rust/src/stacked_borrows.rs

551 lines
20 KiB
Rust
Raw Normal View History

use std::cell::RefCell;
2018-10-16 18:01:50 +02:00
use rustc::ty::{self, Ty, layout::Size};
use rustc::hir;
2018-10-16 18:01:50 +02:00
use crate::{
MemoryKind, MiriMemoryKind, RangeMap, EvalResult, AllocId,
Pointer, PlaceTy,
2018-10-16 18:01:50 +02:00
};
pub type Timestamp = u64;
/// Information about a potentially mutable borrow
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum Mut {
/// A unique, mutable reference
Uniq(Timestamp),
/// Any raw pointer, or a shared borrow with interior mutability
Raw,
}
2018-10-16 18:01:50 +02:00
impl Mut {
#[inline(always)]
pub fn is_raw(self) -> bool {
2018-10-16 18:01:50 +02:00
match self {
Mut::Raw => true,
_ => false,
}
}
#[inline(always)]
pub fn is_uniq(self) -> bool {
match self {
Mut::Uniq(_) => true,
_ => false,
}
}
2018-10-16 18:01:50 +02:00
}
/// Information about any kind of borrow
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum Borrow {
/// A mutable borrow, a raw pointer, or a shared borrow with interior mutability
Mut(Mut),
/// A shared borrow without interior mutability
Frz(Timestamp)
}
2018-10-16 18:01:50 +02:00
impl Borrow {
#[inline(always)]
pub fn is_uniq(self) -> bool {
match self {
Borrow::Mut(m) => m.is_uniq(),
_ => false,
}
}
#[inline(always)]
pub fn is_frz(self) -> bool {
2018-10-16 18:01:50 +02:00
match self {
Borrow::Frz(_) => true,
2018-10-16 18:01:50 +02:00
_ => false,
}
}
}
impl Default for Borrow {
fn default() -> Self {
Borrow::Mut(Mut::Raw)
}
}
/// An item in the borrow stack
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum BorStackItem {
/// Defines which references are permitted to mutate *if* the location is not frozen
Mut(Mut),
/// A barrier, tracking the function it belongs to by its index on the call stack
#[allow(dead_code)] // for future use
FnBarrier(usize)
}
impl BorStackItem {
#[inline(always)]
pub fn is_fn_barrier(self) -> bool {
match self {
BorStackItem::FnBarrier(_) => true,
_ => false,
}
}
}
2018-10-16 18:01:50 +02:00
/// What kind of usage of the pointer are we talking about?
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum UsageKind {
/// Write, or create &mut
Write,
/// Read, or create &
Read,
/// Create *
Raw,
}
impl From<Option<hir::Mutability>> for UsageKind {
fn from(mutbl: Option<hir::Mutability>) -> Self {
match mutbl {
None => UsageKind::Raw,
Some(hir::MutMutable) => UsageKind::Write,
Some(hir::MutImmutable) => UsageKind::Read,
}
}
}
2018-10-16 18:01:50 +02:00
/// Extra global machine state
#[derive(Clone, Debug)]
pub struct State {
clock: Timestamp
2018-10-16 18:01:50 +02:00
}
impl State {
pub fn new() -> State {
State { clock: 0 }
2018-10-16 18:01:50 +02:00
}
}
/// Extra per-location state
#[derive(Clone, Debug)]
pub struct Stack {
2018-10-16 18:01:50 +02:00
borrows: Vec<BorStackItem>, // used as a stack
frozen_since: Option<Timestamp>,
}
impl Default for Stack {
fn default() -> Self {
Stack {
borrows: vec![BorStackItem::Mut(Mut::Raw)],
2018-10-16 18:01:50 +02:00
frozen_since: None,
}
}
}
impl Stack {
#[inline(always)]
fn is_frozen(&self) -> bool {
self.frozen_since.is_some()
}
}
2018-10-16 18:01:50 +02:00
/// Extra per-allocation state
#[derive(Clone, Debug, Default)]
pub struct Stacks {
// Even reading memory can have effects on the stack, so we need a `RefCell` here.
2018-10-16 18:01:50 +02:00
stacks: RefCell<RangeMap<Stack>>,
}
/// Core operations
impl<'tcx> Stack {
/// Check if `bor` could be activated by unfreezing and popping.
/// `usage` indicates whether this is being used to read/write (or, equivalently, to
2018-10-30 15:08:18 +01:00
/// borrow as &/&mut), or to borrow as raw.
/// Returns `Err` if the answer is "no"; otherwise the data says
/// what needs to happen to activate this: `None` = nothing,
/// `Some(n)` = unfreeze and make item `n` the top item of the stack.
fn reactivatable(&self, bor: Borrow, usage: UsageKind) -> Result<Option<usize>, String> {
2018-10-30 15:08:18 +01:00
let mut_borrow = match bor {
Borrow::Frz(since) =>
2018-10-30 15:08:18 +01:00
// The only way to reactivate a `Frz` is if this is already frozen.
return match self.frozen_since {
_ if usage == UsageKind::Write =>
2018-10-30 15:08:18 +01:00
Err(format!("Using a shared borrow for mutation")),
None =>
Err(format!("Location should be frozen but it is not")),
Some(loc) if loc <= since =>
Ok(None),
Some(loc) =>
Err(format!("Location should be frozen since {} but it is only frozen \
since {}", since, loc)),
},
Borrow::Mut(Mut::Raw) if self.is_frozen() && usage != UsageKind::Write =>
2018-10-30 15:08:18 +01:00
// Non-mutating access with a raw from a frozen location is a special case: The
// shared refs do not mind raw reads, and the raw itself does not assume any
// exclusivity. So we do not even require there to be a raw on the stack,
// the raw is instead "matched" by the fact that this location is frozen.
2018-10-30 15:08:18 +01:00
// This does not break the assumption that an `&mut` we own is
// exclusive for reads, because there we have the invariant that
// the location is *not* frozen.
return Ok(None),
Borrow::Mut(mut_borrow) => mut_borrow
2018-10-16 18:01:50 +02:00
};
2018-10-30 15:08:18 +01:00
// See if we can get there via popping.
for (idx, &itm) in self.borrows.iter().enumerate().rev() {
2018-10-16 18:01:50 +02:00
match itm {
BorStackItem::FnBarrier(_) =>
2018-10-30 15:08:18 +01:00
return Err(format!("Trying to reactivate a mutable borrow ({:?}) that lives \
behind a barrier", mut_borrow)),
BorStackItem::Mut(loc) => {
if loc == mut_borrow {
// We found it! This is good to know.
// Yet, maybe we do not really want to pop?
if usage == UsageKind::Read && self.is_frozen() {
2018-10-30 15:08:18 +01:00
// Whoever had exclusive access to this location allowed it
// to become frozen. That can only happen if they reborrowed
// to a shared ref, at which point they gave up on exclusive access.
// Hence we allow more reads, entirely ignoring everything above
// on the stack (but still making sure it is on the stack).
// This does not break the assumption that an `&mut` we own is
// exclusive for reads, because there we have the invariant that
// the location is *not* frozen.
return Ok(None);
} else {
return Ok(Some(idx));
}
}
2018-10-16 18:01:50 +02:00
}
}
}
// Nothing to be found.
2018-10-30 15:08:18 +01:00
Err(format!("Mutable borrow-to-reactivate ({:?}) does not exist on the stack", mut_borrow))
}
/// Reactive `bor` for this stack. `usage` indicates whether this is being
2018-10-30 15:08:18 +01:00
/// used to read/write (or, equivalently, to borrow as &/&mut), or to borrow as raw.
fn reactivate(&mut self, bor: Borrow, usage: UsageKind) -> EvalResult<'tcx> {
let action = match self.reactivatable(bor, usage) {
Ok(action) => action,
Err(err) => return err!(MachineError(err)),
};
2018-10-30 15:08:18 +01:00
// Execute what `reactivatable` told us to do.
match action {
None => {}, // nothing to do
Some(top) => {
if self.frozen_since.is_some() {
trace!("reactivate: Unfreezing");
}
self.frozen_since = None;
for itm in self.borrows.drain(top+1..).rev() {
trace!("reactivate: Popping {:?}", itm);
}
}
}
Ok(())
2018-10-16 18:01:50 +02:00
}
/// Initiate `bor`; mostly this means freezing or pushing.
/// This operation cannot fail; it is up to the caller to ensure that the precondition
/// is met: We cannot push onto frozen stacks.
fn initiate(&mut self, bor: Borrow) {
2018-10-16 18:01:50 +02:00
match bor {
Borrow::Frz(t) => {
match self.frozen_since {
None => {
trace!("initiate: Freezing");
self.frozen_since = Some(t);
}
Some(since) => {
trace!("initiate: Already frozen");
assert!(since <= t);
}
2018-10-16 18:01:50 +02:00
}
}
Borrow::Mut(m) => {
match self.frozen_since {
None => {
trace!("initiate: Pushing {:?}", bor);
self.borrows.push(BorStackItem::Mut(m))
}
Some(_) if m.is_raw() =>
// We only ever initiate right after activating the ref we come from.
// If the source ref is fine being frozen, then a raw ref we create
// from it is fine with this as well.
trace!("initiate: Initiating a raw on a frozen location, not doing a thing"),
2018-10-16 18:01:50 +02:00
Some(_) =>
bug!("Trying to mutate frozen location")
2018-10-16 18:01:50 +02:00
}
}
}
}
}
impl State {
fn increment_clock(&mut self) -> Timestamp {
let val = self.clock;
self.clock = val + 1;
val
2018-10-16 18:01:50 +02:00
}
}
/// Higher-level operations
impl<'tcx> Stacks {
/// The single most operation: Make sure that using `ptr` as `usage` is okay,
/// and if `new_bor` is present then make that the new current borrow.
fn use_and_maybe_re_borrow(
&self,
ptr: Pointer<Borrow>,
size: Size,
usage: UsageKind,
new_bor: Option<Borrow>,
) -> EvalResult<'tcx> {
trace!("use_and_maybe_re_borrow of tag {:?} as {:?}, new {:?}: {:?}, size {}",
ptr.tag, usage, new_bor, ptr, size.bytes());
let mut stacks = self.stacks.borrow_mut();
for stack in stacks.iter_mut(ptr.offset, size) {
stack.reactivate(ptr.tag, usage)?;
if let Some(new_bor) = new_bor {
stack.initiate(new_bor);
}
}
Ok(())
}
#[inline(always)]
pub fn memory_read(
&self,
ptr: Pointer<Borrow>,
size: Size,
) -> EvalResult<'tcx> {
// Reads behave exactly like the first half of a reborrow-to-shr
self.use_and_maybe_re_borrow(ptr, size, UsageKind::Read, None)
}
#[inline(always)]
pub fn memory_written(
&mut self,
ptr: Pointer<Borrow>,
size: Size,
) -> EvalResult<'tcx> {
// Writes behave exactly like the first half of a reborrow-to-mut
self.use_and_maybe_re_borrow(ptr, size, UsageKind::Write, None)
}
pub fn memory_deallocated(
&mut self,
ptr: Pointer<Borrow>,
size: Size,
) -> EvalResult<'tcx> {
// This is like mutating
self.use_and_maybe_re_borrow(ptr, size, UsageKind::Write, None)
// FIXME: Error out of there are any barriers?
}
/// Pushes the first borrow to the stacks, must be a mutable one.
pub fn first_borrow(
&mut self,
2018-10-30 10:41:01 +01:00
mut_borrow: Mut,
size: Size
) {
for stack in self.stacks.get_mut().iter_mut(Size::ZERO, size) {
assert!(stack.borrows.len() == 1 && stack.frozen_since.is_none());
assert_eq!(stack.borrows.pop().unwrap(), BorStackItem::Mut(Mut::Raw));
2018-10-30 10:41:01 +01:00
stack.borrows.push(BorStackItem::Mut(mut_borrow));
}
}
}
2018-10-16 18:01:50 +02:00
pub trait EvalContextExt<'tcx> {
fn tag_reference(
&mut self,
2018-10-16 18:01:50 +02:00
ptr: Pointer<Borrow>,
pointee_ty: Ty<'tcx>,
size: Size,
usage: UsageKind,
2018-10-16 18:01:50 +02:00
) -> EvalResult<'tcx, Borrow>;
2018-10-16 18:01:50 +02:00
fn tag_dereference(
&self,
ptr: Pointer<Borrow>,
pointee_ty: Ty<'tcx>,
size: Size,
usage: UsageKind,
2018-10-16 18:01:50 +02:00
) -> EvalResult<'tcx, Borrow>;
fn tag_new_allocation(
&mut self,
id: AllocId,
kind: MemoryKind<MiriMemoryKind>,
) -> Borrow;
fn retag(
&mut self,
fn_entry: bool,
place: PlaceTy<'tcx, Borrow>
) -> EvalResult<'tcx>;
2018-10-16 18:01:50 +02:00
}
impl<'a, 'mir, 'tcx> EvalContextExt<'tcx> for super::MiriEvalContext<'a, 'mir, 'tcx> {
/// Called for place-to-value conversion.
fn tag_reference(
&mut self,
ptr: Pointer<Borrow>,
2018-10-16 18:01:50 +02:00
pointee_ty: Ty<'tcx>,
size: Size,
usage: UsageKind,
) -> EvalResult<'tcx, Borrow> {
2018-10-16 18:01:50 +02:00
let time = self.machine.stacked_borrows.increment_clock();
let new_bor = match usage {
UsageKind::Write => Borrow::Mut(Mut::Uniq(time)),
UsageKind::Read =>
// FIXME This does not do enough checking when only part of the data has
// interior mutability. When the type is `(i32, Cell<i32>)`, we want the
// first field to be frozen but not the second.
2018-10-16 18:01:50 +02:00
if self.type_is_freeze(pointee_ty) {
Borrow::Frz(time)
} else {
// Shared reference with interior mutability.
2018-10-16 18:01:50 +02:00
Borrow::Mut(Mut::Raw)
},
UsageKind::Raw => Borrow::Mut(Mut::Raw),
};
trace!("tag_reference: Creating new reference ({:?}) for {:?} (pointee {}, size {}): {:?}",
usage, ptr, pointee_ty, size.bytes(), new_bor);
2018-10-16 18:01:50 +02:00
// Make sure this reference is not dangling or so
2018-10-19 19:51:41 +02:00
self.memory().check_bounds(ptr, size, false)?;
2018-10-16 18:01:50 +02:00
// Update the stacks. We cannot use `get_mut` becuse this might be immutable
// memory.
2018-10-19 19:51:41 +02:00
let alloc = self.memory().get(ptr.alloc_id).expect("We checked that the ptr is fine!");
alloc.extra.use_and_maybe_re_borrow(ptr, size, usage, Some(new_bor))?;
2018-10-16 18:01:50 +02:00
Ok(new_bor)
}
/// Called for value-to-place conversion.
///
/// Note that this does NOT mean that all this memory will actually get accessed/referenced!
/// We could be in the middle of `&(*var).1`.
2018-10-16 18:01:50 +02:00
fn tag_dereference(
&self,
ptr: Pointer<Borrow>,
pointee_ty: Ty<'tcx>,
size: Size,
usage: UsageKind,
2018-10-16 18:01:50 +02:00
) -> EvalResult<'tcx, Borrow> {
trace!("tag_reference: Accessing reference ({:?}) for {:?} (pointee {}, size {})",
usage, ptr, pointee_ty, size.bytes());
// In principle we should not have to do anything here. However, with transmutes involved,
// it can happen that the tag of `ptr` does not actually match `usage`, and we
// should adjust for that.
// Notably, the compiler can introduce such transmutes by optimizing away `&[mut]*`.
// That can transmute a raw ptr to a (shared/mut) ref, and a mut ref to a shared one.
match (usage, ptr.tag) {
(UsageKind::Raw, _) => {
// Don't use the tag, this is a raw access! Even if there is a tag,
// that means transmute happened and we ignore the tag.
// Also don't do any further validation, this is raw after all.
return Ok(Borrow::Mut(Mut::Raw));
}
(UsageKind::Write, Borrow::Mut(Mut::Uniq(_))) |
(UsageKind::Read, Borrow::Frz(_)) |
(UsageKind::Read, Borrow::Mut(Mut::Raw)) => {
// Expected combinations. Nothing to do.
// FIXME: We probably shouldn't accept this if we got a raw shr without
// interior mutability.
}
(UsageKind::Write, Borrow::Mut(Mut::Raw)) => {
// Raw transmuted to mut ref. Keep this as raw access.
// We cannot reborrow here; there might be a raw in `&(*var).1` where
// `var` is an `&mut`. The other field of the struct might be already frozen,
// also using `var`, and that would be okay.
}
(UsageKind::Read, Borrow::Mut(Mut::Uniq(_))) => {
2018-11-03 11:42:38 +01:00
// A mut got transmuted to shr. Can happen even from compiler transformations:
// `&*x` gets optimized to `x` even when `x` is a `&mut`.
}
(UsageKind::Write, Borrow::Frz(_)) => {
// This is just invalid.
// If we ever allow this, we have to consider what we do when a turn a
// `Raw`-tagged `&mut` into a raw pointer pointing to a frozen location.
// We probably do not want to allow that, but we have to allow
// turning a `Raw`-tagged `&` into a raw ptr to a frozen location.
return err!(MachineError(format!("Encountered mutable reference with frozen tag {:?}", ptr.tag)))
}
}
// Even if we don't touch the tag, this operation is only okay if we *could*
// activate it. Also it must not be dangling.
2018-10-19 19:51:41 +02:00
self.memory().check_bounds(ptr, size, false)?;
let alloc = self.memory().get(ptr.alloc_id).expect("We checked that the ptr is fine!");
let mut stacks = alloc.extra.stacks.borrow_mut();
// We need `iter_mut` because `iter` would skip gaps!
for stack in stacks.iter_mut(ptr.offset, size) {
2018-10-30 15:08:18 +01:00
// Conservatively assume that we will only read.
if let Err(err) = stack.reactivatable(ptr.tag, UsageKind::Read) {
return err!(MachineError(format!(
"Encountered {} reference with non-reactivatable tag: {}",
if usage == UsageKind::Write { "mutable" } else { "shared" },
err
)))
}
}
// All is good.
Ok(ptr.tag)
2018-10-16 18:01:50 +02:00
}
fn tag_new_allocation(
&mut self,
id: AllocId,
kind: MemoryKind<MiriMemoryKind>,
) -> Borrow {
2018-10-30 10:41:01 +01:00
let mut_borrow = match kind {
MemoryKind::Stack => {
2018-10-30 15:08:18 +01:00
// New unique borrow. This `Uniq` is not accessible by the program,
// so it will only ever be used when using the local directly (i.e.,
// not through a pointer). IOW, whenever we directly use a local this will pop
// everything else off the stack, invalidating all previous pointers
// and, in particular, *all* raw pointers. This subsumes the explicit
// `reset` which the blog post [1] says to perform when accessing a local.
//
// [1] https://www.ralfj.de/blog/2018/08/07/stacked-borrows.html
let time = self.machine.stacked_borrows.increment_clock();
Mut::Uniq(time)
}
_ => {
// Raw for everything else
Mut::Raw
}
};
// Make this the active borrow for this allocation
let alloc = self.memory_mut().get_mut(id).expect("This is a new allocation, it must still exist");
let size = Size::from_bytes(alloc.bytes.len() as u64);
2018-10-30 10:41:01 +01:00
alloc.extra.first_borrow(mut_borrow, size);
Borrow::Mut(mut_borrow)
}
fn retag(
&mut self,
_fn_entry: bool,
place: PlaceTy<'tcx, Borrow>
) -> EvalResult<'tcx> {
// For now, we only retag if the toplevel type is a reference.
// TODO: Recurse into structs and enums, sharing code with validation.
let mutbl = match place.layout.ty.sty {
ty::Ref(_, _, mutbl) => mutbl, // go ahead
_ => return Ok(()), // don't do a thing
};
// We want to reborrow the reference stored there. This will call the hooks
// above. First deref, which will call `tag_dereference`.
// (This is somewhat redundant because validation already did the same thing,
// but what can you do.)
2018-11-05 08:51:55 +01:00
let val = self.read_immediate(self.place_to_op(place)?)?;
let dest = self.ref_to_mplace(val)?;
// Now put a new ref into the old place, which will call `tag_reference`.
// FIXME: Honor `fn_entry`!
let val = self.create_ref(dest, Some(mutbl))?;
2018-11-05 08:51:55 +01:00
self.write_immediate(val, place)?;
Ok(())
}
2018-10-16 18:01:50 +02:00
}