635 lines
26 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use libc::c_uint;
2016-12-11 22:19:39 -07:00
use llvm::{self, ValueRef, BasicBlockRef};
2016-12-16 13:25:18 -07:00
use llvm::debuginfo::DIScope;
use rustc::ty::{self, Ty, TypeFoldable};
use rustc::ty::layout::{self, LayoutTyper};
2016-12-16 20:52:20 -07:00
use rustc::mir::{self, Mir};
use rustc::mir::tcx::LvalueTy;
2016-12-18 16:05:40 -07:00
use rustc::ty::subst::Substs;
use rustc::infer::TransNormalize;
use rustc::session::config::FullDebugInfo;
use base;
2016-12-31 16:00:24 -07:00
use builder::Builder;
use common::{self, CrateContext, Funclet};
2016-12-16 13:25:18 -07:00
use debuginfo::{self, declare_local, VariableAccess, VariableKind, FunctionDebugContext};
use monomorphize::Instance;
use abi::{ArgAttribute, FnType};
use type_of;
2017-03-17 04:04:41 +00:00
use syntax_pos::{DUMMY_SP, NO_EXPANSION, BytePos, Span};
use syntax::symbol::keywords;
use std::iter;
use rustc_data_structures::bitvec::BitVector;
use rustc_data_structures::indexed_vec::{IndexVec, Idx};
pub use self::constant::trans_static_initializer;
2016-12-18 17:04:00 -07:00
use self::analyze::CleanupKind;
use self::lvalue::{Alignment, LvalueRef};
use rustc::mir::traversal;
Various improvements to MIR and LLVM IR Construction Primarily affects the MIR construction, which indirectly improves LLVM IR generation, but some LLVM IR changes have been made too. * Handle "statement expressions" more intelligently. These are expressions that always evaluate to `()`. Previously a temporary would be generated as a destination to translate into, which is unnecessary. This affects assignment, augmented assignment, `return`, `break` and `continue`. * Avoid inserting drops for non-drop types in more places. Scheduled drops were already skipped for types that we knew wouldn't need dropping at construction time. However manually-inserted drops like those for `x` in `x = y;` were still generated. `build_drop` now takes a type parameter like its `schedule_drop` counterpart and checks to see if the type needs dropping. * Avoid generating an extra temporary for an assignment where the types involved don't need dropping. Previously an expression like `a = b + 1;` would result in a temporary for `b + 1`. This is so the RHS can be evaluated, then the LHS evaluated and dropped and have everything work correctly. However, this isn't necessary if the `LHS` doesn't need a drop, as we can just overwrite the existing value. * Improves lvalue analysis to allow treating an `Rvalue::Use` as an operand in certain conditions. The reason for it never being an operand is so it can be zeroed/drop-filled, but this is only true for types that need dropping. The first two changes result in significantly fewer MIR blocks being generated, as previously almost every statement would end up generating a new block due to the drop of the `()` temporary being generated.
2016-04-15 12:36:16 +12:00
use self::operand::{OperandRef, OperandValue};
/// Master context for translating MIR.
2016-12-17 19:54:32 -07:00
pub struct MirContext<'a, 'tcx:'a> {
mir: &'a mir::Mir<'tcx>,
debug_context: debuginfo::FunctionDebugContext,
2017-01-01 00:42:09 -07:00
llfn: ValueRef,
2016-12-19 17:48:41 -07:00
ccx: &'a CrateContext<'a, 'tcx>,
fn_ty: FnType<'tcx>,
2016-12-19 19:16:36 -07:00
/// When unwinding is initiated, we have to store this personality
/// value somewhere so that we can load it and re-use it in the
/// resume instruction. The personality is (afaik) some kind of
/// value used for C++ unwinding, which must filter by type: we
/// don't really care about it very much. Anyway, this value
/// contains an alloca into which the personality is stored and
/// then later loaded when generating the DIVERGE_BLOCK.
llpersonalityslot: Option<ValueRef>,
/// A `Block` for each MIR `BasicBlock`
2016-12-11 22:19:39 -07:00
blocks: IndexVec<mir::BasicBlock, BasicBlockRef>,
/// The funclet status of each basic block
cleanup_kinds: IndexVec<mir::BasicBlock, analyze::CleanupKind>,
/// When targeting MSVC, this stores the cleanup info for each funclet
/// BB. This is initialized as we compute the funclets' head block in RPO.
funclets: &'a IndexVec<mir::BasicBlock, Option<Funclet>>,
/// This stores the landing-pad block for a given BB, computed lazily on GNU
/// and eagerly on MSVC.
2016-12-11 22:19:39 -07:00
landing_pads: IndexVec<mir::BasicBlock, Option<BasicBlockRef>>,
/// Cached unreachable block
2016-12-11 22:19:39 -07:00
unreachable_block: Option<BasicBlockRef>,
/// The location where each MIR arg/var/tmp/ret is stored. This is
/// usually an `LvalueRef` representing an alloca, but not always:
/// sometimes we can skip the alloca and just store the value
/// directly using an `OperandRef`, which makes for tighter LLVM
/// IR. The conditions for using an `OperandRef` are as follows:
///
/// - the type of the local must be judged "immediate" by `type_is_immediate`
/// - the operand must never be referenced indirectly
/// - we should not take its address using the `&` operator
/// - nor should it appear in an lvalue path like `tmp.a`
/// - the operand must be defined by an rvalue that can generate immediate
/// values
2015-11-03 15:50:04 -05:00
///
/// Avoiding allocs can also be important for certain intrinsics,
/// notably `expect`.
locals: IndexVec<mir::Local, LocalRef<'tcx>>,
/// Debug information for MIR scopes.
scopes: IndexVec<mir::VisibilityScope, debuginfo::MirDebugScope>,
2016-12-18 16:05:40 -07:00
/// If this function is being monomorphized, this contains the type substitutions used.
param_substs: &'tcx Substs<'tcx>,
}
2016-12-17 19:54:32 -07:00
impl<'a, 'tcx> MirContext<'a, 'tcx> {
2016-12-18 16:05:40 -07:00
pub fn monomorphize<T>(&self, value: &T) -> T
where T: TransNormalize<'tcx>
{
self.ccx.tcx().trans_apply_param_substs(self.param_substs, value)
2016-12-18 16:05:40 -07:00
}
2016-12-31 16:00:24 -07:00
pub fn set_debug_loc(&mut self, bcx: &Builder, source_info: mir::SourceInfo) {
let (scope, span) = self.debug_loc(source_info);
debuginfo::set_source_location(&self.debug_context, bcx, scope, span);
}
2016-12-16 13:25:18 -07:00
pub fn debug_loc(&mut self, source_info: mir::SourceInfo) -> (DIScope, Span) {
// Bail out if debug info emission is not enabled.
match self.debug_context {
FunctionDebugContext::DebugInfoDisabled |
FunctionDebugContext::FunctionWithoutDebugInfo => {
2016-12-16 13:25:18 -07:00
return (self.scopes[source_info.scope].scope_metadata, source_info.span);
}
FunctionDebugContext::RegularContext(_) =>{}
}
// In order to have a good line stepping behavior in debugger, we overwrite debug
// locations of macro expansions with that of the outermost expansion site
// (unless the crate is being compiled with `-Z debug-macros`).
2017-07-31 23:04:34 +03:00
if source_info.span.ctxt() == NO_EXPANSION ||
2017-03-17 04:04:41 +00:00
self.ccx.sess().opts.debugging_opts.debug_macros {
2017-07-31 23:04:34 +03:00
let scope = self.scope_metadata_for_loc(source_info.scope, source_info.span.lo());
(scope, source_info.span)
} else {
// Walk up the macro expansion chain until we reach a non-expanded span.
2017-08-11 20:34:14 +02:00
// We also stop at the function body level because no line stepping can occur
2017-02-09 18:35:19 -08:00
// at the level above that.
let mut span = source_info.span;
2017-07-31 23:04:34 +03:00
while span.ctxt() != NO_EXPANSION && span.ctxt() != self.mir.span.ctxt() {
if let Some(info) = span.ctxt().outer().expn_info() {
2017-03-17 04:04:41 +00:00
span = info.call_site;
} else {
break;
}
}
2017-07-31 23:04:34 +03:00
let scope = self.scope_metadata_for_loc(source_info.scope, span.lo());
// Use span of the outermost expansion site, while keeping the original lexical scope.
(scope, span)
}
}
// DILocations inherit source file name from the parent DIScope. Due to macro expansions
// it may so happen that the current span belongs to a different file than the DIScope
// corresponding to span's containing visibility scope. If so, we need to create a DIScope
// "extension" into that file.
fn scope_metadata_for_loc(&self, scope_id: mir::VisibilityScope, pos: BytePos)
-> llvm::debuginfo::DIScope {
let scope_metadata = self.scopes[scope_id].scope_metadata;
if pos < self.scopes[scope_id].file_start_pos ||
pos >= self.scopes[scope_id].file_end_pos {
2016-12-19 17:48:41 -07:00
let cm = self.ccx.sess().codemap();
let defining_crate = self.debug_context.get_ref(DUMMY_SP).defining_crate;
debuginfo::extend_scope_to_file(self.ccx,
scope_metadata,
&cm.lookup_char_pos(pos).file,
defining_crate)
} else {
scope_metadata
}
}
}
enum LocalRef<'tcx> {
Lvalue(LvalueRef<'tcx>),
Operand(Option<OperandRef<'tcx>>),
}
impl<'tcx> LocalRef<'tcx> {
2016-12-17 19:54:32 -07:00
fn new_operand<'a>(ccx: &CrateContext<'a, 'tcx>,
ty: Ty<'tcx>) -> LocalRef<'tcx> {
if common::type_is_zero_size(ccx, ty) {
// Zero-size temporaries aren't always initialized, which
// doesn't matter because they don't contain data, but
// we need something in the operand.
LocalRef::Operand(Some(OperandRef::new_zst(ccx, ty)))
} else {
LocalRef::Operand(None)
}
}
}
///////////////////////////////////////////////////////////////////////////
pub fn trans_mir<'a, 'tcx: 'a>(
2017-01-01 00:42:09 -07:00
ccx: &'a CrateContext<'a, 'tcx>,
llfn: ValueRef,
mir: &'a Mir<'tcx>,
instance: Instance<'tcx>,
sig: ty::FnSig<'tcx>,
) {
let fn_ty = FnType::new(ccx, sig, &[]);
debug!("fn_ty: {:?}", fn_ty);
let debug_context =
debuginfo::create_function_debug_context(ccx, instance, sig, llfn, mir);
let bcx = Builder::new_block(ccx, llfn, "start");
if mir.basic_blocks().iter().any(|bb| bb.is_cleanup) {
bcx.set_personality_fn(ccx.eh_personality());
}
let cleanup_kinds = analyze::cleanup_kinds(&mir);
// Allocate a `Block` for every basic block, except
// the start block, if nothing loops back to it.
let reentrant_start_block = !mir.predecessors_for(mir::START_BLOCK).is_empty();
2016-12-11 22:19:39 -07:00
let block_bcxs: IndexVec<mir::BasicBlock, BasicBlockRef> =
mir.basic_blocks().indices().map(|bb| {
if bb == mir::START_BLOCK && !reentrant_start_block {
bcx.llbb()
} else {
bcx.build_sibling_block(&format!("{:?}", bb)).llbb()
}
}).collect();
// Compute debuginfo scopes from MIR scopes.
2017-01-01 00:42:09 -07:00
let scopes = debuginfo::create_mir_scopes(ccx, mir, &debug_context);
let (landing_pads, funclets) = create_funclets(&bcx, &cleanup_kinds, &block_bcxs);
let mut mircx = MirContext {
mir,
llfn,
fn_ty,
ccx,
llpersonalityslot: None,
blocks: block_bcxs,
unreachable_block: None,
cleanup_kinds,
landing_pads,
funclets: &funclets,
scopes,
locals: IndexVec::new(),
debug_context,
2016-12-18 16:05:40 -07:00
param_substs: {
assert!(!instance.substs.needs_infer());
instance.substs
},
};
2016-12-19 07:47:09 -07:00
let lvalue_locals = analyze::lvalue_locals(&mircx);
2016-12-18 16:05:40 -07:00
// Allocate variable and temp allocas
mircx.locals = {
let args = arg_local_refs(&bcx, &mircx, &mircx.scopes, &lvalue_locals);
let mut allocate_local = |local| {
let decl = &mir.local_decls[local];
2016-12-18 16:05:40 -07:00
let ty = mircx.monomorphize(&decl.ty);
if let Some(name) = decl.name {
// User variable
2017-04-11 23:52:51 +03:00
let debug_scope = mircx.scopes[decl.source_info.scope];
let dbg = debug_scope.is_valid() && bcx.sess().opts.debuginfo == FullDebugInfo;
if !lvalue_locals.contains(local.index()) && !dbg {
debug!("alloc: {:?} ({}) -> operand", local, name);
2016-12-19 16:25:00 -07:00
return LocalRef::new_operand(bcx.ccx, ty);
}
debug!("alloc: {:?} ({}) -> lvalue", local, name);
2016-12-31 16:00:24 -07:00
assert!(!ty.has_erasable_regions());
let lvalue = LvalueRef::alloca(&bcx, ty, &name.as_str());
if dbg {
2017-04-11 23:52:51 +03:00
let (scope, span) = mircx.debug_loc(decl.source_info);
declare_local(&bcx, &mircx.debug_context, name, ty, scope,
2016-12-16 13:25:18 -07:00
VariableAccess::DirectVariable { alloca: lvalue.llval },
VariableKind::LocalVariable, span);
}
LocalRef::Lvalue(lvalue)
} else {
// Temporary or return pointer
2016-12-19 19:16:36 -07:00
if local == mir::RETURN_POINTER && mircx.fn_ty.ret.is_indirect() {
debug!("alloc: {:?} (return pointer) -> lvalue", local);
2017-01-01 00:42:09 -07:00
let llretptr = llvm::get_param(llfn, 0);
LocalRef::Lvalue(LvalueRef::new_sized(llretptr, LvalueTy::from_ty(ty),
Alignment::AbiAligned))
} else if lvalue_locals.contains(local.index()) {
debug!("alloc: {:?} -> lvalue", local);
2016-12-31 16:00:24 -07:00
assert!(!ty.has_erasable_regions());
LocalRef::Lvalue(LvalueRef::alloca(&bcx, ty, &format!("{:?}", local)))
} else {
// If this is an immediate local, we do not create an
// alloca in advance. Instead we wait until we see the
// definition and update the operand there.
debug!("alloc: {:?} -> operand", local);
2016-12-19 16:25:00 -07:00
LocalRef::new_operand(bcx.ccx, ty)
}
}
};
let retptr = allocate_local(mir::RETURN_POINTER);
iter::once(retptr)
.chain(args.into_iter())
2016-09-26 22:55:07 +02:00
.chain(mir.vars_and_temps_iter().map(allocate_local))
.collect()
};
// Branch to the START block, if it's not the entry block.
if reentrant_start_block {
bcx.br(mircx.blocks[mir::START_BLOCK]);
}
// Up until here, IR instructions for this function have explicitly not been annotated with
// source code location, so we don't step into call setup code. From here on, source location
// emitting should be enabled.
debuginfo::start_emitting_source_locations(&mircx.debug_context);
2016-12-18 17:04:00 -07:00
let rpo = traversal::reverse_postorder(&mir);
let mut visited = BitVector::new(mir.basic_blocks().len());
// Translate the body of each block using reverse postorder
for (bb, _) in rpo {
visited.insert(bb.index());
mircx.trans_block(bb);
}
// Remove blocks that haven't been visited, or have no
// predecessors.
2016-06-07 21:20:50 +03:00
for bb in mir.basic_blocks().indices() {
// Unreachable block
if !visited.contains(bb.index()) {
debug!("trans_mir: block {:?} was not visited", bb);
unsafe {
llvm::LLVMDeleteBasicBlock(mircx.blocks[bb]);
}
}
}
}
fn create_funclets<'a, 'tcx>(
bcx: &Builder<'a, 'tcx>,
cleanup_kinds: &IndexVec<mir::BasicBlock, CleanupKind>,
block_bcxs: &IndexVec<mir::BasicBlock, BasicBlockRef>)
-> (IndexVec<mir::BasicBlock, Option<BasicBlockRef>>,
IndexVec<mir::BasicBlock, Option<Funclet>>)
{
block_bcxs.iter_enumerated().zip(cleanup_kinds).map(|((bb, &llbb), cleanup_kind)| {
match *cleanup_kind {
CleanupKind::Funclet if base::wants_msvc_seh(bcx.sess()) => {
let cleanup_bcx = bcx.build_sibling_block(&format!("funclet_{:?}", bb));
let cleanup = cleanup_bcx.cleanup_pad(None, &[]);
cleanup_bcx.br(llbb);
(Some(cleanup_bcx.llbb()), Some(Funclet::new(cleanup)))
}
_ => (None, None)
}
}).unzip()
}
/// Produce, for each argument, a `ValueRef` pointing at the
/// argument's value. As arguments are lvalues, these are always
/// indirect.
2016-12-31 16:00:24 -07:00
fn arg_local_refs<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
mircx: &MirContext<'a, 'tcx>,
2016-12-17 19:54:32 -07:00
scopes: &IndexVec<mir::VisibilityScope, debuginfo::MirDebugScope>,
lvalue_locals: &BitVector)
-> Vec<LocalRef<'tcx>> {
let mir = mircx.mir;
let tcx = bcx.tcx();
let mut idx = 0;
2016-12-19 19:16:36 -07:00
let mut llarg_idx = mircx.fn_ty.ret.is_indirect() as usize;
// Get the argument scope, if it exists and if we need it.
let arg_scope = scopes[mir::ARGUMENT_VISIBILITY_SCOPE];
let arg_scope = if arg_scope.is_valid() && bcx.sess().opts.debuginfo == FullDebugInfo {
Some(arg_scope.scope_metadata)
} else {
None
};
let deref_op = unsafe {
[llvm::LLVMRustDIBuilderCreateOpDeref()]
};
mir.args_iter().enumerate().map(|(arg_index, local)| {
let arg_decl = &mir.local_decls[local];
2016-12-18 16:05:40 -07:00
let arg_ty = mircx.monomorphize(&arg_decl.ty);
2016-03-08 14:24:44 +02:00
let name = if let Some(name) = arg_decl.name {
name.as_str().to_string()
} else {
format!("arg{}", arg_index)
};
2016-09-27 02:03:35 +02:00
if Some(local) == mir.spread_arg {
// This argument (e.g. the last argument in the "rust-call" ABI)
// is a tuple that was spread at the ABI level and now we have
// to reconstruct it into a tuple local variable, from multiple
// individual LLVM function arguments.
let tupled_arg_tys = match arg_ty.sty {
2017-01-11 15:58:37 +08:00
ty::TyTuple(ref tys, _) => tys,
2016-09-27 02:03:35 +02:00
_ => bug!("spread argument isn't a tuple?!")
};
let lvalue = LvalueRef::alloca(bcx, arg_ty, &name);
2016-09-27 02:03:35 +02:00
for (i, &tupled_arg_ty) in tupled_arg_tys.iter().enumerate() {
let (dst, _) = lvalue.trans_field_ptr(bcx, i);
2016-12-19 19:16:36 -07:00
let arg = &mircx.fn_ty.args[idx];
2016-09-27 02:03:35 +02:00
idx += 1;
2016-12-19 16:25:00 -07:00
if common::type_is_fat_ptr(bcx.ccx, tupled_arg_ty) {
2016-09-27 02:03:35 +02:00
// We pass fat pointers as two words, but inside the tuple
// they are the two sub-fields of a single aggregate field.
2016-12-19 19:16:36 -07:00
let meta = &mircx.fn_ty.args[idx];
2016-09-27 02:03:35 +02:00
idx += 1;
2016-12-11 15:03:52 -07:00
arg.store_fn_arg(bcx, &mut llarg_idx, base::get_dataptr(bcx, dst));
meta.store_fn_arg(bcx, &mut llarg_idx, base::get_meta(bcx, dst));
2016-09-27 02:03:35 +02:00
} else {
arg.store_fn_arg(bcx, &mut llarg_idx, dst);
2016-09-26 22:44:01 +02:00
}
}
// Now that we have one alloca that contains the aggregate value,
// we can create one debuginfo entry for the argument.
2016-12-10 20:32:44 -07:00
arg_scope.map(|scope| {
let variable_access = VariableAccess::DirectVariable {
alloca: lvalue.llval
};
declare_local(
bcx,
&mircx.debug_context,
arg_decl.name.unwrap_or(keywords::Invalid.name()),
arg_ty, scope,
variable_access,
VariableKind::ArgumentVariable(arg_index + 1),
DUMMY_SP
);
2016-12-10 20:32:44 -07:00
});
return LocalRef::Lvalue(lvalue);
2016-03-08 14:24:44 +02:00
}
2016-12-19 19:16:36 -07:00
let arg = &mircx.fn_ty.args[idx];
idx += 1;
let llval = if arg.is_indirect() {
// Don't copy an indirect argument to an alloca, the caller
// already put it in a temporary alloca and gave it up
// FIXME: lifetimes
if arg.pad.is_some() {
llarg_idx += 1;
}
2017-01-01 00:42:09 -07:00
let llarg = llvm::get_param(bcx.llfn(), llarg_idx as c_uint);
bcx.set_value_name(llarg, &name);
llarg_idx += 1;
llarg
} else if !lvalue_locals.contains(local.index()) &&
arg.cast.is_none() && arg_scope.is_none() {
if arg.is_ignore() {
2016-12-19 16:25:00 -07:00
return LocalRef::new_operand(bcx.ccx, arg_ty);
}
// We don't have to cast or keep the argument in the alloca.
// FIXME(eddyb): We should figure out how to use llvm.dbg.value instead
// of putting everything in allocas just so we can use llvm.dbg.declare.
if arg.pad.is_some() {
llarg_idx += 1;
}
2017-01-01 00:42:09 -07:00
let llarg = llvm::get_param(bcx.llfn(), llarg_idx as c_uint);
llarg_idx += 1;
2016-12-19 16:25:00 -07:00
let val = if common::type_is_fat_ptr(bcx.ccx, arg_ty) {
2016-12-19 19:16:36 -07:00
let meta = &mircx.fn_ty.args[idx];
idx += 1;
assert_eq!((meta.cast, meta.pad), (None, None));
2017-01-01 00:42:09 -07:00
let llmeta = llvm::get_param(bcx.llfn(), llarg_idx as c_uint);
llarg_idx += 1;
// FIXME(eddyb) As we can't perfectly represent the data and/or
// vtable pointer in a fat pointers in Rust's typesystem, and
// because we split fat pointers into two ArgType's, they're
// not the right type so we have to cast them for now.
let pointee = match arg_ty.sty {
ty::TyRef(_, ty::TypeAndMut{ty, ..}) |
ty::TyRawPtr(ty::TypeAndMut{ty, ..}) => ty,
ty::TyAdt(def, _) if def.is_box() => arg_ty.boxed_ty(),
_ => bug!()
};
let data_llty = type_of::in_memory_type_of(bcx.ccx, pointee);
let meta_llty = type_of::unsized_info_ty(bcx.ccx, pointee);
let llarg = bcx.pointercast(llarg, data_llty.ptr_to());
bcx.set_value_name(llarg, &(name.clone() + ".ptr"));
let llmeta = bcx.pointercast(llmeta, meta_llty);
bcx.set_value_name(llmeta, &(name + ".meta"));
OperandValue::Pair(llarg, llmeta)
} else {
bcx.set_value_name(llarg, &name);
OperandValue::Immediate(llarg)
};
let operand = OperandRef {
val,
ty: arg_ty
};
return LocalRef::Operand(Some(operand.unpack_if_pair(bcx)));
} else {
let lltemp = LvalueRef::alloca(bcx, arg_ty, &name);
2016-12-19 16:25:00 -07:00
if common::type_is_fat_ptr(bcx.ccx, arg_ty) {
// we pass fat pointers as two words, but we want to
// represent them internally as a pointer to two words,
// so make an alloca to store them in.
2016-12-19 19:16:36 -07:00
let meta = &mircx.fn_ty.args[idx];
idx += 1;
arg.store_fn_arg(bcx, &mut llarg_idx, base::get_dataptr(bcx, lltemp.llval));
meta.store_fn_arg(bcx, &mut llarg_idx, base::get_meta(bcx, lltemp.llval));
} else {
// otherwise, arg is passed by value, so make a
// temporary and store it there
arg.store_fn_arg(bcx, &mut llarg_idx, lltemp.llval);
}
lltemp.llval
};
2016-12-10 20:32:44 -07:00
arg_scope.map(|scope| {
// Is this a regular argument?
if arg_index > 0 || mir.upvar_decls.is_empty() {
// The Rust ABI passes indirect variables using a pointer and a manual copy, so we
// need to insert a deref here, but the C ABI uses a pointer and a copy using the
// byval attribute, for which LLVM does the deref itself, so we must not add it.
let variable_access = if arg.is_indirect() &&
!arg.attrs.contains(ArgAttribute::ByVal) {
VariableAccess::IndirectVariable {
alloca: llval,
address_operations: &deref_op,
}
} else {
VariableAccess::DirectVariable { alloca: llval }
};
declare_local(
bcx,
&mircx.debug_context,
arg_decl.name.unwrap_or(keywords::Invalid.name()),
arg_ty,
scope,
variable_access,
VariableKind::ArgumentVariable(arg_index + 1),
DUMMY_SP
);
return;
}
// Or is it the closure environment?
2016-12-26 14:34:03 +01:00
let (closure_ty, env_ref) = match arg_ty.sty {
ty::TyRef(_, mt) | ty::TyRawPtr(mt) => (mt.ty, true),
_ => (arg_ty, false)
};
2017-07-05 14:57:26 -07:00
2016-12-26 14:34:03 +01:00
let upvar_tys = match closure_ty.sty {
ty::TyClosure(def_id, substs) |
ty::TyGenerator(def_id, substs, _) => substs.upvar_tys(def_id, tcx),
_ => bug!("upvar_decls with non-closure arg0 type `{}`", closure_ty)
};
// Store the pointer to closure data in an alloca for debuginfo
// because that's what the llvm.dbg.declare intrinsic expects.
// FIXME(eddyb) this shouldn't be necessary but SROA seems to
// mishandle DW_OP_plus not preceded by DW_OP_deref, i.e. it
// doesn't actually strip the offset when splitting the closure
// environment into its components so it ends up out of bounds.
let env_ptr = if !env_ref {
let alloc = bcx.alloca(common::val_ty(llval), "__debuginfo_env_ptr", None);
bcx.store(llval, alloc, None);
alloc
} else {
llval
};
2016-12-19 16:25:00 -07:00
let layout = bcx.ccx.layout_of(closure_ty);
2016-12-19 21:14:27 -05:00
let offsets = match *layout {
layout::Univariant { ref variant, .. } => &variant.offsets[..],
_ => bug!("Closures are only supposed to be Univariant")
};
for (i, (decl, ty)) in mir.upvar_decls.iter().zip(upvar_tys).enumerate() {
2016-12-19 21:14:27 -05:00
let byte_offset_of_var_in_env = offsets[i].bytes();
let ops = unsafe {
[llvm::LLVMRustDIBuilderCreateOpDeref(),
llvm::LLVMRustDIBuilderCreateOpPlus(),
byte_offset_of_var_in_env as i64,
llvm::LLVMRustDIBuilderCreateOpDeref()]
};
// The environment and the capture can each be indirect.
// FIXME(eddyb) see above why we have to keep
// a pointer in an alloca for debuginfo atm.
let mut ops = if env_ref || true { &ops[..] } else { &ops[1..] };
let ty = if let (true, &ty::TyRef(_, mt)) = (decl.by_ref, &ty.sty) {
mt.ty
} else {
ops = &ops[..ops.len() - 1];
ty
};
let variable_access = VariableAccess::IndirectVariable {
alloca: env_ptr,
address_operations: &ops
};
declare_local(
bcx,
&mircx.debug_context,
decl.debug_name,
ty,
scope,
variable_access,
VariableKind::CapturedVariable,
DUMMY_SP
);
}
2016-12-10 20:32:44 -07:00
});
LocalRef::Lvalue(LvalueRef::new_sized(llval, LvalueTy::from_ty(arg_ty),
Alignment::AbiAligned))
}).collect()
}
mod analyze;
mod block;
mod constant;
pub mod lvalue;
mod operand;
mod rvalue;
mod statement;