not appear "under" `MyStruct` or any other local type. // We call `U` "uncovered". impl<T,U> Iterator<U> for MyStruct<T> { } ``` There are a couple of ways to rewrite this last example so that it is legal: 1. In some cases, the uncovered type parameter (here, `U`) should be converted into an associated type. This is however a non-local change that requires access to the original trait. Also, associated types are not fully baked. 2. Add `U` as a type parameter of `MyStruct`: ```rust struct MyStruct<T,U> { ... } impl<T,U> Iterator<U> for MyStruct<T,U> { } ``` 3. Create a newtype wrapper for `U` ```rust impl<T,U> Iterator<Wrapper<U>> for MyStruct<T,U> { } ``` Because associated types are not fully baked, which in the case of the `Hash` trait makes adhering to this rule impossible, you can temporarily disable this rule in your crate by using `#![feature(old_orphan_check)]`. Note that the `old_orphan_check` feature will be removed before 1.0 is released.
2014-12-26 03:30:51 -05:00
// If `Index` used an associated type for its output, this test would
// work more smoothly.
2015-01-03 10:40:36 -05:00
#![feature(core)]
Fix orphan checking (cc #19470). (This is not a complete fix of #19470 because of the backwards compatibility feature gate.) This is a [breaking-change]. The new rules require that, for an impl of a trait defined in some other crate, two conditions must hold: 1. Some type must be local. 2. Every type parameter must appear "under" some local type. Here are some examples that are legal: ```rust struct MyStruct<T> { ... } // Here `T` appears "under' `MyStruct`. impl<T> Clone for MyStruct<T> { } // Here `T` appears "under' `MyStruct` as well. Note that it also appears // elsewhere. impl<T> Iterator<T> for MyStruct<T> { } ``` Here is an illegal example: ```rust // Here `U` does not appear "under" `MyStruct` or any other local type. // We call `U` "uncovered". impl<T,U> Iterator<U> for MyStruct<T> { } ``` There are a couple of ways to rewrite this last example so that it is legal: 1. In some cases, the uncovered type parameter (here, `U`) should be converted into an associated type. This is however a non-local change that requires access to the original trait. Also, associated types are not fully baked. 2. Add `U` as a type parameter of `MyStruct`: ```rust struct MyStruct<T,U> { ... } impl<T,U> Iterator<U> for MyStruct<T,U> { } ``` 3. Create a newtype wrapper for `U` ```rust impl<T,U> Iterator<Wrapper<U>> for MyStruct<T,U> { } ``` Because associated types are not fully baked, which in the case of the `Hash` trait makes adhering to this rule impossible, you can temporarily disable this rule in your crate by using `#![feature(old_orphan_check)]`. Note that the `old_orphan_check` feature will be removed before 1.0 is released.
2014-12-26 03:30:51 -05:00
use std::ops::Index;
struct Mat<T> { data: Vec<T>, cols: usize, }
2014-11-03 00:58:00 +01:00
impl<T> Mat<T> {
fn new(data: Vec<T>, cols: usize) -> Mat<T> {
2014-11-03 00:58:00 +01:00
Mat { data: data, cols: cols }
}
fn row<'a>(&'a self, row: usize) -> Row<&'a Mat<T>> {
2014-11-03 00:58:00 +01:00
Row { mat: self, row: row, }
}
}
impl<T> Index<(usize, usize)> for Mat<T> {
2015-01-03 10:40:36 -05:00
type Output = T;
fn index<'a>(&'a self, (row, col): (usize, usize)) -> &'a T {
2014-11-03 00:58:00 +01:00
&self.data[row * self.cols + col]
}
}
impl<'a, T> Index<(usize, usize)> for &'a Mat<T> {
2015-01-03 10:40:36 -05:00
type Output = T;
fn index<'b>(&'b self, index: (usize, usize)) -> &'b T {
2014-11-03 00:58:00 +01:00
(*self).index(index)
}
}
struct Row<M> { mat: M, row: usize, }
2014-11-03 00:58:00 +01:00
impl<T, M: Index<(usize, usize), Output=T>> Index<usize> for Row<M> {
2015-01-03 10:40:36 -05:00
type Output = T;
fn index<'a>(&'a self, col: usize) -> &'a T {
&self.mat[(self.row, col)]
2014-11-03 00:58:00 +01:00
}
}
fn main() {
let m = Mat::new(vec!(1, 2, 3, 4, 5, 6), 3);
2014-11-03 00:58:00 +01:00
let r = m.row(1);
assert!(r.index(2) == &6);
2014-11-03 00:58:00 +01:00
assert!(r[2] == 6);
assert!(r[2] == 6);
2014-11-03 00:58:00 +01:00
assert!(6 == r[2]);
let e = r[2];
assert!(e == 6);
let e: usize = r[2];
2014-11-03 00:58:00 +01:00
assert!(e == 6);
}