rust/src/test/bench/graph500-bfs.rs

612 lines
16 KiB
Rust
Raw Normal View History

/**
An implementation of the Graph500 Bread First Search problem in Rust.
*/
use std;
import std::time;
import std::map;
import std::map::hashmap;
import std::deque;
import std::deque::t;
import io::writer_util;
import comm::*;
import int::abs;
type node_id = i64;
2012-05-16 17:03:03 -05:00
type graph = [[node_id]];
type bfs_result = [node_id];
iface queue<T: send> {
fn add_back(T);
fn pop_front() -> T;
fn size() -> uint;
}
#[doc="Creates a queue based on ports and channels.
This is admittedly not ideal, but it will help us work around the deque
bugs for the time being."]
fn create_queue<T: send>() -> queue<T> {
type repr<T: send> = {
p : port<T>,
c : chan<T>,
mut s : uint,
};
let p = port();
let c = chan(p);
impl<T: send> of queue<T> for repr<T> {
fn add_back(x : T) {
let x = x;
send(self.c, x);
self.s += 1u;
}
fn pop_front() -> T {
self.s -= 1u;
recv(self.p)
}
fn size() -> uint { self.s }
}
let Q : repr<T> = { p : p, c : c, mut s : 0u };
Q as queue::<T>
}
fn make_edges(scale: uint, edgefactor: uint) -> [(node_id, node_id)] {
let r = rand::rng();
fn choose_edge(i: node_id, j: node_id, scale: uint, r: rand::rng)
-> (node_id, node_id) {
let A = 0.57;
let B = 0.19;
let C = 0.19;
if scale == 0u {
(i, j)
}
else {
let i = i * 2;
let j = j * 2;
let scale = scale - 1u;
let x = r.gen_float();
if x < A {
choose_edge(i, j, scale, r)
}
else {
let x = x - A;
if x < B {
choose_edge(i + 1, j, scale, r)
}
else {
let x = x - B;
if x < C {
choose_edge(i, j + 1, scale, r)
}
else {
choose_edge(i + 1, j + 1, scale, r)
}
}
}
}
}
vec::from_fn((1u << scale) * edgefactor) {|_i|
choose_edge(0, 0, scale, r)
}
}
fn make_graph(N: uint, edges: [(node_id, node_id)]) -> graph {
let graph = vec::from_fn(N) {|_i| map::int_hash() };
vec::each(edges) {|e|
let (i, j) = e;
map::set_add(graph[i], j);
map::set_add(graph[j], i);
true
}
2012-05-16 17:03:03 -05:00
graph.map() {|v|
2012-05-16 17:45:21 -05:00
map::vec_from_set(v)
}
}
fn gen_search_keys(graph: graph, n: uint) -> [node_id] {
let keys = map::int_hash();
let r = rand::rng();
while keys.size() < n {
let k = r.gen_u64() % graph.len() as node_id;
2012-05-16 17:45:21 -05:00
if graph[k].len() > 0u && vec::any(graph[k]) {|i|
i != k
} {
map::set_add(keys, k);
}
2012-05-16 17:03:03 -05:00
}
2012-05-16 17:45:21 -05:00
map::vec_from_set(keys)
}
#[doc="Returns a vector of all the parents in the BFS tree rooted at key.
Nodes that are unreachable have a parent of -1."]
fn bfs(graph: graph, key: node_id) -> bfs_result {
let marks : [mut node_id]
= vec::to_mut(vec::from_elem(vec::len(graph), -1));
let Q = create_queue();
Q.add_back(key);
marks[key] = key;
while Q.size() > 0u {
let t = Q.pop_front();
2012-05-16 17:03:03 -05:00
graph[t].each() {|k|
if marks[k] == -1 {
marks[k] = t;
Q.add_back(k);
}
true
};
}
vec::from_mut(marks)
}
#[doc="Another version of the bfs function.
This one uses the same algorithm as the parallel one, just without
using the parallel vector operators."]
fn bfs2(graph: graph, key: node_id) -> bfs_result {
// This works by doing functional updates of a color vector.
enum color {
white,
// node_id marks which node turned this gray/black.
// the node id later becomes the parent.
gray(node_id),
black(node_id)
};
let mut colors = vec::from_fn(graph.len()) {|i|
if i as node_id == key {
gray(key)
}
else {
white
}
};
fn is_gray(c: color) -> bool {
alt c {
gray(_) { true }
_ { false }
}
}
let mut i = 0u;
while vec::any(colors, is_gray) {
// Do the BFS.
log(info, #fmt("PBFS iteration %?", i));
i += 1u;
colors = colors.mapi() {|i, c|
let c : color = c;
alt c {
white {
let i = i as node_id;
let neighbors = graph[i];
let mut color = white;
neighbors.each() {|k|
if is_gray(colors[k]) {
color = gray(k);
false
}
else { true }
};
color
}
gray(parent) { black(parent) }
black(parent) { black(parent) }
}
}
}
// Convert the results.
vec::map(colors) {|c|
alt c {
white { -1 }
black(parent) { parent }
_ { fail "Found remaining gray nodes in BFS" }
}
}
}
2012-05-16 17:03:03 -05:00
#[doc="A parallel version of the bfs function."]
fn pbfs(graph: graph, key: node_id) -> bfs_result {
// This works by doing functional updates of a color vector.
enum color {
white,
// node_id marks which node turned this gray/black.
// the node id later becomes the parent.
gray(node_id),
black(node_id)
};
let mut colors = vec::from_fn(graph.len()) {|i|
if i as node_id == key {
gray(key)
}
else {
white
}
};
#[inline(always)]
2012-05-16 17:03:03 -05:00
fn is_gray(c: color) -> bool {
alt c {
gray(_) { true }
_ { false }
}
}
let mut i = 0u;
while par::any(colors, is_gray) {
// Do the BFS.
log(info, #fmt("PBFS iteration %?", i));
i += 1u;
let old_len = colors.len();
let pc = ptr::addr_of(colors);
let pg = ptr::addr_of(graph);
colors = par::mapi(colors) {|i, c|
2012-05-16 17:03:03 -05:00
let c : color = c;
alt c {
white {
unsafe {
let i = i as node_id;
let neighbors = &(*pg)[i];
let mut color = white;
(*neighbors).each() {|k|
if is_gray((*pc)[k]) {
color = gray(k);
false
}
else { true }
};
color
}
2012-05-16 17:03:03 -05:00
}
gray(parent) { black(parent) }
black(parent) { black(parent) }
}
};
assert(colors.len() == old_len);
2012-05-16 17:03:03 -05:00
}
// Convert the results.
par::map(colors) {|c|
alt c {
white { -1 }
black(parent) { parent }
_ { fail "Found remaining gray nodes in BFS" }
}
}
}
#[doc="Performs at least some of the validation in the Graph500 spec."]
fn validate(edges: [(node_id, node_id)],
root: node_id, tree: bfs_result) -> bool {
// There are 5 things to test. Below is code for each of them.
// 1. The BFS tree is a tree and does not contain cycles.
//
// We do this by iterating over the tree, and tracing each of the
// parent chains back to the root. While we do this, we also
// compute the levels for each node.
log(info, "Verifying tree structure...");
let mut status = true;
let level = tree.map() {|parent|
let mut parent = parent;
let mut path = [];
if parent == -1 {
// This node was not in the tree.
-1
}
else {
while parent != root {
if vec::contains(path, parent) {
status = false;
}
path += [parent];
parent = tree[parent];
}
// The length of the path back to the root is the current
// level.
path.len() as int
}
};
if !status { ret status }
// 2. Each tree edge connects vertices whose BFS levels differ by
// exactly one.
log(info, "Verifying tree edges...");
let status = tree.alli() {|k, parent|
if parent != root && parent != -1 {
level[parent] == level[k] - 1
}
else {
true
}
};
if !status { ret status }
// 3. Every edge in the input list has vertices with levels that
// differ by at most one or that both are not in the BFS tree.
log(info, "Verifying graph edges...");
let status = edges.all() {|e|
let (u, v) = e;
abs(level[u] - level[v]) <= 1
};
if !status { ret status }
// 4. The BFS tree spans an entire connected component's vertices.
// This is harder. We'll skip it for now...
// 5. A node and its parent are joined by an edge of the original
// graph.
log(info, "Verifying tree and graph edges...");
let status = par::alli(tree) {|u, v|
if v == -1 || u as int == root {
true
}
else {
edges.contains((u as int, v)) || edges.contains((v, u as int))
}
};
if !status { ret status }
// If we get through here, all the tests passed!
true
}
fn main() {
let scale = 15u;
let num_keys = 64u;
2012-05-16 17:45:21 -05:00
let do_validate = false;
let do_sequential = true;
let start = time::precise_time_s();
let edges = make_edges(scale, 16u);
let stop = time::precise_time_s();
io::stdout().write_line(#fmt("Generated %? edges in %? seconds.",
vec::len(edges), stop - start));
let start = time::precise_time_s();
let graph = make_graph(1u << scale, edges);
let stop = time::precise_time_s();
let mut total_edges = 0u;
2012-05-16 17:03:03 -05:00
vec::each(graph) {|edges| total_edges += edges.len(); true };
io::stdout().write_line(#fmt("Generated graph with %? edges in %? seconds.",
total_edges / 2u,
stop - start));
2012-05-16 17:45:21 -05:00
let mut total_seq = 0.0;
let mut total_par = 0.0;
gen_search_keys(graph, num_keys).map() {|root|
io::stdout().write_line("");
io::stdout().write_line(#fmt("Search key: %?", root));
if do_sequential {
2012-05-16 17:45:21 -05:00
let start = time::precise_time_s();
let bfs_tree = bfs(graph, root);
2012-05-16 17:45:21 -05:00
let stop = time::precise_time_s();
//total_seq += stop - start;
io::stdout().write_line(
#fmt("Sequential BFS completed in %? seconds.",
stop - start));
if do_validate {
let start = time::precise_time_s();
assert(validate(edges, root, bfs_tree));
let stop = time::precise_time_s();
io::stdout().write_line(
#fmt("Validation completed in %? seconds.",
stop - start));
}
let start = time::precise_time_s();
let bfs_tree = bfs2(graph, root);
let stop = time::precise_time_s();
2012-05-16 17:45:21 -05:00
total_seq += stop - start;
io::stdout().write_line(
#fmt("Alternate Sequential BFS completed in %? seconds.",
stop - start));
if do_validate {
let start = time::precise_time_s();
assert(validate(edges, root, bfs_tree));
let stop = time::precise_time_s();
io::stdout().write_line(
#fmt("Validation completed in %? seconds.",
stop - start));
}
2012-05-16 17:45:21 -05:00
}
2012-05-16 17:45:21 -05:00
let start = time::precise_time_s();
let bfs_tree = pbfs(graph, root);
let stop = time::precise_time_s();
total_par += stop - start;
io::stdout().write_line(#fmt("Parallel BFS completed in %? seconds.",
stop - start));
if do_validate {
let start = time::precise_time_s();
assert(validate(edges, root, bfs_tree));
let stop = time::precise_time_s();
io::stdout().write_line(#fmt("Validation completed in %? seconds.",
stop - start));
}
};
io::stdout().write_line("");
io::stdout().write_line(
#fmt("Total sequential: %? \t Total Parallel: %? \t Speedup: %?x",
total_seq, total_par, total_seq / total_par));
}
// par stuff /////////////////////////////////////////////////////////
mod par {
import comm::port;
import comm::chan;
import comm::send;
import comm::recv;
import future::future;
#[doc="The maximum number of tasks this module will spawn for a single
operationg."]
const max_tasks : uint = 32u;
#[doc="The minimum number of elements each task will process."]
const min_granularity : uint = 1024u;
#[doc="An internal helper to map a function over a large vector and
return the intermediate results.
This is used to build most of the other parallel vector functions,
like map or alli."]
fn map_slices<A: send, B: send>(xs: [A], f: fn~(uint, [const A]/&) -> B)
-> [B] {
let len = xs.len();
if len < min_granularity {
2012-05-16 17:03:03 -05:00
log(info, "small slice");
// This is a small vector, fall back on the normal map.
[f(0u, xs)]
}
else {
let num_tasks = uint::min(max_tasks, len / min_granularity);
let items_per_task = len / num_tasks;
let mut futures = [];
let mut base = 0u;
2012-05-16 17:03:03 -05:00
log(info, "spawning tasks");
while base < len {
let end = uint::min(len, base + items_per_task);
// FIXME: why is the ::<A, ()> annotation required here?
vec::unpack_slice::<A, ()>(xs) {|p, _len|
let f = ptr::addr_of(f);
futures += [future::spawn() {|copy base|
unsafe {
let len = end - base;
let slice = (ptr::offset(p, base),
len * sys::size_of::<A>());
log(info, #fmt("pre-slice: %?", (base, slice)));
let slice : [const A]/& =
unsafe::reinterpret_cast(slice);
log(info, #fmt("slice: %?",
(base, vec::len(slice), end - base)));
assert(vec::len(slice) == end - base);
(*f)(base, slice)
}
}];
};
base += items_per_task;
}
2012-05-16 17:03:03 -05:00
log(info, "tasks spawned");
log(info, #fmt("num_tasks: %?", (num_tasks, futures.len())));
assert(num_tasks == futures.len());
let r = futures.map() {|ys|
ys.get()
};
assert(r.len() == futures.len());
r
}
}
#[doc="A parallel version of map."]
fn map<A: send, B: send>(xs: [A], f: fn~(A) -> B) -> [B] {
vec::concat(map_slices(xs) {|_base, slice|
2012-05-16 17:03:03 -05:00
vec::map(slice, f)
})
}
#[doc="A parallel version of mapi."]
fn mapi<A: send, B: send>(xs: [A], f: fn~(uint, A) -> B) -> [B] {
let slices = map_slices(xs) {|base, slice|
vec::mapi(slice) {|i, x|
2012-05-16 17:03:03 -05:00
f(i + base, x)
}
};
let r = vec::concat(slices);
log(info, (r.len(), xs.len()));
assert(r.len() == xs.len());
r
}
#[doc="Returns true if the function holds for all elements in the vector."]
fn alli<A: send>(xs: [A], f: fn~(uint, A) -> bool) -> bool {
vec::all(map_slices(xs) {|base, slice|
vec::alli(slice) {|i, x|
f(i + base, x)
}
}) {|x| x }
}
2012-05-16 17:03:03 -05:00
#[doc="Returns true if the function holds for any elements in the vector."]
fn any<A: send>(xs: [A], f: fn~(A) -> bool) -> bool {
vec::any(map_slices(xs) {|_base, slice|
vec::any(slice, f)
2012-05-16 17:03:03 -05:00
}) {|x| x }
}
}