rust/src/test/bench/graph500-bfs.rs

278 lines
6.7 KiB
Rust
Raw Normal View History

/**
An implementation of the Graph500 Bread First Search problem in Rust.
*/
use std;
import std::time;
import std::map;
import std::map::hashmap;
import std::deque;
import std::deque::t;
import io::writer_util;
import comm::*;
import int::abs;
type node_id = i64;
type graph = [map::set<node_id>];
type bfs_result = [node_id];
iface queue<T: send> {
fn add_back(T);
fn pop_front() -> T;
fn size() -> uint;
}
#[doc="Creates a queue based on ports and channels.
This is admittedly not ideal, but it will help us work around the deque
bugs for the time being."]
fn create_queue<T: send>() -> queue<T> {
type repr<T: send> = {
p : port<T>,
c : chan<T>,
mut s : uint,
};
let p = port();
let c = chan(p);
impl<T: send> of queue<T> for repr<T> {
fn add_back(x : T) {
let x = x;
send(self.c, x);
self.s += 1u;
}
fn pop_front() -> T {
self.s -= 1u;
recv(self.p)
}
fn size() -> uint { self.s }
}
let Q : repr<T> = { p : p, c : c, mut s : 0u };
Q as queue::<T>
}
fn make_edges(scale: uint, edgefactor: uint) -> [(node_id, node_id)] {
let r = rand::rng();
fn choose_edge(i: node_id, j: node_id, scale: uint, r: rand::rng)
-> (node_id, node_id) {
let A = 0.57;
let B = 0.19;
let C = 0.19;
if scale == 0u {
(i, j)
}
else {
let i = i * 2;
let j = j * 2;
let scale = scale - 1u;
let x = r.next_float();
if x < A {
choose_edge(i, j, scale, r)
}
else {
let x = x - A;
if x < B {
choose_edge(i + 1, j, scale, r)
}
else {
let x = x - B;
if x < C {
choose_edge(i, j + 1, scale, r)
}
else {
choose_edge(i + 1, j + 1, scale, r)
}
}
}
}
}
vec::from_fn((1u << scale) * edgefactor) {|_i|
choose_edge(0, 0, scale, r)
}
}
fn make_graph(N: uint, edges: [(node_id, node_id)]) -> graph {
let graph = vec::from_fn(N) {|_i| map::int_hash() };
vec::each(edges) {|e|
let (i, j) = e;
map::set_add(graph[i], j);
map::set_add(graph[j], i);
true
}
graph
}
#[doc="Returns a vector of all the parents in the BFS tree rooted at key.
Nodes that are unreachable have a parent of -1."]
fn bfs(graph: graph, key: node_id) -> bfs_result {
let marks : [mut node_id]
= vec::to_mut(vec::from_elem(vec::len(graph), -1));
let Q = create_queue();
Q.add_back(key);
marks[key] = key;
while Q.size() > 0u {
let t = Q.pop_front();
graph[t].each_key() {|k|
if marks[k] == -1 {
marks[k] = t;
Q.add_back(k);
}
true
};
}
vec::from_mut(marks)
}
#[doc="Performs at least some of the validation in the Graph500 spec."]
fn validate(edges: [(node_id, node_id)],
root: node_id, tree: bfs_result) -> bool {
// There are 5 things to test. Below is code for each of them.
// 1. The BFS tree is a tree and does not contain cycles.
//
// We do this by iterating over the tree, and tracing each of the
// parent chains back to the root. While we do this, we also
// compute the levels for each node.
log(info, "Verifying tree structure...");
let mut status = true;
let level = tree.map() {|parent|
let mut parent = parent;
let mut path = [];
if parent == -1 {
// This node was not in the tree.
-1
}
else {
while parent != root {
if vec::contains(path, parent) {
status = false;
}
path += [parent];
parent = tree[parent];
}
// The length of the path back to the root is the current
// level.
path.len() as int
}
};
if !status { ret status }
// 2. Each tree edge connects vertices whose BFS levels differ by
// exactly one.
log(info, "Verifying tree edges...");
let status = tree.alli() {|k, parent|
if parent != root && parent != -1 {
level[parent] == level[k] - 1
}
else {
true
}
};
if !status { ret status }
// 3. Every edge in the input list has vertices with levels that
// differ by at most one or that both are not in the BFS tree.
log(info, "Verifying graph edges...");
let status = edges.all() {|e|
let (u, v) = e;
abs(level[u] - level[v]) <= 1
};
if !status { ret status }
// 4. The BFS tree spans an entire connected component's vertices.
// This is harder. We'll skip it for now...
// 5. A node and its parent are joined by an edge of the original
// graph.
log(info, "Verifying tree and graph edges...");
let status = tree.alli() {|u, v|
if v == -1 || u as int == root {
true
}
else {
log(info, #fmt("Checking for %? or %?",
(u, v), (v, u)));
edges.contains((u as int, v)) || edges.contains((v, u as int))
}
};
if !status { ret status }
// If we get through here, all the tests passed!
true
}
fn main() {
let scale = 14u;
let start = time::precise_time_s();
let edges = make_edges(scale, 16u);
let stop = time::precise_time_s();
io::stdout().write_line(#fmt("Generated %? edges in %? seconds.",
vec::len(edges), stop - start));
let start = time::precise_time_s();
let graph = make_graph(1u << scale, edges);
let stop = time::precise_time_s();
let mut total_edges = 0u;
vec::each(graph) {|edges| total_edges += edges.size(); true };
io::stdout().write_line(#fmt("Generated graph with %? edges in %? seconds.",
total_edges / 2u,
stop - start));
let root = 0;
let start = time::precise_time_s();
let bfs_tree = bfs(graph, root);
let stop = time::precise_time_s();
io::stdout().write_line(#fmt("BFS completed in %? seconds.",
stop - start));
let start = time::precise_time_s();
assert(validate(graph, edges, root, bfs_tree));
let stop = time::precise_time_s();
io::stdout().write_line(#fmt("Validation completed in %? seconds.",
stop - start));
}