rust/src/libstd/task/mod.rs

1317 lines
37 KiB
Rust
Raw Normal View History

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2012-11-28 18:20:41 -06:00
/*!
* Task management.
*
* An executing Rust program consists of a tree of tasks, each with their own
* stack, and sole ownership of their allocated heap data. Tasks communicate
* with each other using ports and channels.
*
* When a task fails, that failure will propagate to its parent (the task
* that spawned it) and the parent will fail as well. The reverse is not
* true: when a parent task fails its children will continue executing. When
* the root (main) task fails, all tasks fail, and then so does the entire
* process.
*
* Tasks may execute in parallel and are scheduled automatically by the
* runtime.
*
* # Example
*
* ~~~
* do spawn {
* log(error, "Hello, World!");
* }
* ~~~
*/
2012-11-18 19:56:50 -06:00
#[allow(missing_doc)];
use prelude::*;
use cell::Cell;
2012-11-28 18:20:41 -06:00
use cmp::Eq;
2013-03-26 15:38:07 -05:00
use comm::{stream, Chan, GenericChan, GenericPort, Port};
use result::Result;
use result;
use rt::{context, OldTaskContext, TaskContext};
use rt::local::Local;
2013-05-03 17:47:32 -05:00
use task::rt::{task_id, sched_id};
use unstable::finally::Finally;
use util;
2012-11-18 19:56:50 -06:00
#[cfg(test)] use cast;
2013-03-26 15:38:07 -05:00
#[cfg(test)] use comm::SharedChan;
#[cfg(test)] use comm;
#[cfg(test)] use ptr;
#[cfg(test)] use task;
2013-03-26 15:38:07 -05:00
2012-11-28 18:20:41 -06:00
mod local_data_priv;
pub mod rt;
2012-11-18 19:56:50 -06:00
pub mod spawn;
2012-11-28 18:20:41 -06:00
/// A handle to a scheduler
#[deriving(Eq)]
pub enum Scheduler {
SchedulerHandle(sched_id)
}
2012-11-28 18:20:41 -06:00
/// A handle to a task
#[deriving(Eq)]
2012-11-28 18:20:41 -06:00
pub enum Task {
TaskHandle(task_id)
}
/**
* Indicates the manner in which a task exited.
*
* A task that completes without failing is considered to exit successfully.
* Supervised ancestors and linked siblings may yet fail after this task
* succeeds. Also note that in such a case, it may be nondeterministic whether
* linked failure or successful exit happen first.
*
* If you wish for this result's delivery to block until all linked and/or
* children tasks complete, recommend using a result future.
*/
#[deriving(Eq)]
2012-11-28 18:20:41 -06:00
pub enum TaskResult {
Success,
Failure,
}
/// Scheduler modes
#[deriving(Eq)]
2012-11-28 18:20:41 -06:00
pub enum SchedMode {
/// Run task on the default scheduler
DefaultScheduler,
/// Run task on the current scheduler
CurrentScheduler,
/// Run task on a specific scheduler
ExistingScheduler(Scheduler),
/**
* Tasks are scheduled on the main OS thread
*
* The main OS thread is the thread used to launch the runtime which,
* in most cases, is the process's initial thread as created by the OS.
*/
PlatformThread,
2012-11-28 18:20:41 -06:00
/// All tasks run in the same OS thread
SingleThreaded,
/// Tasks are distributed among available CPUs
ThreadPerTask,
/// Tasks are distributed among a fixed number of OS threads
ManualThreads(uint),
}
/**
* Scheduler configuration options
*
* # Fields
*
* * sched_mode - The operating mode of the scheduler
*
* * foreign_stack_size - The size of the foreign stack, in bytes
*
* Rust code runs on Rust-specific stacks. When Rust code calls foreign
* code (via functions in foreign modules) it switches to a typical, large
* stack appropriate for running code written in languages like C. By
* default these foreign stacks have unspecified size, but with this
* option their size can be precisely specified.
*/
pub struct SchedOpts {
2012-11-28 18:20:41 -06:00
mode: SchedMode,
foreign_stack_size: Option<uint>,
}
2012-11-28 18:20:41 -06:00
/**
* Task configuration options
*
* # Fields
*
* * linked - Propagate failure bidirectionally between child and parent.
* True by default. If both this and 'supervised' are false, then
* either task's failure will not affect the other ("unlinked").
*
* * supervised - Propagate failure unidirectionally from parent to child,
* but not from child to parent. False by default.
*
* * watched - Make parent task collect exit status notifications from child
* before reporting its own exit status. (This delays the parent
* task's death and cleanup until after all transitively watched
* children also exit.) True by default.
*
* * indestructible - Configures the task to ignore kill signals received from
* linked failure. This may cause process hangs during
* failure if not used carefully, but causes task blocking
* code paths (e.g. port recv() calls) to be faster by 2
* atomic operations. False by default.
*
2012-11-28 18:20:41 -06:00
* * notify_chan - Enable lifecycle notifications on the given channel
*
* * sched - Specify the configuration of a new scheduler to create the task
* in
*
* By default, every task is created in the same scheduler as its
* parent, where it is scheduled cooperatively with all other tasks
* in that scheduler. Some specialized applications may want more
* control over their scheduling, in which case they can be spawned
* into a new scheduler with the specific properties required.
*
* This is of particular importance for libraries which want to call
* into foreign code that blocks. Without doing so in a different
* scheduler other tasks will be impeded or even blocked indefinitely.
*/
pub struct TaskOpts {
2012-11-28 18:20:41 -06:00
linked: bool,
supervised: bool,
watched: bool,
indestructible: bool,
notify_chan: Option<Chan<TaskResult>>,
sched: SchedOpts
}
2012-11-28 18:20:41 -06:00
/**
* The task builder type.
*
* Provides detailed control over the properties and behavior of new tasks.
*/
// NB: Builders are designed to be single-use because they do stateful
// things that get weird when reusing - e.g. if you create a result future
// it only applies to a single task, so then you have to maintain Some
// potentially tricky state to ensure that everything behaves correctly
// when you try to reuse the builder to spawn a new task. We'll just
// sidestep that whole issue by making builders uncopyable and making
// the run function move them in.
// FIXME (#3724): Replace the 'consumed' bit with move mode on self
pub struct TaskBuilder {
2012-11-28 18:20:41 -06:00
opts: TaskOpts,
gen_body: Option<~fn(v: ~fn()) -> ~fn()>,
2012-11-28 18:20:41 -06:00
can_not_copy: Option<util::NonCopyable>,
consumed: bool,
}
2012-11-28 18:20:41 -06:00
/**
* Generate the base configuration for spawning a task, off of which more
* configuration methods can be chained.
* For example, task().unlinked().spawn is equivalent to spawn_unlinked.
*/
pub fn task() -> TaskBuilder {
TaskBuilder {
2012-11-28 18:20:41 -06:00
opts: default_task_opts(),
gen_body: None,
2012-11-28 18:20:41 -06:00
can_not_copy: None,
consumed: false,
}
2012-11-28 18:20:41 -06:00
}
impl TaskBuilder {
fn consume(&mut self) -> TaskBuilder {
2012-11-28 18:20:41 -06:00
if self.consumed {
fail!("Cannot copy a task_builder"); // Fake move mode on self
2012-11-28 18:20:41 -06:00
}
self.consumed = true;
let gen_body = self.gen_body.take();
let notify_chan = self.opts.notify_chan.take();
TaskBuilder {
opts: TaskOpts {
2012-11-28 18:20:41 -06:00
linked: self.opts.linked,
supervised: self.opts.supervised,
watched: self.opts.watched,
indestructible: self.opts.indestructible,
notify_chan: notify_chan,
2012-11-28 18:20:41 -06:00
sched: self.opts.sched
},
gen_body: gen_body,
2012-11-28 18:20:41 -06:00
can_not_copy: None,
consumed: false
}
2012-11-28 18:20:41 -06:00
}
}
impl TaskBuilder {
/// Decouple the child task's failure from the parent's. If either fails,
/// the other will not be killed.
pub fn unlinked(&mut self) {
self.opts.linked = false;
self.opts.watched = false;
2012-11-28 18:20:41 -06:00
}
/// Unidirectionally link the child task's failure with the parent's. The
/// child's failure will not kill the parent, but the parent's will kill
/// the child.
pub fn supervised(&mut self) {
self.opts.supervised = true;
2013-05-06 21:29:04 -05:00
self.opts.linked = false;
self.opts.watched = false;
2012-11-28 18:20:41 -06:00
}
/// Link the child task's and parent task's failures. If either fails, the
/// other will be killed.
pub fn linked(&mut self) {
self.opts.linked = true;
2013-05-06 21:29:04 -05:00
self.opts.supervised = false;
self.opts.watched = true;
}
/// Cause the parent task to collect the child's exit status (and that of
/// all transitively-watched grandchildren) before reporting its own.
pub fn watched(&mut self) {
self.opts.watched = true;
}
/// Allow the child task to outlive the parent task, at the possible cost
/// of the parent reporting success even if the child task fails later.
pub fn unwatched(&mut self) {
self.opts.watched = false;
}
/// Cause the child task to ignore any kill signals received from linked
/// failure. This optimizes context switching, at the possible expense of
/// process hangs in the case of unexpected failure.
pub fn indestructible(&mut self) {
self.opts.indestructible = true;
2012-11-28 18:20:41 -06:00
}
/**
* Get a future representing the exit status of the task.
*
* Taking the value of the future will block until the child task
* terminates. The future-receiving callback specified will be called
* *before* the task is spawned; as such, do not invoke .get() within the
* closure; rather, store it in an outer variable/list for later use.
*
* Note that the future returning by this function is only useful for
* obtaining the value of the next task to be spawning with the
* builder. If additional tasks are spawned with the same builder
* then a new result future must be obtained prior to spawning each
* task.
*
* # Failure
* Fails if a future_result was already set for this task.
*/
pub fn future_result(&mut self, blk: &fn(v: Port<TaskResult>)) {
2012-11-28 18:20:41 -06:00
// FIXME (#3725): Once linked failure and notification are
// handled in the library, I can imagine implementing this by just
// registering an arbitrary number of task::on_exit handlers and
// sending out messages.
if self.opts.notify_chan.is_some() {
fail!("Can't set multiple future_results for one task!");
2012-11-28 18:20:41 -06:00
}
// Construct the future and give it to the caller.
let (notify_pipe_po, notify_pipe_ch) = stream::<TaskResult>();
2012-11-28 18:20:41 -06:00
2013-02-15 02:51:28 -06:00
blk(notify_pipe_po);
2012-11-28 18:20:41 -06:00
// Reconfigure self to use a notify channel.
self.opts.notify_chan = Some(notify_pipe_ch);
2012-11-28 18:20:41 -06:00
}
2012-11-28 18:20:41 -06:00
/// Configure a custom scheduler mode for the task.
pub fn sched_mode(&mut self, mode: SchedMode) {
self.opts.sched.mode = mode;
2012-11-28 18:20:41 -06:00
}
/**
* Add a wrapper to the body of the spawned task.
*
* Before the task is spawned it is passed through a 'body generator'
* function that may perform local setup operations as well as wrap
* the task body in remote setup operations. With this the behavior
* of tasks can be extended in simple ways.
*
* This function augments the current body generator with a new body
* generator by applying the task body which results from the
* existing body generator to the new body generator.
*/
pub fn add_wrapper(&mut self, wrapper: ~fn(v: ~fn()) -> ~fn()) {
let prev_gen_body = self.gen_body.take();
let prev_gen_body = match prev_gen_body {
Some(gen) => gen,
None => {
let f: ~fn(~fn()) -> ~fn() = |body| body;
f
}
};
let prev_gen_body = Cell::new(prev_gen_body);
let next_gen_body = {
let f: ~fn(~fn()) -> ~fn() = |body| {
let prev_gen_body = prev_gen_body.take();
wrapper(prev_gen_body(body))
};
f
};
self.gen_body = Some(next_gen_body);
2012-11-28 18:20:41 -06:00
}
/**
* Creates and executes a new child task
*
* Sets up a new task with its own call stack and schedules it to run
* the provided unique closure. The task has the properties and behavior
* specified by the task_builder.
*
* # Failure
*
* When spawning into a new scheduler, the number of threads requested
* must be greater than zero.
*/
pub fn spawn(&mut self, f: ~fn()) {
let gen_body = self.gen_body.take();
let notify_chan = self.opts.notify_chan.take();
2012-11-28 18:20:41 -06:00
let x = self.consume();
let opts = TaskOpts {
2012-11-28 18:20:41 -06:00
linked: x.opts.linked,
supervised: x.opts.supervised,
watched: x.opts.watched,
indestructible: x.opts.indestructible,
notify_chan: notify_chan,
2012-11-28 18:20:41 -06:00
sched: x.opts.sched
};
let f = match gen_body {
Some(gen) => {
gen(f)
}
None => {
f
}
};
spawn::spawn_raw(opts, f);
2012-11-28 18:20:41 -06:00
}
2012-11-28 18:20:41 -06:00
/// Runs a task, while transfering ownership of one argument to the child.
pub fn spawn_with<A:Send>(&mut self, arg: A, f: ~fn(v: A)) {
let arg = Cell::new(arg);
do self.spawn {
f(arg.take());
2012-11-28 18:20:41 -06:00
}
}
/**
* Execute a function in another task and return either the return value
* of the function or result::err.
*
* # Return value
*
* If the function executed successfully then try returns result::ok
* containing the value returned by the function. If the function fails
* then try returns result::err containing nil.
*
* # Failure
* Fails if a future_result was already set for this task.
*/
pub fn try<T:Send>(&mut self, f: ~fn() -> T) -> Result<T,()> {
2013-01-22 14:38:08 -06:00
let (po, ch) = stream::<T>();
2012-11-28 18:20:41 -06:00
let mut result = None;
self.future_result(|r| { result = Some(r); });
do self.spawn {
2013-01-22 14:38:08 -06:00
ch.send(f());
2012-11-28 18:20:41 -06:00
}
match result.unwrap().recv() {
2013-01-22 14:38:08 -06:00
Success => result::Ok(po.recv()),
2012-11-28 18:20:41 -06:00
Failure => result::Err(())
}
}
}
/* Task construction */
pub fn default_task_opts() -> TaskOpts {
/*!
* The default task options
*
* By default all tasks are supervised by their parent, are spawned
* into the same scheduler, and do not post lifecycle notifications.
*/
TaskOpts {
2012-11-28 18:20:41 -06:00
linked: true,
supervised: false,
watched: true,
indestructible: false,
notify_chan: None,
sched: SchedOpts {
mode: DefaultScheduler,
foreign_stack_size: None
}
2012-11-28 18:20:41 -06:00
}
}
/* Spawn convenience functions */
/// Creates and executes a new child task
///
/// Sets up a new task with its own call stack and schedules it to run
/// the provided unique closure.
///
/// This function is equivalent to `task().spawn(f)`.
pub fn spawn(f: ~fn()) {
let mut task = task();
task.spawn(f)
2012-11-28 18:20:41 -06:00
}
/// Creates a child task unlinked from the current one. If either this
/// task or the child task fails, the other will not be killed.
pub fn spawn_unlinked(f: ~fn()) {
let mut task = task();
task.unlinked();
task.spawn(f)
2012-11-28 18:20:41 -06:00
}
pub fn spawn_supervised(f: ~fn()) {
2012-11-28 18:20:41 -06:00
/*!
* Creates a child task supervised by the current one. If the child
* task fails, the parent will not be killed, but if the parent fails,
* the child will be killed.
2012-11-28 18:20:41 -06:00
*/
let mut task = task();
task.supervised();
task.spawn(f)
2012-11-28 18:20:41 -06:00
}
/// Creates a child task that cannot be killed by linked failure. This causes
/// its context-switch path to be faster by 2 atomic swap operations.
/// (Note that this convenience wrapper still uses linked-failure, so the
/// child's children will still be killable by the parent. For the fastest
/// possible spawn mode, use task::task().unlinked().indestructible().spawn.)
pub fn spawn_indestructible(f: ~fn()) {
let mut task = task();
task.indestructible();
task.spawn(f)
}
pub fn spawn_with<A:Send>(arg: A, f: ~fn(v: A)) {
2012-11-28 18:20:41 -06:00
/*!
* Runs a task, while transfering ownership of one argument to the
* child.
*
* This is useful for transfering ownership of noncopyables to
* another task.
*
* This function is equivalent to `task().spawn_with(arg, f)`.
*/
let mut task = task();
task.spawn_with(arg, f)
2012-11-28 18:20:41 -06:00
}
pub fn spawn_sched(mode: SchedMode, f: ~fn()) {
2012-11-28 18:20:41 -06:00
/*!
* Creates a new task on a new or existing scheduler
* When there are no more tasks to execute the
2012-11-28 18:20:41 -06:00
* scheduler terminates.
*
* # Failure
*
* In manual threads mode the number of threads requested must be
* greater than zero.
*/
let mut task = task();
task.sched_mode(mode);
task.spawn(f)
2012-11-28 18:20:41 -06:00
}
pub fn try<T:Send>(f: ~fn() -> T) -> Result<T,()> {
2012-11-28 18:20:41 -06:00
/*!
* Execute a function in another task and return either the return value
* of the function or result::err.
*
* This is equivalent to task().supervised().try.
*/
let mut task = task();
task.supervised();
task.try(f)
2012-11-28 18:20:41 -06:00
}
/* Lifecycle functions */
pub fn yield() {
//! Yield control to the task scheduler
use rt::{context, OldTaskContext};
use rt::local::Local;
use rt::sched::Scheduler;
2013-01-23 18:29:31 -06:00
unsafe {
match context() {
OldTaskContext => {
let task_ = rt::rust_get_task();
let killed = rt::rust_task_yield(task_);
if killed && !failing() {
fail!("killed");
}
}
_ => {
// XXX: What does yield really mean in newsched?
// FIXME(#7544): Optimize this, since we know we won't block.
let sched = Local::take::<Scheduler>();
do sched.deschedule_running_task_and_then |sched, task| {
sched.enqueue_blocked_task(task);
}
}
2013-01-23 18:29:31 -06:00
}
2012-11-28 18:20:41 -06:00
}
}
pub fn failing() -> bool {
//! True if the running task has failed
2013-05-19 18:50:21 -05:00
use rt::task::Task;
match context() {
OldTaskContext => {
unsafe {
rt::rust_task_is_unwinding(rt::rust_get_task())
}
}
_ => {
do Local::borrow::<Task, bool> |local| {
local.unwinder.unwinding
}
}
2013-01-23 18:29:31 -06:00
}
2012-11-28 18:20:41 -06:00
}
pub fn get_task() -> Task {
//! Get a handle to the running task
2013-01-23 18:29:31 -06:00
unsafe {
TaskHandle(rt::get_task_id())
}
2012-11-28 18:20:41 -06:00
}
pub fn get_scheduler() -> Scheduler {
SchedulerHandle(unsafe { rt::rust_get_sched_id() })
}
2012-11-28 18:20:41 -06:00
/**
* Temporarily make the task unkillable
*
* # Example
*
* ~~~
* do task::unkillable {
* // detach / yield / destroy must all be called together
* rustrt::rust_port_detach(po);
* // This must not result in the current task being killed
* task::yield();
* rustrt::rust_port_destroy(po);
* }
* ~~~
*/
pub unsafe fn unkillable<U>(f: &fn() -> U) -> U {
use rt::task::Task;
match context() {
OldTaskContext => {
let t = rt::rust_get_task();
do (|| {
rt::rust_task_inhibit_kill(t);
f()
}).finally {
rt::rust_task_allow_kill(t);
}
}
TaskContext => {
// The inhibits/allows might fail and need to borrow the task.
let t = Local::unsafe_borrow::<Task>();
do (|| {
(*t).death.inhibit_kill((*t).unwinder.unwinding);
f()
}).finally {
(*t).death.allow_kill((*t).unwinder.unwinding);
}
}
// FIXME(#3095): This should be an rtabort as soon as the scheduler
// no longer uses a workqueue implemented with an Exclusive.
_ => f()
}
2012-11-28 18:20:41 -06:00
}
/// The inverse of unkillable. Only ever to be used nested in unkillable().
pub unsafe fn rekillable<U>(f: &fn() -> U) -> U {
use rt::task::Task;
match context() {
OldTaskContext => {
let t = rt::rust_get_task();
do (|| {
rt::rust_task_allow_kill(t);
f()
}).finally {
rt::rust_task_inhibit_kill(t);
}
}
TaskContext => {
let t = Local::unsafe_borrow::<Task>();
do (|| {
(*t).death.allow_kill((*t).unwinder.unwinding);
f()
}).finally {
(*t).death.inhibit_kill((*t).unwinder.unwinding);
}
}
// FIXME(#3095): As in unkillable().
_ => f()
}
2012-11-28 18:20:41 -06:00
}
/**
* A stronger version of unkillable that also inhibits scheduling operations.
* For use with exclusive ARCs, which use pthread mutexes directly.
*/
pub unsafe fn atomically<U>(f: &fn() -> U) -> U {
use rt::task::Task;
match context() {
OldTaskContext => {
let t = rt::rust_get_task();
do (|| {
rt::rust_task_inhibit_kill(t);
rt::rust_task_inhibit_yield(t);
f()
}).finally {
rt::rust_task_allow_yield(t);
rt::rust_task_allow_kill(t);
}
}
TaskContext => {
let t = Local::unsafe_borrow::<Task>();
do (|| {
// It's important to inhibit kill after inhibiting yield, because
// inhibit-kill might fail if we were already killed, and the
// inhibit-yield must happen to match the finally's allow-yield.
(*t).death.inhibit_yield();
(*t).death.inhibit_kill((*t).unwinder.unwinding);
f()
}).finally {
(*t).death.allow_kill((*t).unwinder.unwinding);
(*t).death.allow_yield();
}
}
// FIXME(#3095): As in unkillable().
_ => f()
}
2012-11-28 18:20:41 -06:00
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_cant_dup_task_builder() {
2013-05-07 19:57:58 -05:00
let mut builder = task();
builder.unlinked();
do builder.spawn {}
2012-11-28 18:20:41 -06:00
// FIXME(#3724): For now, this is a -runtime- failure, because we haven't
// got move mode on self. When 3724 is fixed, this test should fail to
// compile instead, and should go in tests/compile-fail.
2013-05-07 19:57:58 -05:00
do builder.spawn {} // b should have been consumed by the previous call
2012-11-28 18:20:41 -06:00
}
// The following 8 tests test the following 2^3 combinations:
// {un,}linked {un,}supervised failure propagation {up,down}wards.
// !!! These tests are dangerous. If Something is buggy, they will hang, !!!
// !!! instead of exiting cleanly. This might wedge the buildbots. !!!
#[cfg(test)]
fn block_forever() { let (po, _ch) = stream::<()>(); po.recv(); }
2012-11-28 18:20:41 -06:00
#[test] #[ignore(cfg(windows))]
fn test_spawn_unlinked_unsup_no_fail_down() { // grandchild sends on a port
2013-01-22 14:38:08 -06:00
let (po, ch) = stream();
let ch = SharedChan::new(ch);
2012-11-28 18:20:41 -06:00
do spawn_unlinked {
2013-01-22 14:38:08 -06:00
let ch = ch.clone();
2012-11-28 18:20:41 -06:00
do spawn_unlinked {
// Give middle task a chance to fail-but-not-kill-us.
for 16.times { task::yield(); }
2013-01-22 14:38:08 -06:00
ch.send(()); // If killed first, grandparent hangs.
2012-11-28 18:20:41 -06:00
}
fail!(); // Shouldn't kill either (grand)parent or (grand)child.
2012-11-28 18:20:41 -06:00
}
2013-01-22 14:38:08 -06:00
po.recv();
2012-11-28 18:20:41 -06:00
}
#[test] #[ignore(cfg(windows))]
fn test_spawn_unlinked_unsup_no_fail_up() { // child unlinked fails
do spawn_unlinked { fail!(); }
2012-11-28 18:20:41 -06:00
}
#[test] #[ignore(cfg(windows))]
fn test_spawn_unlinked_sup_no_fail_up() { // child unlinked fails
do spawn_supervised { fail!(); }
2012-11-28 18:20:41 -06:00
// Give child a chance to fail-but-not-kill-us.
for 16.times { task::yield(); }
2012-11-28 18:20:41 -06:00
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_unlinked_sup_fail_down() {
do spawn_supervised { block_forever(); }
fail!(); // Shouldn't leave a child hanging around.
2012-11-28 18:20:41 -06:00
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_sup_fail_up() { // child fails; parent fails
// Unidirectional "parenting" shouldn't override bidirectional linked.
// We have to cheat with opts - the interface doesn't support them because
// they don't make sense (redundant with task().supervised()).
2013-05-07 19:57:58 -05:00
let mut b0 = task();
b0.opts.linked = true;
b0.opts.supervised = true;
2012-11-28 18:20:41 -06:00
2013-05-07 19:57:58 -05:00
do b0.spawn {
fail!();
}
block_forever(); // We should get punted awake
2012-11-28 18:20:41 -06:00
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_sup_fail_down() { // parent fails; child fails
// We have to cheat with opts - the interface doesn't support them because
// they don't make sense (redundant with task().supervised()).
2013-05-07 19:57:58 -05:00
let mut b0 = task();
b0.opts.linked = true;
b0.opts.supervised = true;
do b0.spawn { block_forever(); }
fail!(); // *both* mechanisms would be wrong if this didn't kill the child
2012-11-28 18:20:41 -06:00
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_unsup_fail_up() { // child fails; parent fails
// Default options are to spawn linked & unsupervised.
do spawn { fail!(); }
block_forever(); // We should get punted awake
2012-11-28 18:20:41 -06:00
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_unsup_fail_down() { // parent fails; child fails
// Default options are to spawn linked & unsupervised.
do spawn { block_forever(); }
fail!();
2012-11-28 18:20:41 -06:00
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_unsup_default_opts() { // parent fails; child fails
// Make sure the above test is the same as this one.
2013-05-07 19:57:58 -05:00
let mut builder = task();
builder.linked();
do builder.spawn { block_forever(); }
fail!();
2012-11-28 18:20:41 -06:00
}
// A couple bonus linked failure tests - testing for failure propagation even
// when the middle task exits successfully early before kill signals are sent.
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_failure_propagate_grandchild() {
// Middle task exits; does grandparent's failure propagate across the gap?
do spawn_supervised {
do spawn_supervised { block_forever(); }
2012-11-28 18:20:41 -06:00
}
for 16.times { task::yield(); }
fail!();
2012-11-28 18:20:41 -06:00
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_failure_propagate_secondborn() {
// First-born child exits; does parent's failure propagate to sibling?
do spawn_supervised {
do spawn { block_forever(); } // linked
2012-11-28 18:20:41 -06:00
}
for 16.times { task::yield(); }
fail!();
2012-11-28 18:20:41 -06:00
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_failure_propagate_nephew_or_niece() {
// Our sibling exits; does our failure propagate to sibling's child?
do spawn { // linked
do spawn_supervised { block_forever(); }
2012-11-28 18:20:41 -06:00
}
for 16.times { task::yield(); }
fail!();
2012-11-28 18:20:41 -06:00
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_sup_propagate_sibling() {
// Middle sibling exits - does eldest's failure propagate to youngest?
do spawn { // linked
do spawn { block_forever(); } // linked
2012-11-28 18:20:41 -06:00
}
for 16.times { task::yield(); }
fail!();
2012-11-28 18:20:41 -06:00
}
#[test]
fn test_run_basic() {
2013-01-22 14:38:08 -06:00
let (po, ch) = stream::<()>();
2013-05-07 19:57:58 -05:00
let mut builder = task();
do builder.spawn {
2013-01-22 14:38:08 -06:00
ch.send(());
2012-11-28 18:20:41 -06:00
}
2013-01-22 14:38:08 -06:00
po.recv();
2012-11-28 18:20:41 -06:00
}
#[cfg(test)]
struct Wrapper {
f: Option<Chan<()>>
}
2012-11-28 18:20:41 -06:00
#[test]
fn test_add_wrapper() {
2013-01-22 14:38:08 -06:00
let (po, ch) = stream::<()>();
2013-05-07 19:57:58 -05:00
let mut b0 = task();
let ch = Cell::new(ch);
2013-05-07 19:57:58 -05:00
do b0.add_wrapper |body| {
let ch = Cell::new(ch.take());
let result: ~fn() = || {
let ch = ch.take();
2012-11-28 18:20:41 -06:00
body();
2013-01-22 14:38:08 -06:00
ch.send(());
};
result
2012-11-28 18:20:41 -06:00
};
2013-05-07 19:57:58 -05:00
do b0.spawn { }
2013-01-22 14:38:08 -06:00
po.recv();
2012-11-28 18:20:41 -06:00
}
#[test]
#[ignore(cfg(windows))]
fn test_future_result() {
let mut result = None;
2013-05-07 19:57:58 -05:00
let mut builder = task();
builder.future_result(|r| result = Some(r));
do builder.spawn {}
assert_eq!(result.unwrap().recv(), Success);
2012-11-28 18:20:41 -06:00
result = None;
2013-05-07 19:57:58 -05:00
let mut builder = task();
builder.future_result(|r| result = Some(r));
builder.unlinked();
do builder.spawn {
fail!();
2012-11-28 18:20:41 -06:00
}
assert_eq!(result.unwrap().recv(), Failure);
2012-11-28 18:20:41 -06:00
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_back_to_the_future_result() {
2013-05-07 19:57:58 -05:00
let mut builder = task();
builder.future_result(util::ignore);
builder.future_result(util::ignore);
2012-11-28 18:20:41 -06:00
}
#[test]
fn test_try_success() {
match do try {
~"Success!"
} {
result::Ok(~"Success!") => (),
_ => fail!()
2012-11-28 18:20:41 -06:00
}
}
#[test]
#[ignore(cfg(windows))]
fn test_try_fail() {
match do try {
fail!()
2012-11-28 18:20:41 -06:00
} {
result::Err(()) => (),
result::Ok(()) => fail!()
2012-11-28 18:20:41 -06:00
}
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_spawn_sched_no_threads() {
do spawn_sched(ManualThreads(0u)) { }
}
#[test]
fn test_spawn_sched() {
2013-01-22 14:38:08 -06:00
let (po, ch) = stream::<()>();
let ch = SharedChan::new(ch);
2012-11-28 18:20:41 -06:00
2013-01-22 14:38:08 -06:00
fn f(i: int, ch: SharedChan<()>) {
let parent_sched_id = unsafe { rt::rust_get_sched_id() };
2012-11-28 18:20:41 -06:00
do spawn_sched(SingleThreaded) {
let child_sched_id = unsafe { rt::rust_get_sched_id() };
2013-03-28 20:39:09 -05:00
assert!(parent_sched_id != child_sched_id);
2012-11-28 18:20:41 -06:00
if (i == 0) {
2013-01-22 14:38:08 -06:00
ch.send(());
2012-11-28 18:20:41 -06:00
} else {
2013-01-22 14:38:08 -06:00
f(i - 1, ch.clone());
2012-11-28 18:20:41 -06:00
}
};
}
f(10, ch);
2013-01-22 14:38:08 -06:00
po.recv();
2012-11-28 18:20:41 -06:00
}
#[test]
fn test_spawn_sched_childs_on_default_sched() {
2013-01-22 14:38:08 -06:00
let (po, ch) = stream();
2012-11-28 18:20:41 -06:00
// Assuming tests run on the default scheduler
let default_id = unsafe { rt::rust_get_sched_id() };
2012-11-28 18:20:41 -06:00
let ch = Cell::new(ch);
2012-11-28 18:20:41 -06:00
do spawn_sched(SingleThreaded) {
let parent_sched_id = unsafe { rt::rust_get_sched_id() };
let ch = Cell::new(ch.take());
2012-11-28 18:20:41 -06:00
do spawn {
2013-05-07 19:57:58 -05:00
let ch = ch.take();
let child_sched_id = unsafe { rt::rust_get_sched_id() };
2013-03-28 20:39:09 -05:00
assert!(parent_sched_id != child_sched_id);
assert_eq!(child_sched_id, default_id);
2013-01-22 14:38:08 -06:00
ch.send(());
2012-11-28 18:20:41 -06:00
};
};
2013-01-22 14:38:08 -06:00
po.recv();
2012-11-28 18:20:41 -06:00
}
#[cfg(test)]
mod testrt {
2013-03-06 21:09:17 -06:00
use libc;
#[nolink]
extern {
pub unsafe fn rust_dbg_lock_create() -> *libc::c_void;
pub unsafe fn rust_dbg_lock_destroy(lock: *libc::c_void);
pub unsafe fn rust_dbg_lock_lock(lock: *libc::c_void);
pub unsafe fn rust_dbg_lock_unlock(lock: *libc::c_void);
pub unsafe fn rust_dbg_lock_wait(lock: *libc::c_void);
pub unsafe fn rust_dbg_lock_signal(lock: *libc::c_void);
}
2012-11-28 18:20:41 -06:00
}
#[test]
fn test_spawn_sched_blocking() {
2013-01-11 00:36:54 -06:00
unsafe {
2012-11-28 18:20:41 -06:00
2013-01-11 00:36:54 -06:00
// Testing that a task in one scheduler can block in foreign code
// without affecting other schedulers
for 20u.times {
2013-01-22 14:38:08 -06:00
let (start_po, start_ch) = stream();
let (fin_po, fin_ch) = stream();
2012-11-28 18:20:41 -06:00
2013-01-11 00:36:54 -06:00
let lock = testrt::rust_dbg_lock_create();
2012-11-28 18:20:41 -06:00
2013-01-11 00:36:54 -06:00
do spawn_sched(SingleThreaded) {
2013-06-27 10:45:24 -05:00
testrt::rust_dbg_lock_lock(lock);
2012-11-28 18:20:41 -06:00
2013-06-27 10:45:24 -05:00
start_ch.send(());
2012-11-28 18:20:41 -06:00
2013-06-27 10:45:24 -05:00
// Block the scheduler thread
testrt::rust_dbg_lock_wait(lock);
testrt::rust_dbg_lock_unlock(lock);
2012-11-28 18:20:41 -06:00
2013-06-27 10:45:24 -05:00
fin_ch.send(());
2013-01-11 00:36:54 -06:00
};
2012-11-28 18:20:41 -06:00
2013-01-11 00:36:54 -06:00
// Wait until the other task has its lock
2013-01-22 14:38:08 -06:00
start_po.recv();
2012-11-28 18:20:41 -06:00
2013-01-22 14:38:08 -06:00
fn pingpong(po: &Port<int>, ch: &Chan<int>) {
2013-01-11 00:36:54 -06:00
let mut val = 20;
while val > 0 {
2013-01-22 14:38:08 -06:00
val = po.recv();
ch.send(val - 1);
2013-01-11 00:36:54 -06:00
}
2012-11-28 18:20:41 -06:00
}
2013-01-22 14:38:08 -06:00
let (setup_po, setup_ch) = stream();
let (parent_po, parent_ch) = stream();
2013-01-11 00:36:54 -06:00
do spawn {
2013-01-22 14:38:08 -06:00
let (child_po, child_ch) = stream();
setup_ch.send(child_ch);
pingpong(&child_po, &parent_ch);
2013-01-11 00:36:54 -06:00
};
2013-01-22 14:38:08 -06:00
let child_ch = setup_po.recv();
child_ch.send(20);
pingpong(&parent_po, &child_ch);
2013-01-11 00:36:54 -06:00
testrt::rust_dbg_lock_lock(lock);
testrt::rust_dbg_lock_signal(lock);
testrt::rust_dbg_lock_unlock(lock);
2013-01-22 14:38:08 -06:00
fin_po.recv();
2013-01-11 00:36:54 -06:00
testrt::rust_dbg_lock_destroy(lock);
}
2012-11-28 18:20:41 -06:00
}
}
#[cfg(test)]
fn avoid_copying_the_body(spawnfn: &fn(v: ~fn())) {
2013-01-22 14:38:08 -06:00
let (p, ch) = stream::<uint>();
2012-11-28 18:20:41 -06:00
let x = ~1;
2013-04-22 16:27:30 -05:00
let x_in_parent = ptr::to_unsafe_ptr(&*x) as uint;
2012-11-28 18:20:41 -06:00
2013-02-15 02:51:28 -06:00
do spawnfn || {
2013-04-22 16:27:30 -05:00
let x_in_child = ptr::to_unsafe_ptr(&*x) as uint;
2013-01-22 14:38:08 -06:00
ch.send(x_in_child);
2012-11-28 18:20:41 -06:00
}
2013-01-22 14:38:08 -06:00
let x_in_child = p.recv();
assert_eq!(x_in_parent, x_in_child);
2012-11-28 18:20:41 -06:00
}
#[test]
fn test_avoid_copying_the_body_spawn() {
avoid_copying_the_body(spawn);
}
#[test]
fn test_avoid_copying_the_body_task_spawn() {
do avoid_copying_the_body |f| {
2013-05-07 19:57:58 -05:00
let mut builder = task();
do builder.spawn || {
2012-11-28 18:20:41 -06:00
f();
}
}
}
#[test]
fn test_avoid_copying_the_body_try() {
do avoid_copying_the_body |f| {
2013-02-15 02:51:28 -06:00
do try || {
2012-11-28 18:20:41 -06:00
f()
};
}
}
#[test]
fn test_avoid_copying_the_body_unlinked() {
do avoid_copying_the_body |f| {
2013-02-15 02:51:28 -06:00
do spawn_unlinked || {
2012-11-28 18:20:41 -06:00
f();
}
}
}
#[test]
fn test_platform_thread() {
2013-01-22 14:38:08 -06:00
let (po, ch) = stream();
2013-05-07 19:57:58 -05:00
let mut builder = task();
builder.sched_mode(PlatformThread);
do builder.spawn {
2013-01-22 14:38:08 -06:00
ch.send(());
2012-11-28 18:20:41 -06:00
}
2013-01-22 14:38:08 -06:00
po.recv();
2012-11-28 18:20:41 -06:00
}
#[test]
#[ignore(cfg(windows))]
#[should_fail]
fn test_unkillable() {
2013-01-22 14:38:08 -06:00
let (po, ch) = stream();
2012-11-28 18:20:41 -06:00
// We want to do this after failing
do spawn_unlinked {
for 10.times { yield() }
2012-11-28 18:20:41 -06:00
ch.send(());
}
do spawn {
yield();
// We want to fail after the unkillable task
// blocks on recv
fail!();
2012-11-28 18:20:41 -06:00
}
unsafe {
do unkillable {
let p = ~0;
2013-02-15 02:51:28 -06:00
let pp: *uint = cast::transmute(p);
2012-11-28 18:20:41 -06:00
// If we are killed here then the box will leak
po.recv();
2013-02-15 02:51:28 -06:00
let _p: ~int = cast::transmute(pp);
2012-11-28 18:20:41 -06:00
}
}
// Now we can be killed
po.recv();
}
#[test]
#[ignore(cfg(windows))]
#[should_fail]
fn test_unkillable_nested() {
2013-02-02 05:10:12 -06:00
let (po, ch) = comm::stream();
2012-11-28 18:20:41 -06:00
// We want to do this after failing
2013-02-15 02:51:28 -06:00
do spawn_unlinked || {
for 10.times { yield() }
2012-11-28 18:20:41 -06:00
ch.send(());
}
do spawn {
yield();
// We want to fail after the unkillable task
// blocks on recv
fail!();
2012-11-28 18:20:41 -06:00
}
unsafe {
do unkillable {
do unkillable {} // Here's the difference from the previous test.
let p = ~0;
2013-02-15 02:51:28 -06:00
let pp: *uint = cast::transmute(p);
2012-11-28 18:20:41 -06:00
// If we are killed here then the box will leak
po.recv();
2013-02-15 02:51:28 -06:00
let _p: ~int = cast::transmute(pp);
2012-11-28 18:20:41 -06:00
}
}
// Now we can be killed
po.recv();
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_atomically() {
unsafe { do atomically { yield(); } }
}
#[test]
fn test_atomically2() {
unsafe { do atomically { } } yield(); // shouldn't fail
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_atomically_nested() {
unsafe { do atomically { do atomically { } yield(); } }
}
#[test]
fn test_child_doesnt_ref_parent() {
// If the child refcounts the parent task, this will stack overflow when
// climbing the task tree to dereference each ancestor. (See #1789)
// (well, it would if the constant were 8000+ - I lowered it to be more
// valgrind-friendly. try this at home, instead..!)
static generations: uint = 16;
fn child_no(x: uint) -> ~fn() {
2012-11-28 18:20:41 -06:00
return || {
if x < generations {
task::spawn(child_no(x+1));
}
}
}
task::spawn(child_no(0));
}
#[test]
fn test_spawn_thread_on_demand() {
2013-02-02 05:10:12 -06:00
let (port, chan) = comm::stream();
2012-11-28 18:20:41 -06:00
2013-02-15 02:51:28 -06:00
do spawn_sched(ManualThreads(2)) || {
2013-01-23 18:29:31 -06:00
unsafe {
let max_threads = rt::rust_sched_threads();
assert_eq!(max_threads as int, 2);
2013-01-23 18:29:31 -06:00
let running_threads = rt::rust_sched_current_nonlazy_threads();
assert_eq!(running_threads as int, 1);
2012-11-28 18:20:41 -06:00
2013-02-02 05:10:12 -06:00
let (port2, chan2) = comm::stream();
2012-11-28 18:20:41 -06:00
2013-02-15 02:51:28 -06:00
do spawn_sched(CurrentScheduler) || {
2013-01-23 18:29:31 -06:00
chan2.send(());
}
2012-11-28 18:20:41 -06:00
2013-01-23 18:29:31 -06:00
let running_threads2 = rt::rust_sched_current_nonlazy_threads();
assert_eq!(running_threads2 as int, 2);
2012-11-28 18:20:41 -06:00
2013-01-23 18:29:31 -06:00
port2.recv();
chan.send(());
}
2012-11-28 18:20:41 -06:00
}
port.recv();
}
#[test]
fn test_simple_newsched_spawn() {
use rt::test::run_in_newsched_task;
do run_in_newsched_task {
spawn(||())
}
}
#[test] #[ignore(cfg(windows))]
fn test_spawn_watched() {
use rt::test::{run_in_newsched_task, spawntask_try};
do run_in_newsched_task {
let result = do spawntask_try {
let mut t = task();
t.unlinked();
t.watched();
do t.spawn {
let mut t = task();
t.unlinked();
t.watched();
do t.spawn {
task::yield();
fail!();
}
}
};
assert!(result.is_err());
}
}
#[test] #[ignore(cfg(windows))]
fn test_indestructible() {
use rt::test::{run_in_newsched_task, spawntask_try};
do run_in_newsched_task {
let result = do spawntask_try {
let mut t = task();
t.watched();
t.supervised();
t.indestructible();
do t.spawn {
let (p1, _c1) = stream::<()>();
let (p2, c2) = stream::<()>();
let (p3, c3) = stream::<()>();
let mut t = task();
t.unwatched();
do t.spawn {
do (|| {
p1.recv(); // would deadlock if not killed
}).finally {
c2.send(());
};
}
let mut t = task();
t.unwatched();
do t.spawn {
p3.recv();
task::yield();
fail!();
}
c3.send(());
p2.recv();
}
};
assert!(result.is_ok());
}
}