rust/src/stacked_borrows.rs

616 lines
22 KiB
Rust
Raw Normal View History

use std::cell::RefCell;
2018-10-16 18:01:50 +02:00
use rustc::ty::{self, layout::Size};
use rustc::hir;
2018-10-16 18:01:50 +02:00
use crate::{
EvalResult, MiriEvalContext, HelpersEvalContextExt,
MemoryKind, MiriMemoryKind, RangeMap, AllocId, Allocation, AllocationExtra,
Pointer, MemPlace, Scalar, Immediate, ImmTy, PlaceTy, MPlaceTy,
2018-10-16 18:01:50 +02:00
};
pub type Timestamp = u64;
/// Information about which kind of borrow was used to create the reference this is tagged
/// with.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum Borrow {
/// A unique (mutable) reference.
Uniq(Timestamp),
/// A shared reference. This is also used by raw pointers, which do not track details
/// of how or when they were created, hence the timestamp is optional.
/// Shr(Some(_)) does NOT mean that the destination of this reference is frozen;
/// that depends on the type! Only those parts outside of an `UnsafeCell` are actually
/// frozen.
Shr(Option<Timestamp>),
}
2018-10-16 18:01:50 +02:00
impl Borrow {
#[inline(always)]
pub fn is_shr(self) -> bool {
match self {
Borrow::Shr(_) => true,
_ => false,
}
}
#[inline(always)]
pub fn is_uniq(self) -> bool {
2018-10-16 18:01:50 +02:00
match self {
Borrow::Uniq(_) => true,
2018-10-16 18:01:50 +02:00
_ => false,
}
}
}
impl Default for Borrow {
fn default() -> Self {
Borrow::Shr(None)
}
}
/// An item in the per-location borrow stack
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum BorStackItem {
/// Indicates the unique reference that may mutate.
Uniq(Timestamp),
/// Indicates that the location has been shared. Used for raw pointers, but
/// also for shared references. The latter *additionally* get frozen
/// when there is no `UnsafeCell`.
Shr,
/// A barrier, tracking the function it belongs to by its index on the call stack
#[allow(dead_code)] // for future use
FnBarrier(usize)
}
impl BorStackItem {
#[inline(always)]
pub fn is_fn_barrier(self) -> bool {
match self {
BorStackItem::FnBarrier(_) => true,
_ => false,
}
}
}
2018-10-16 18:01:50 +02:00
/// Extra per-location state
#[derive(Clone, Debug)]
pub struct Stack {
borrows: Vec<BorStackItem>, // used as a stack; never empty
frozen_since: Option<Timestamp>, // virtual frozen "item" on top of the stack
}
impl Default for Stack {
fn default() -> Self {
Stack {
borrows: vec![BorStackItem::Shr],
frozen_since: None,
}
}
}
impl Stack {
#[inline(always)]
pub fn is_frozen(&self) -> bool {
self.frozen_since.is_some()
}
}
/// What kind of usage of the pointer are we talking about?
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum UsageKind {
/// Write, or create &mut
Write,
/// Read, or create &
Read,
/// Create * (raw ptr)
Raw,
}
impl From<Option<hir::Mutability>> for UsageKind {
fn from(mutbl: Option<hir::Mutability>) -> Self {
match mutbl {
None => UsageKind::Raw,
Some(hir::MutMutable) => UsageKind::Write,
Some(hir::MutImmutable) => UsageKind::Read,
}
}
}
2018-10-16 18:01:50 +02:00
/// Extra global machine state
#[derive(Clone, Debug)]
pub struct State {
clock: Timestamp
2018-10-16 18:01:50 +02:00
}
impl State {
pub fn new() -> State {
State { clock: 0 }
2018-10-16 18:01:50 +02:00
}
}
/// Extra per-allocation state
#[derive(Clone, Debug, Default)]
pub struct Stacks {
// Even reading memory can have effects on the stack, so we need a `RefCell` here.
2018-10-16 18:01:50 +02:00
stacks: RefCell<RangeMap<Stack>>,
}
/// Core operations
impl<'tcx> Stack {
/// Check if `bor` could be activated by unfreezing and popping.
2018-11-05 16:23:22 +01:00
/// `is_write` indicates whether this is being used to write (or, equivalently, to
/// borrow as &mut).
/// Returns `Err` if the answer is "no"; otherwise the return value indicates what to
/// do: With `Some(n)` you need to unfreeze, and then additionally pop `n` items.
2018-11-05 16:23:22 +01:00
fn reactivatable(&self, bor: Borrow, is_write: bool) -> Result<Option<usize>, String> {
// Check if we can match the frozen "item". Not possible on writes!
2018-11-05 16:23:22 +01:00
if !is_write {
// For now, we do NOT check the timestamp. That might be surprising, but
// we cannot even notice when a location should be frozen but is not!
// Those checks are both done in `tag_dereference`, where we have type information.
// Either way, it is crucial that the frozen "item" matches raw pointers:
// Reading through a raw should not unfreeze.
match (self.frozen_since, bor) {
(Some(_), Borrow::Shr(_)) => {
return Ok(None)
}
_ => {},
}
}
// See if we can find this borrow.
for (idx, &itm) in self.borrows.iter().rev().enumerate() {
// Check borrow and stack item for compatibility.
match (itm, bor) {
(BorStackItem::FnBarrier(_), _) => {
return Err(format!("Trying to reactivate a borrow ({:?}) that lives \
behind a barrier", bor))
}
(BorStackItem::Uniq(itm_t), Borrow::Uniq(bor_t)) if itm_t == bor_t => {
// Found matching unique item. This is *always* required to use a `Uniq`:
// The item must still be on the stack.
2018-11-05 16:23:22 +01:00
if !is_write {
// As a special case, if we are reading, let us see if it would be
// beneficial to pretend we are a raw pointer instead. If
// raw pointers are allowed to read while popping *less* than we
// would have to pop, there is no reason not to let them do this.
2018-11-05 16:23:22 +01:00
match self.reactivatable(Borrow::default(), is_write) {
// If we got something better (popping less) that `idx`, use that
Ok(None) => return Ok(None),
Ok(Some(shr_idx)) if shr_idx <= idx => return Ok(Some(shr_idx)),
// Otherwise just go on.
_ => {},
2018-10-30 15:08:18 +01:00
}
}
return Ok(Some(idx))
2018-10-16 18:01:50 +02:00
}
(BorStackItem::Shr, Borrow::Shr(_)) => {
// Found matching shared/raw item.
return Ok(Some(idx))
}
// Go on looking.
_ => {}
2018-10-16 18:01:50 +02:00
}
}
// Nothing to be found.
Err(format!("Borrow-to-reactivate {:?} does not exist on the stack", bor))
}
2018-11-05 16:23:22 +01:00
/// Reactive `bor` for this stack. `is_write` indicates whether this is being
/// used to write (or, equivalently, to borrow as &mut).
fn reactivate(&mut self, bor: Borrow, is_write: bool) -> EvalResult<'tcx> {
let mut pop = match self.reactivatable(bor, is_write) {
Ok(None) => return Ok(()),
Ok(Some(pop)) => pop,
Err(err) => return err!(MachineError(err)),
};
// Pop what `reactivatable` told us to pop. Always unfreeze.
if self.is_frozen() {
trace!("reactivate: Unfreezing");
}
self.frozen_since = None;
while pop > 0 {
let itm = self.borrows.pop().unwrap();
trace!("reactivate: Popping {:?}", itm);
pop -= 1;
}
Ok(())
2018-10-16 18:01:50 +02:00
}
/// Initiate `bor`; mostly this means pushing.
/// This operation cannot fail; it is up to the caller to ensure that the precondition
/// is met: We cannot push `Uniq` onto frozen stacks.
/// Crucially, this makes pushing a `Shr` onto a frozen location a NOP. We do not want
/// such a location to get mutably shared this way!
fn initiate(&mut self, bor: Borrow) {
if let Some(_) = self.frozen_since {
// A frozen location, we won't change anything here!
match bor {
Borrow::Uniq(_) => bug!("Trying to create unique ref to frozen location"),
Borrow::Shr(_) => trace!("initiate: New shared ref to frozen location is a NOP"),
2018-10-16 18:01:50 +02:00
}
} else {
// Just push.
let itm = match bor {
Borrow::Uniq(t) => BorStackItem::Uniq(t),
Borrow::Shr(_) if *self.borrows.last().unwrap() == BorStackItem::Shr => {
// Optimization: Don't push a Shr onto a Shr.
trace!("initiate: New shared ref to already shared location is a NOP");
return
},
Borrow::Shr(_) => BorStackItem::Shr,
};
trace!("initiate: Pushing {:?}", itm);
self.borrows.push(itm)
}
}
/// Check if this location is "frozen enough".
fn check_frozen(&self, bor_t: Timestamp) -> EvalResult<'tcx> {
let frozen = self.frozen_since.map_or(false, |itm_t| itm_t <= bor_t);
if !frozen {
err!(MachineError(format!("Location is not frozen long enough")))
} else {
Ok(())
}
}
/// Freeze this location, since `bor_t`.
fn freeze(&mut self, bor_t: Timestamp) {
if let Some(itm_t) = self.frozen_since {
assert!(itm_t <= bor_t, "Trying to freeze shorter than it was frozen?");
} else {
trace!("Freezing");
self.frozen_since = Some(bor_t);
2018-10-16 18:01:50 +02:00
}
}
}
impl State {
fn increment_clock(&mut self) -> Timestamp {
let val = self.clock;
self.clock = val + 1;
val
2018-10-16 18:01:50 +02:00
}
}
/// Higher-level operations
impl<'tcx> Stacks {
/// `ptr` got used, reflect that in the stack.
fn reactivate(
&self,
ptr: Pointer<Borrow>,
size: Size,
usage: UsageKind,
) -> EvalResult<'tcx> {
trace!("use_borrow of tag {:?} as {:?}: {:?}, size {}",
ptr.tag, usage, ptr, size.bytes());
let mut stacks = self.stacks.borrow_mut();
for stack in stacks.iter_mut(ptr.offset, size) {
2018-11-05 16:23:22 +01:00
stack.reactivate(ptr.tag, usage == UsageKind::Write)?;
}
Ok(())
}
/// Create a new borrow, the ptr must already have the new tag.
/// Also freezes the location if `freeze` is set and the tag is a timestamped `Shr`.
fn initiate(
&self,
ptr: Pointer<Borrow>,
size: Size,
freeze: bool,
) {
trace!("reborrow for tag {:?}: {:?}, size {}",
ptr.tag, ptr, size.bytes());
let mut stacks = self.stacks.borrow_mut();
for stack in stacks.iter_mut(ptr.offset, size) {
stack.initiate(ptr.tag);
if freeze {
if let Borrow::Shr(Some(bor_t)) = ptr.tag {
stack.freeze(bor_t);
}
}
}
}
/// Check that this stack is fine with being dereferenced
fn check_deref(
&self,
ptr: Pointer<Borrow>,
size: Size,
frozen: bool,
) -> EvalResult<'tcx> {
let mut stacks = self.stacks.borrow_mut();
// We need `iter_mut` because `iter` would skip gaps!
for stack in stacks.iter_mut(ptr.offset, size) {
// Conservatively assume we will just read
2018-11-05 16:23:22 +01:00
if let Err(err) = stack.reactivatable(ptr.tag, /*is_write*/false) {
return err!(MachineError(format!(
"Encountered reference with non-reactivatable tag: {}",
err
)))
}
// Sometimes we also need to be frozen.
// In this case we *both* push `Shr` and then freeze. This means that a `&mut`
// to `*const` to `*mut` cast through `&` actually works.
if frozen {
// Even shared refs can have uniq tags (after transmute). That's not an error
// but they do not get any freezing benefits.
if let Borrow::Shr(Some(bor_t)) = ptr.tag {
stack.check_frozen(bor_t)?;
}
}
}
Ok(())
}
}
/// Hooks and glue
impl AllocationExtra<Borrow> for Stacks {
#[inline(always)]
fn memory_read<'tcx>(
alloc: &Allocation<Borrow, Stacks>,
ptr: Pointer<Borrow>,
size: Size,
) -> EvalResult<'tcx> {
// Reads behave exactly like the first half of a reborrow-to-shr
alloc.extra.reactivate(ptr, size, UsageKind::Read)
}
#[inline(always)]
fn memory_written<'tcx>(
alloc: &mut Allocation<Borrow, Stacks>,
ptr: Pointer<Borrow>,
size: Size,
) -> EvalResult<'tcx> {
// Writes behave exactly like the first half of a reborrow-to-mut
alloc.extra.reactivate(ptr, size, UsageKind::Read)
}
#[inline(always)]
fn memory_deallocated<'tcx>(
alloc: &mut Allocation<Borrow, Stacks>,
ptr: Pointer<Borrow>,
size: Size,
) -> EvalResult<'tcx> {
// This is like mutating
alloc.extra.reactivate(ptr, size, UsageKind::Write)
// FIXME: Error out of there are any barriers?
}
}
impl<'tcx> Stacks {
/// Pushes the first item to the stacks.
pub fn first_item(
&mut self,
itm: BorStackItem,
size: Size
) {
assert!(!itm.is_fn_barrier());
for stack in self.stacks.get_mut().iter_mut(Size::ZERO, size) {
assert!(stack.borrows.len() == 1);
assert_eq!(stack.borrows.pop().unwrap(), BorStackItem::Shr);
stack.borrows.push(itm);
}
}
}
2018-10-16 18:01:50 +02:00
pub trait EvalContextExt<'tcx> {
fn tag_dereference(
&self,
place: MPlaceTy<'tcx, Borrow>,
size: Size,
usage: UsageKind,
2018-10-16 18:01:50 +02:00
) -> EvalResult<'tcx, Borrow>;
fn tag_new_allocation(
&mut self,
id: AllocId,
kind: MemoryKind<MiriMemoryKind>,
) -> Borrow;
/// Retag an indidual pointer, returning the retagged version.
fn retag_ptr(
&mut self,
ptr: ImmTy<'tcx, Borrow>,
mutbl: hir::Mutability,
) -> EvalResult<'tcx, Immediate<Borrow>>;
fn retag(
&mut self,
fn_entry: bool,
place: PlaceTy<'tcx, Borrow>
) -> EvalResult<'tcx>;
2018-10-16 18:01:50 +02:00
fn escape_to_raw(
&mut self,
place: MPlaceTy<'tcx, Borrow>,
size: Size,
) -> EvalResult<'tcx>;
}
2018-10-16 18:01:50 +02:00
impl<'a, 'mir, 'tcx> EvalContextExt<'tcx> for MiriEvalContext<'a, 'mir, 'tcx> {
fn tag_new_allocation(
&mut self,
id: AllocId,
kind: MemoryKind<MiriMemoryKind>,
) -> Borrow {
let time = match kind {
MemoryKind::Stack => {
// New unique borrow. This `Uniq` is not accessible by the program,
// so it will only ever be used when using the local directly (i.e.,
// not through a pointer). IOW, whenever we directly use a local this will pop
// everything else off the stack, invalidating all previous pointers
// and, in particular, *all* raw pointers. This subsumes the explicit
// `reset` which the blog post [1] says to perform when accessing a local.
//
// [1] https://www.ralfj.de/blog/2018/08/07/stacked-borrows.html
self.machine.stacked_borrows.increment_clock()
}
_ => {
// Nothing to do for everything else
return Borrow::default()
}
};
// Make this the active borrow for this allocation
let alloc = self.memory_mut().get_mut(id).expect("This is a new allocation, it must still exist");
let size = Size::from_bytes(alloc.bytes.len() as u64);
alloc.extra.first_item(BorStackItem::Uniq(time), size);
Borrow::Uniq(time)
}
/// Called for value-to-place conversion.
///
/// Note that this does NOT mean that all this memory will actually get accessed/referenced!
/// We could be in the middle of `&(*var).1`.
2018-10-16 18:01:50 +02:00
fn tag_dereference(
&self,
place: MPlaceTy<'tcx, Borrow>,
size: Size,
usage: UsageKind,
2018-10-16 18:01:50 +02:00
) -> EvalResult<'tcx, Borrow> {
trace!("tag_dereference: Accessing reference ({:?}) for {:?} (pointee {})",
usage, place.ptr, place.layout.ty);
let ptr = place.ptr.to_ptr()?;
// In principle we should not have to do anything here. However, with transmutes involved,
// it can happen that the tag of `ptr` does not actually match `usage`, and we
// should adjust for that.
// Notably, the compiler can introduce such transmutes by optimizing away `&[mut]*`.
// That can transmute a raw ptr to a (shared/mut) ref, and a mut ref to a shared one.
match (usage, ptr.tag) {
(UsageKind::Raw, _) => {
// Don't use the tag, this is a raw access! They should happen tagless.
// This does mean, however, that `&*foo` is *not* a NOP *if* `foo` is a raw ptr.
// Also don't do any further validation, this is raw after all.
return Ok(Borrow::default());
}
(UsageKind::Write, Borrow::Uniq(_)) |
(UsageKind::Read, Borrow::Shr(_)) => {
// Expected combinations. Nothing to do.
}
(UsageKind::Write, Borrow::Shr(None)) => {
// Raw transmuted to mut ref. Keep this as raw access.
// We cannot reborrow here; there might be a raw in `&(*var).1` where
// `var` is an `&mut`. The other field of the struct might be already frozen,
// also using `var`, and that would be okay.
}
(UsageKind::Read, Borrow::Uniq(_)) => {
2018-11-03 11:42:38 +01:00
// A mut got transmuted to shr. Can happen even from compiler transformations:
// `&*x` gets optimized to `x` even when `x` is a `&mut`.
}
(UsageKind::Write, Borrow::Shr(Some(_))) => {
// This is just invalid: A shr got transmuted to a mut.
// If we ever allow this, we have to consider what we do when a turn a
// `Raw`-tagged `&mut` into a raw pointer pointing to a frozen location.
// We probably do not want to allow that, but we have to allow
// turning a `Raw`-tagged `&` into a raw ptr to a frozen location.
return err!(MachineError(format!("Encountered mutable reference with frozen tag {:?}", ptr.tag)))
}
}
// Get the allocation
2018-10-19 19:51:41 +02:00
self.memory().check_bounds(ptr, size, false)?;
let alloc = self.memory().get(ptr.alloc_id).expect("We checked that the ptr is fine!");
// If we got here, we do some checking, *but* we leave the tag unchanged.
if let Borrow::Shr(Some(_)) = ptr.tag {
// We need a frozen-sensitive check
self.visit_freeze_sensitive(place, size, |cur_ptr, size, frozen| {
alloc.extra.check_deref(cur_ptr, size, frozen)
})?;
} else {
// Just treat this as one big chunk
alloc.extra.check_deref(ptr, size, /*frozen*/false)?;
}
// All is good, and do not change the tag
Ok(ptr.tag)
2018-10-16 18:01:50 +02:00
}
/// The given place may henceforth be accessed through raw pointers.
fn escape_to_raw(
&mut self,
place: MPlaceTy<'tcx, Borrow>,
size: Size,
) -> EvalResult<'tcx> {
trace!("self: {:?} is now accessible by raw pointers", *place);
// Get the allocation
let mut ptr = place.ptr.to_ptr()?;
self.memory().check_bounds(ptr, size, false)?; // `ptr_dereference` wouldn't do any checks if this is a raw ptr
let alloc = self.memory().get(ptr.alloc_id).expect("We checked that the ptr is fine!");
// Re-borrow to raw. This is a NOP for shared borrows, but we do not know the borrow
// type here and that's also okay. Freezing does not matter here.
alloc.extra.reactivate(ptr, size, UsageKind::Raw)?;
ptr.tag = Borrow::default();
alloc.extra.initiate(ptr, size, /*freeze*/false);
Ok(())
}
fn retag_ptr(
&mut self,
val: ImmTy<'tcx, Borrow>,
mutbl: hir::Mutability,
) -> EvalResult<'tcx, Immediate<Borrow>> {
// We want a place for where the ptr *points to*, so we get one.
let place = self.ref_to_mplace(val)?;
let size = self.size_and_align_of_mplace(place)?
.map(|(size, _)| size)
.unwrap_or_else(|| place.layout.size);
if size == Size::ZERO {
// Nothing to do for ZSTs.
return Ok(*val);
}
// Prepare to re-borrow this place.
let ptr = place.ptr.to_ptr()?;
let time = self.machine.stacked_borrows.increment_clock();
let new_bor = match mutbl {
hir::MutMutable => Borrow::Uniq(time),
hir::MutImmutable => Borrow::Shr(Some(time)),
};
let new_ptr = Pointer::new_with_tag(ptr.alloc_id, ptr.offset, new_bor);
trace!("retag: Creating new reference ({:?}) for {:?} (pointee {}): {:?}",
mutbl, ptr, place.layout.ty, new_bor);
// Get the allocation
self.memory().check_bounds(ptr, size, false)?; // `ptr_dereference` wouldn't do any checks if this is a raw ptr
let alloc = self.memory().get(ptr.alloc_id).expect("We checked that the ptr is fine!");
// Update the stacks. First use old borrow, then initiate new one.
alloc.extra.reactivate(ptr, size, Some(mutbl).into())?;
if mutbl == hir::MutImmutable {
// We need a frozen-sensitive initiate
self.visit_freeze_sensitive(place, size, |mut cur_ptr, size, frozen| {
cur_ptr.tag = new_bor;
Ok(alloc.extra.initiate(cur_ptr, size, frozen))
})?;
} else {
// Just treat this as one big chunk
alloc.extra.initiate(new_ptr, size, /*frozen*/false);
}
// Return new ptr
let new_place = MemPlace { ptr: Scalar::Ptr(new_ptr), ..*place };
Ok(new_place.to_ref())
}
fn retag(
&mut self,
_fn_entry: bool,
place: PlaceTy<'tcx, Borrow>
) -> EvalResult<'tcx> {
// For now, we only retag if the toplevel type is a reference.
// TODO: Recurse into structs and enums, sharing code with validation.
// TODO: Honor `fn_entry`.
let mutbl = match place.layout.ty.sty {
ty::Ref(_, _, mutbl) => mutbl, // go ahead
_ => return Ok(()), // do nothing, for now
};
// Retag the pointer and write it back.
2018-11-05 08:51:55 +01:00
let val = self.read_immediate(self.place_to_op(place)?)?;
let val = self.retag_ptr(val, mutbl)?;
2018-11-05 08:51:55 +01:00
self.write_immediate(val, place)?;
Ok(())
}
2018-10-16 18:01:50 +02:00
}