rust/src/librustc_trans/trans/mir/rvalue.rs

303 lines
14 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use back::abi;
use llvm::ValueRef;
use rustc::middle::ty::Ty;
use rustc_front::hir;
use rustc_mir::repr as mir;
use trans::asm;
use trans::base;
use trans::build;
use trans::common::{self, Block, Result};
use trans::debuginfo::DebugLoc;
use trans::declare;
use trans::machine;
use trans::type_::Type;
use trans::type_of;
use trans::tvec;
use super::MirContext;
use super::operand::OperandRef;
impl<'bcx, 'tcx> MirContext<'bcx, 'tcx> {
pub fn trans_rvalue(&mut self,
bcx: Block<'bcx, 'tcx>,
lldest: ValueRef,
rvalue: &mir::Rvalue<'tcx>)
-> Block<'bcx, 'tcx>
{
debug!("trans_rvalue(lldest={}, rvalue={:?})",
bcx.val_to_string(lldest),
rvalue);
match *rvalue {
mir::Rvalue::Use(ref operand) => {
self.trans_operand_into(bcx, lldest, operand);
bcx
}
mir::Rvalue::Cast(..) => {
unimplemented!()
}
mir::Rvalue::Repeat(..) => {
unimplemented!()
}
mir::Rvalue::Aggregate(_, ref operands) => {
for (i, operand) in operands.iter().enumerate() {
let lldest_i = build::GEPi(bcx, lldest, &[0, i]);
self.trans_operand_into(bcx, lldest_i, operand);
}
bcx
}
mir::Rvalue::Slice { ref input, from_start, from_end } => {
let ccx = bcx.ccx();
let input = self.trans_lvalue(bcx, input);
let (llbase, lllen) = tvec::get_base_and_len(bcx,
input.llval,
input.ty.to_ty(bcx.tcx()));
let llbase1 = build::GEPi(bcx, llbase, &[from_start]);
let adj = common::C_uint(ccx, from_start + from_end);
let lllen1 = build::Sub(bcx, lllen, adj, DebugLoc::None);
build::Store(bcx, llbase1, build::GEPi(bcx, lldest, &[0, abi::FAT_PTR_ADDR]));
build::Store(bcx, lllen1, build::GEPi(bcx, lldest, &[0, abi::FAT_PTR_EXTRA]));
bcx
}
mir::Rvalue::InlineAsm(inline_asm) => {
asm::trans_inline_asm(bcx, inline_asm)
}
_ => {
assert!(self.rvalue_creates_operand(rvalue));
let (bcx, temp) = self.trans_rvalue_operand(bcx, rvalue);
build::Store(bcx, temp.llval, lldest);
bcx
}
}
}
pub fn rvalue_creates_operand(&self, rvalue: &mir::Rvalue<'tcx>) -> bool {
match *rvalue {
mir::Rvalue::Use(..) | // (*)
mir::Rvalue::Ref(..) |
mir::Rvalue::Len(..) |
mir::Rvalue::Cast(..) | // (*)
mir::Rvalue::BinaryOp(..) |
mir::Rvalue::UnaryOp(..) |
mir::Rvalue::Box(..) =>
true,
mir::Rvalue::Repeat(..) |
mir::Rvalue::Aggregate(..) |
mir::Rvalue::Slice { .. } |
mir::Rvalue::InlineAsm(..) =>
false,
}
// (*) this is only true if the type is suitable
}
pub fn trans_rvalue_operand(&mut self,
bcx: Block<'bcx, 'tcx>,
rvalue: &mir::Rvalue<'tcx>)
-> (Block<'bcx, 'tcx>, OperandRef<'tcx>)
{
assert!(self.rvalue_creates_operand(rvalue), "cannot trans {:?} to operand", rvalue);
match *rvalue {
mir::Rvalue::Use(ref operand) => {
let operand = self.trans_operand(bcx, operand);
(bcx, operand)
}
mir::Rvalue::Cast(..) => {
unimplemented!()
}
mir::Rvalue::Ref(_, _, ref lvalue) => {
let tr_lvalue = self.trans_lvalue(bcx, lvalue);
// Note: lvalues are indirect, so storing the `llval` into the
// destination effectively creates a reference.
(bcx, OperandRef {
llval: tr_lvalue.llval,
ty: tr_lvalue.ty.to_ty(bcx.tcx()),
})
}
mir::Rvalue::Len(ref lvalue) => {
let tr_lvalue = self.trans_lvalue(bcx, lvalue);
let (_, lllen) = tvec::get_base_and_len(bcx,
tr_lvalue.llval,
tr_lvalue.ty.to_ty(bcx.tcx()));
(bcx, OperandRef {
llval: lllen,
ty: bcx.tcx().types.usize,
})
}
mir::Rvalue::BinaryOp(op, ref lhs, ref rhs) => {
let lhs = self.trans_operand(bcx, lhs);
let rhs = self.trans_operand(bcx, rhs);
let is_float = lhs.ty.is_fp();
let is_signed = lhs.ty.is_signed();
let binop_debug_loc = DebugLoc::None;
let llval = match op {
mir::BinOp::Add => if is_float {
build::FAdd(bcx, lhs.llval, rhs.llval, binop_debug_loc)
} else {
build::Add(bcx, lhs.llval, rhs.llval, binop_debug_loc)
},
mir::BinOp::Sub => if is_float {
build::FSub(bcx, lhs.llval, rhs.llval, binop_debug_loc)
} else {
build::Sub(bcx, lhs.llval, rhs.llval, binop_debug_loc)
},
mir::BinOp::Mul => if is_float {
build::FMul(bcx, lhs.llval, rhs.llval, binop_debug_loc)
} else {
build::Mul(bcx, lhs.llval, rhs.llval, binop_debug_loc)
},
mir::BinOp::Div => if is_float {
build::FDiv(bcx, lhs.llval, rhs.llval, binop_debug_loc)
} else if is_signed {
build::SDiv(bcx, lhs.llval, rhs.llval, binop_debug_loc)
} else {
build::UDiv(bcx, lhs.llval, rhs.llval, binop_debug_loc)
},
mir::BinOp::Rem => if is_float {
// LLVM currently always lowers the `frem` instructions appropriate
// library calls typically found in libm. Notably f64 gets wired up
// to `fmod` and f32 gets wired up to `fmodf`. Inconveniently for
// us, 32-bit MSVC does not actually have a `fmodf` symbol, it's
// instead just an inline function in a header that goes up to a
// f64, uses `fmod`, and then comes back down to a f32.
//
// Although LLVM knows that `fmodf` doesn't exist on MSVC, it will
// still unconditionally lower frem instructions over 32-bit floats
// to a call to `fmodf`. To work around this we special case MSVC
// 32-bit float rem instructions and instead do the call out to
// `fmod` ourselves.
//
// Note that this is currently duplicated with src/libcore/ops.rs
// which does the same thing, and it would be nice to perhaps unify
// these two implementations on day! Also note that we call `fmod`
// for both 32 and 64-bit floats because if we emit any FRem
// instruction at all then LLVM is capable of optimizing it into a
// 32-bit FRem (which we're trying to avoid).
let tcx = bcx.tcx();
let use_fmod = tcx.sess.target.target.options.is_like_msvc &&
tcx.sess.target.target.arch == "x86";
if use_fmod {
let f64t = Type::f64(bcx.ccx());
let fty = Type::func(&[f64t, f64t], &f64t);
let llfn = declare::declare_cfn(bcx.ccx(), "fmod", fty,
tcx.types.f64);
if lhs.ty == tcx.types.f32 {
let lllhs = build::FPExt(bcx, lhs.llval, f64t);
let llrhs = build::FPExt(bcx, rhs.llval, f64t);
let llres = build::Call(bcx, llfn, &[lllhs, llrhs],
None, binop_debug_loc);
build::FPTrunc(bcx, llres, Type::f32(bcx.ccx()))
} else {
build::Call(bcx, llfn, &[lhs.llval, rhs.llval],
None, binop_debug_loc)
}
} else {
build::FRem(bcx, lhs.llval, rhs.llval, binop_debug_loc)
}
} else if is_signed {
build::SRem(bcx, lhs.llval, rhs.llval, binop_debug_loc)
} else {
build::URem(bcx, lhs.llval, rhs.llval, binop_debug_loc)
},
mir::BinOp::BitOr => build::Or(bcx, lhs.llval, rhs.llval, binop_debug_loc),
mir::BinOp::BitAnd => build::And(bcx, lhs.llval, rhs.llval, binop_debug_loc),
mir::BinOp::BitXor => build::Xor(bcx, lhs.llval, rhs.llval, binop_debug_loc),
mir::BinOp::Shl => common::build_unchecked_lshift(bcx,
lhs.llval,
rhs.llval,
binop_debug_loc),
mir::BinOp::Shr => common::build_unchecked_rshift(bcx,
lhs.ty,
lhs.llval,
rhs.llval,
binop_debug_loc),
mir::BinOp::Eq => base::compare_scalar_types(bcx, lhs.llval, rhs.llval, lhs.ty,
hir::BiEq, binop_debug_loc),
mir::BinOp::Lt => base::compare_scalar_types(bcx, lhs.llval, rhs.llval, lhs.ty,
hir::BiLt, binop_debug_loc),
mir::BinOp::Le => base::compare_scalar_types(bcx, lhs.llval, rhs.llval, lhs.ty,
hir::BiLe, binop_debug_loc),
mir::BinOp::Ne => base::compare_scalar_types(bcx, lhs.llval, rhs.llval, lhs.ty,
hir::BiNe, binop_debug_loc),
mir::BinOp::Ge => base::compare_scalar_types(bcx, lhs.llval, rhs.llval, lhs.ty,
hir::BiGe, binop_debug_loc),
mir::BinOp::Gt => base::compare_scalar_types(bcx, lhs.llval, rhs.llval, lhs.ty,
hir::BiGt, binop_debug_loc),
};
(bcx, OperandRef {
llval: llval,
ty: lhs.ty,
})
}
mir::Rvalue::UnaryOp(op, ref operand) => {
let operand = self.trans_operand(bcx, operand);
let is_float = operand.ty.is_fp();
let debug_loc = DebugLoc::None;
let llval = match op {
mir::UnOp::Not => build::Not(bcx, operand.llval, debug_loc),
mir::UnOp::Neg => if is_float {
build::FNeg(bcx, operand.llval, debug_loc)
} else {
build::Neg(bcx, operand.llval, debug_loc)
}
};
(bcx, OperandRef {
llval: llval,
ty: operand.ty,
})
}
mir::Rvalue::Box(content_ty) => {
let content_ty: Ty<'tcx> = bcx.monomorphize(&content_ty);
let llty = type_of::type_of(bcx.ccx(), content_ty);
let llsize = machine::llsize_of(bcx.ccx(), llty);
let align = type_of::align_of(bcx.ccx(), content_ty);
let llalign = common::C_uint(bcx.ccx(), align);
let llty_ptr = llty.ptr_to();
let box_ty = bcx.tcx().mk_box(content_ty);
let Result { bcx, val: llval } = base::malloc_raw_dyn(bcx,
llty_ptr,
box_ty,
llsize,
llalign,
DebugLoc::None);
(bcx, OperandRef {
llval: llval,
ty: box_ty,
})
}
mir::Rvalue::Repeat(..) |
mir::Rvalue::Aggregate(..) |
mir::Rvalue::Slice { .. } |
mir::Rvalue::InlineAsm(..) => {
bcx.tcx().sess.bug(&format!("cannot generate operand from rvalue {:?}", rvalue));
}
}
}
}