2012-12-03 18:48:01 -06:00
|
|
|
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
|
|
|
|
// file at the top-level directory of this distribution and at
|
|
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
|
|
// option. This file may not be copied, modified, or distributed
|
|
|
|
// except according to those terms.
|
|
|
|
|
2012-09-19 18:52:32 -05:00
|
|
|
/*!
|
|
|
|
|
2014-04-04 06:47:16 -05:00
|
|
|
Simple [DEFLATE][def]-based compression. This is a wrapper around the
|
|
|
|
[`miniz`][mz] library, which is a one-file pure-C implementation of zlib.
|
|
|
|
|
|
|
|
[def]: https://en.wikipedia.org/wiki/DEFLATE
|
|
|
|
[mz]: https://code.google.com/p/miniz/
|
2012-09-19 18:52:32 -05:00
|
|
|
|
|
|
|
*/
|
|
|
|
|
2014-07-01 09:12:04 -05:00
|
|
|
#![crate_name = "flate"]
|
2014-06-18 00:13:36 -05:00
|
|
|
#![experimental]
|
2014-03-21 20:05:05 -05:00
|
|
|
#![crate_type = "rlib"]
|
|
|
|
#![crate_type = "dylib"]
|
|
|
|
#![license = "MIT/ASL2"]
|
|
|
|
#![doc(html_logo_url = "http://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
|
|
|
|
html_favicon_url = "http://www.rust-lang.org/favicon.ico",
|
2014-10-06 18:19:37 -05:00
|
|
|
html_root_url = "http://doc.rust-lang.org/0.12.0/")]
|
2014-03-21 20:05:05 -05:00
|
|
|
#![feature(phase)]
|
log: Introduce liblog, the old std::logging
This commit moves all logging out of the standard library into an external
crate. This crate is the new crate which is responsible for all logging macros
and logging implementation. A few reasons for this change are:
* The crate map has always been a bit of a code smell among rust programs. It
has difficulty being loaded on almost all platforms, and it's used almost
exclusively for logging and only logging. Removing the crate map is one of the
end goals of this movement.
* The compiler has a fair bit of special support for logging. It has the
__log_level() expression as well as generating a global word per module
specifying the log level. This is unfairly favoring the built-in logging
system, and is much better done purely in libraries instead of the compiler
itself.
* Initialization of logging is much easier to do if there is no reliance on a
magical crate map being available to set module log levels.
* If the logging library can be written outside of the standard library, there's
no reason that it shouldn't be. It's likely that we're not going to build the
highest quality logging library of all time, so third-party libraries should
be able to provide just as high-quality logging systems as the default one
provided in the rust distribution.
With a migration such as this, the change does not come for free. There are some
subtle changes in the behavior of liblog vs the previous logging macros:
* The core change of this migration is that there is no longer a physical
log-level per module. This concept is still emulated (it is quite useful), but
there is now only a global log level, not a local one. This global log level
is a reflection of the maximum of all log levels specified. The previously
generated logging code looked like:
if specified_level <= __module_log_level() {
println!(...)
}
The newly generated code looks like:
if specified_level <= ::log::LOG_LEVEL {
if ::log::module_enabled(module_path!()) {
println!(...)
}
}
Notably, the first layer of checking is still intended to be "super fast" in
that it's just a load of a global word and a compare. The second layer of
checking is executed to determine if the current module does indeed have
logging turned on.
This means that if any module has a debug log level turned on, all modules
with debug log levels get a little bit slower (they all do more expensive
dynamic checks to determine if they're turned on or not).
Semantically, this migration brings no change in this respect, but
runtime-wise, this will have a perf impact on some code.
* A `RUST_LOG=::help` directive will no longer print out a list of all modules
that can be logged. This is because the crate map will no longer specify the
log levels of all modules, so the list of modules is not known. Additionally,
warnings can no longer be provided if a malformed logging directive was
supplied.
The new "hello world" for logging looks like:
#[phase(syntax, link)]
extern crate log;
fn main() {
debug!("Hello, world!");
}
2014-03-09 00:11:44 -06:00
|
|
|
|
2014-06-11 20:47:09 -05:00
|
|
|
#[cfg(test)] #[phase(plugin, link)] extern crate log;
|
2013-05-28 22:11:41 -05:00
|
|
|
|
2014-02-26 11:58:41 -06:00
|
|
|
extern crate libc;
|
|
|
|
|
2014-03-14 13:16:10 -05:00
|
|
|
use std::c_vec::CVec;
|
2014-02-26 11:58:41 -06:00
|
|
|
use libc::{c_void, size_t, c_int};
|
2013-02-28 10:57:33 -06:00
|
|
|
|
2014-04-04 06:47:16 -05:00
|
|
|
#[link(name = "miniz", kind = "static")]
|
|
|
|
extern {
|
|
|
|
/// Raw miniz compression function.
|
2014-06-25 14:47:34 -05:00
|
|
|
fn tdefl_compress_mem_to_heap(psrc_buf: *const c_void,
|
|
|
|
src_buf_len: size_t,
|
|
|
|
pout_len: *mut size_t,
|
|
|
|
flags: c_int)
|
|
|
|
-> *mut c_void;
|
2014-04-04 06:47:16 -05:00
|
|
|
|
|
|
|
/// Raw miniz decompression function.
|
2014-06-25 14:47:34 -05:00
|
|
|
fn tinfl_decompress_mem_to_heap(psrc_buf: *const c_void,
|
|
|
|
src_buf_len: size_t,
|
|
|
|
pout_len: *mut size_t,
|
|
|
|
flags: c_int)
|
|
|
|
-> *mut c_void;
|
2012-08-28 15:59:48 -05:00
|
|
|
}
|
|
|
|
|
2013-06-30 22:51:13 -05:00
|
|
|
static LZ_NORM : c_int = 0x80; // LZ with 128 probes, "normal"
|
2013-08-05 00:28:53 -05:00
|
|
|
static TINFL_FLAG_PARSE_ZLIB_HEADER : c_int = 0x1; // parse zlib header and adler32 checksum
|
2013-08-05 00:37:09 -05:00
|
|
|
static TDEFL_WRITE_ZLIB_HEADER : c_int = 0x01000; // write zlib header and adler32 checksum
|
2012-08-28 15:59:48 -05:00
|
|
|
|
2014-04-07 18:08:49 -05:00
|
|
|
fn deflate_bytes_internal(bytes: &[u8], flags: c_int) -> Option<CVec<u8>> {
|
2013-12-17 08:49:31 -06:00
|
|
|
unsafe {
|
|
|
|
let mut outsz : size_t = 0;
|
2014-06-25 14:47:34 -05:00
|
|
|
let res = tdefl_compress_mem_to_heap(bytes.as_ptr() as *const _,
|
|
|
|
bytes.len() as size_t,
|
|
|
|
&mut outsz,
|
|
|
|
flags);
|
2014-04-07 18:08:49 -05:00
|
|
|
if !res.is_null() {
|
|
|
|
Some(CVec::new_with_dtor(res as *mut u8, outsz as uint, proc() libc::free(res)))
|
|
|
|
} else {
|
|
|
|
None
|
|
|
|
}
|
2013-12-17 08:49:31 -06:00
|
|
|
}
|
2012-08-28 15:59:48 -05:00
|
|
|
}
|
|
|
|
|
2014-04-04 06:47:16 -05:00
|
|
|
/// Compress a buffer, without writing any sort of header on the output.
|
2014-04-07 18:08:49 -05:00
|
|
|
pub fn deflate_bytes(bytes: &[u8]) -> Option<CVec<u8>> {
|
2013-08-05 08:06:43 -05:00
|
|
|
deflate_bytes_internal(bytes, LZ_NORM)
|
2013-08-05 00:37:09 -05:00
|
|
|
}
|
|
|
|
|
2014-04-04 06:47:16 -05:00
|
|
|
/// Compress a buffer, using a header that zlib can understand.
|
2014-04-07 18:08:49 -05:00
|
|
|
pub fn deflate_bytes_zlib(bytes: &[u8]) -> Option<CVec<u8>> {
|
2013-08-05 08:06:43 -05:00
|
|
|
deflate_bytes_internal(bytes, LZ_NORM | TDEFL_WRITE_ZLIB_HEADER)
|
2013-08-05 00:37:09 -05:00
|
|
|
}
|
|
|
|
|
2014-04-07 18:08:49 -05:00
|
|
|
fn inflate_bytes_internal(bytes: &[u8], flags: c_int) -> Option<CVec<u8>> {
|
2013-12-17 08:49:31 -06:00
|
|
|
unsafe {
|
|
|
|
let mut outsz : size_t = 0;
|
2014-06-25 14:47:34 -05:00
|
|
|
let res = tinfl_decompress_mem_to_heap(bytes.as_ptr() as *const _,
|
|
|
|
bytes.len() as size_t,
|
|
|
|
&mut outsz,
|
|
|
|
flags);
|
2014-04-07 18:08:49 -05:00
|
|
|
if !res.is_null() {
|
|
|
|
Some(CVec::new_with_dtor(res as *mut u8, outsz as uint, proc() libc::free(res)))
|
|
|
|
} else {
|
|
|
|
None
|
|
|
|
}
|
2013-12-17 08:49:31 -06:00
|
|
|
}
|
2012-08-28 15:59:48 -05:00
|
|
|
}
|
|
|
|
|
2014-04-04 06:47:16 -05:00
|
|
|
/// Decompress a buffer, without parsing any sort of header on the input.
|
2014-04-07 18:08:49 -05:00
|
|
|
pub fn inflate_bytes(bytes: &[u8]) -> Option<CVec<u8>> {
|
2013-08-05 08:06:43 -05:00
|
|
|
inflate_bytes_internal(bytes, 0)
|
2013-08-05 00:28:53 -05:00
|
|
|
}
|
|
|
|
|
2014-04-04 06:47:16 -05:00
|
|
|
/// Decompress a buffer that starts with a zlib header.
|
2014-04-07 18:08:49 -05:00
|
|
|
pub fn inflate_bytes_zlib(bytes: &[u8]) -> Option<CVec<u8>> {
|
2013-08-05 08:06:43 -05:00
|
|
|
inflate_bytes_internal(bytes, TINFL_FLAG_PARSE_ZLIB_HEADER)
|
2013-08-05 00:28:53 -05:00
|
|
|
}
|
|
|
|
|
2013-05-23 11:39:00 -05:00
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
2014-01-24 23:00:31 -06:00
|
|
|
use super::{inflate_bytes, deflate_bytes};
|
std: Recreate a `rand` module
This commit shuffles around some of the `rand` code, along with some
reorganization. The new state of the world is as follows:
* The librand crate now only depends on libcore. This interface is experimental.
* The standard library has a new module, `std::rand`. This interface will
eventually become stable.
Unfortunately, this entailed more of a breaking change than just shuffling some
names around. The following breaking changes were made to the rand library:
* Rng::gen_vec() was removed. This has been replaced with Rng::gen_iter() which
will return an infinite stream of random values. Previous behavior can be
regained with `rng.gen_iter().take(n).collect()`
* Rng::gen_ascii_str() was removed. This has been replaced with
Rng::gen_ascii_chars() which will return an infinite stream of random ascii
characters. Similarly to gen_iter(), previous behavior can be emulated with
`rng.gen_ascii_chars().take(n).collect()`
* {IsaacRng, Isaac64Rng, XorShiftRng}::new() have all been removed. These all
relied on being able to use an OSRng for seeding, but this is no longer
available in librand (where these types are defined). To retain the same
functionality, these types now implement the `Rand` trait so they can be
generated with a random seed from another random number generator. This allows
the stdlib to use an OSRng to create seeded instances of these RNGs.
* Rand implementations for `Box<T>` and `@T` were removed. These seemed to be
pretty rare in the codebase, and it allows for librand to not depend on
liballoc. Additionally, other pointer types like Rc<T> and Arc<T> were not
supported. If this is undesirable, librand can depend on liballoc and regain
these implementations.
* The WeightedChoice structure is no longer built with a `Vec<Weighted<T>>`,
but rather a `&mut [Weighted<T>]`. This means that the WeightedChoice
structure now has a lifetime associated with it.
* The `sample` method on `Rng` has been moved to a top-level function in the
`rand` module due to its dependence on `Vec`.
cc #13851
[breaking-change]
2014-05-25 03:39:37 -05:00
|
|
|
use std::rand;
|
|
|
|
use std::rand::Rng;
|
2013-05-23 11:39:00 -05:00
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_flate_round_trip() {
|
2014-03-01 19:59:35 -06:00
|
|
|
let mut r = rand::task_rng();
|
2014-03-21 07:34:12 -05:00
|
|
|
let mut words = vec!();
|
2014-04-21 16:58:52 -05:00
|
|
|
for _ in range(0u, 20) {
|
2013-10-10 04:18:07 -05:00
|
|
|
let range = r.gen_range(1u, 10);
|
std: Recreate a `rand` module
This commit shuffles around some of the `rand` code, along with some
reorganization. The new state of the world is as follows:
* The librand crate now only depends on libcore. This interface is experimental.
* The standard library has a new module, `std::rand`. This interface will
eventually become stable.
Unfortunately, this entailed more of a breaking change than just shuffling some
names around. The following breaking changes were made to the rand library:
* Rng::gen_vec() was removed. This has been replaced with Rng::gen_iter() which
will return an infinite stream of random values. Previous behavior can be
regained with `rng.gen_iter().take(n).collect()`
* Rng::gen_ascii_str() was removed. This has been replaced with
Rng::gen_ascii_chars() which will return an infinite stream of random ascii
characters. Similarly to gen_iter(), previous behavior can be emulated with
`rng.gen_ascii_chars().take(n).collect()`
* {IsaacRng, Isaac64Rng, XorShiftRng}::new() have all been removed. These all
relied on being able to use an OSRng for seeding, but this is no longer
available in librand (where these types are defined). To retain the same
functionality, these types now implement the `Rand` trait so they can be
generated with a random seed from another random number generator. This allows
the stdlib to use an OSRng to create seeded instances of these RNGs.
* Rand implementations for `Box<T>` and `@T` were removed. These seemed to be
pretty rare in the codebase, and it allows for librand to not depend on
liballoc. Additionally, other pointer types like Rc<T> and Arc<T> were not
supported. If this is undesirable, librand can depend on liballoc and regain
these implementations.
* The WeightedChoice structure is no longer built with a `Vec<Weighted<T>>`,
but rather a `&mut [Weighted<T>]`. This means that the WeightedChoice
structure now has a lifetime associated with it.
* The `sample` method on `Rng` has been moved to a top-level function in the
`rand` module due to its dependence on `Vec`.
cc #13851
[breaking-change]
2014-05-25 03:39:37 -05:00
|
|
|
let v = r.gen_iter::<u8>().take(range).collect::<Vec<u8>>();
|
|
|
|
words.push(v);
|
2014-01-29 18:20:34 -06:00
|
|
|
}
|
2014-04-21 16:58:52 -05:00
|
|
|
for _ in range(0u, 20) {
|
2014-04-09 05:02:26 -05:00
|
|
|
let mut input = vec![];
|
2014-04-21 16:58:52 -05:00
|
|
|
for _ in range(0u, 2000) {
|
2014-05-20 22:44:45 -05:00
|
|
|
input.push_all(r.choose(words.as_slice()).unwrap().as_slice());
|
2014-01-29 18:20:34 -06:00
|
|
|
}
|
2013-10-21 15:08:31 -05:00
|
|
|
debug!("de/inflate of {} bytes of random word-sequences",
|
2013-07-31 16:59:59 -05:00
|
|
|
input.len());
|
2014-04-09 05:02:26 -05:00
|
|
|
let cmp = deflate_bytes(input.as_slice()).expect("deflation failed");
|
2014-04-07 18:08:49 -05:00
|
|
|
let out = inflate_bytes(cmp.as_slice()).expect("inflation failed");
|
2013-10-21 15:08:31 -05:00
|
|
|
debug!("{} bytes deflated to {} ({:.1f}% size)",
|
2013-07-31 16:59:59 -05:00
|
|
|
input.len(), cmp.len(),
|
2013-09-26 01:26:09 -05:00
|
|
|
100.0 * ((cmp.len() as f64) / (input.len() as f64)));
|
2014-02-21 02:28:44 -06:00
|
|
|
assert_eq!(input.as_slice(), out.as_slice());
|
2014-01-29 18:20:34 -06:00
|
|
|
}
|
2012-08-28 15:59:48 -05:00
|
|
|
}
|
2013-08-05 00:37:09 -05:00
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_zlib_flate() {
|
2014-03-21 07:34:12 -05:00
|
|
|
let bytes = vec!(1, 2, 3, 4, 5);
|
2014-04-07 18:08:49 -05:00
|
|
|
let deflated = deflate_bytes(bytes.as_slice()).expect("deflation failed");
|
|
|
|
let inflated = inflate_bytes(deflated.as_slice()).expect("inflation failed");
|
2014-02-21 02:28:44 -06:00
|
|
|
assert_eq!(inflated.as_slice(), bytes.as_slice());
|
2013-08-05 00:37:09 -05:00
|
|
|
}
|
2012-09-14 11:51:24 -05:00
|
|
|
}
|