rust/src/libcore/result.rs

1022 lines
30 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Error handling with the `Result` type.
2014-04-12 16:33:21 -07:00
//!
2016-09-09 16:08:04 +02:00
//! [`Result<T, E>`][`Result`] is the type used for returning and propagating
//! errors. It is an enum with the variants, [`Ok(T)`], representing
//! success and containing a value, and [`Err(E)`], representing error
2014-04-12 16:33:21 -07:00
//! and containing an error value.
//!
//! ```
2015-11-03 15:27:03 +00:00
//! # #[allow(dead_code)]
2014-04-12 16:33:21 -07:00
//! enum Result<T, E> {
//! Ok(T),
//! Err(E),
2014-04-12 16:33:21 -07:00
//! }
//! ```
2014-04-12 16:33:21 -07:00
//!
2016-09-09 16:08:04 +02:00
//! Functions return [`Result`] whenever errors are expected and
//! recoverable. In the `std` crate, [`Result`] is most prominently used
2014-05-09 13:57:37 -07:00
//! for [I/O](../../std/io/index.html).
2014-04-12 16:33:21 -07:00
//!
2016-09-09 16:08:04 +02:00
//! A simple function returning [`Result`] might be
2014-04-12 16:33:21 -07:00
//! defined and used like so:
//!
//! ```
2015-01-28 08:34:18 -05:00
//! #[derive(Debug)]
2014-04-12 16:33:21 -07:00
//! enum Version { Version1, Version2 }
//!
//! fn parse_version(header: &[u8]) -> Result<Version, &'static str> {
//! match header.get(0) {
//! None => Err("invalid header length"),
//! Some(&1) => Ok(Version::Version1),
//! Some(&2) => Ok(Version::Version2),
//! Some(_) => Err("invalid version"),
2014-04-12 16:33:21 -07:00
//! }
//! }
//!
//! let version = parse_version(&[1, 2, 3, 4]);
//! match version {
//! Ok(v) => println!("working with version: {:?}", v),
//! Err(e) => println!("error parsing header: {:?}", e),
2014-04-12 16:33:21 -07:00
//! }
//! ```
2014-04-12 16:33:21 -07:00
//!
2016-09-09 16:08:04 +02:00
//! Pattern matching on [`Result`]s is clear and straightforward for
//! simple cases, but [`Result`] comes with some convenience methods
2014-11-22 22:13:00 -05:00
//! that make working with it more succinct.
2014-04-12 16:33:21 -07:00
//!
//! ```
//! let good_result: Result<i32, i32> = Ok(10);
//! let bad_result: Result<i32, i32> = Err(10);
2014-04-12 16:33:21 -07:00
//!
//! // The `is_ok` and `is_err` methods do what they say.
//! assert!(good_result.is_ok() && !good_result.is_err());
//! assert!(bad_result.is_err() && !bad_result.is_ok());
//!
//! // `map` consumes the `Result` and produces another.
//! let good_result: Result<i32, i32> = good_result.map(|i| i + 1);
//! let bad_result: Result<i32, i32> = bad_result.map(|i| i - 1);
2014-04-12 16:33:21 -07:00
//!
//! // Use `and_then` to continue the computation.
//! let good_result: Result<bool, i32> = good_result.and_then(|i| Ok(i == 11));
2014-04-12 16:33:21 -07:00
//!
//! // Use `or_else` to handle the error.
//! let bad_result: Result<i32, i32> = bad_result.or_else(|i| Ok(i + 20));
2014-04-12 16:33:21 -07:00
//!
2014-04-14 23:12:34 -07:00
//! // Consume the result and return the contents with `unwrap`.
//! let final_awesome_result = good_result.unwrap();
//! ```
2014-04-12 16:33:21 -07:00
//!
//! # Results must be used
//!
2014-04-14 23:12:34 -07:00
//! A common problem with using return values to indicate errors is
//! that it is easy to ignore the return value, thus failing to handle
2016-09-09 16:08:04 +02:00
//! the error. [`Result`] is annotated with the `#[must_use]` attribute,
2014-04-14 23:12:34 -07:00
//! which will cause the compiler to issue a warning when a Result
2016-09-09 16:08:04 +02:00
//! value is ignored. This makes [`Result`] especially useful with
2014-04-14 23:12:34 -07:00
//! functions that may encounter errors but don't otherwise return a
//! useful value.
2014-04-12 16:33:21 -07:00
//!
2016-09-09 16:08:04 +02:00
//! Consider the [`write_all`] method defined for I/O types
//! by the [`Write`] trait:
2014-04-12 16:33:21 -07:00
//!
//! ```
2015-04-10 13:23:17 -07:00
//! use std::io;
2014-04-12 16:33:21 -07:00
//!
2015-04-16 22:12:13 +02:00
//! trait Write {
2015-04-10 13:23:17 -07:00
//! fn write_all(&mut self, bytes: &[u8]) -> Result<(), io::Error>;
2014-04-12 16:33:21 -07:00
//! }
//! ```
2014-04-12 16:33:21 -07:00
//!
2016-09-09 16:08:04 +02:00
//! *Note: The actual definition of [`Write`] uses [`io::Result`], which
//! is just a synonym for [`Result`]`<T, `[`io::Error`]`>`.*
2014-04-12 16:33:21 -07:00
//!
//! This method doesn't produce a value, but the write may
2014-04-12 16:33:21 -07:00
//! fail. It's crucial to handle the error case, and *not* write
//! something like this:
//!
2015-04-10 13:23:17 -07:00
//! ```no_run
2015-11-03 15:27:03 +00:00
//! # #![allow(unused_must_use)] // \o/
2015-04-10 13:23:17 -07:00
//! use std::fs::File;
//! use std::io::prelude::*;
2014-04-12 16:33:21 -07:00
//!
2015-04-10 13:23:17 -07:00
//! let mut file = File::create("valuable_data.txt").unwrap();
//! // If `write_all` errors, then we'll never know, because the return
2014-04-12 16:33:21 -07:00
//! // value is ignored.
2015-04-10 13:23:17 -07:00
//! file.write_all(b"important message");
//! ```
2014-04-12 16:33:21 -07:00
//!
//! If you *do* write that in Rust, the compiler will give you a
2014-04-12 16:33:21 -07:00
//! warning (by default, controlled by the `unused_must_use` lint).
//!
//! You might instead, if you don't want to handle the error, simply
2016-09-09 16:08:04 +02:00
//! assert success with [`expect`]. This will panic if the
//! write fails, providing a marginally useful message indicating why:
2014-04-12 16:33:21 -07:00
//!
//! ```{.no_run}
2015-04-10 13:23:17 -07:00
//! use std::fs::File;
//! use std::io::prelude::*;
2014-04-12 16:33:21 -07:00
//!
2015-04-10 13:23:17 -07:00
//! let mut file = File::create("valuable_data.txt").unwrap();
//! file.write_all(b"important message").expect("failed to write message");
//! ```
2014-04-12 16:33:21 -07:00
//!
//! You might also simply assert success:
//!
//! ```{.no_run}
2015-04-10 13:23:17 -07:00
//! # use std::fs::File;
//! # use std::io::prelude::*;
//! # let mut file = File::create("valuable_data.txt").unwrap();
//! assert!(file.write_all(b"important message").is_ok());
//! ```
2014-04-12 16:33:21 -07:00
//!
2016-09-09 16:08:04 +02:00
//! Or propagate the error up the call stack with [`try!`]:
2014-04-12 16:33:21 -07:00
//!
//! ```
2015-04-10 13:23:17 -07:00
//! # use std::fs::File;
//! # use std::io::prelude::*;
//! # use std::io;
2015-11-03 15:27:03 +00:00
//! # #[allow(dead_code)]
2015-04-10 13:23:17 -07:00
//! fn write_message() -> io::Result<()> {
//! let mut file = try!(File::create("valuable_data.txt"));
//! try!(file.write_all(b"important message"));
//! Ok(())
2014-04-12 16:33:21 -07:00
//! }
//! ```
2014-04-12 16:33:21 -07:00
//!
//! # The `try!` macro
//!
//! When writing code that calls many functions that return the
2016-09-09 16:08:04 +02:00
//! [`Result`] type, the error handling can be tedious. The [`try!`]
2014-04-12 16:33:21 -07:00
//! macro hides some of the boilerplate of propagating errors up the
//! call stack.
//!
//! It replaces this:
//!
//! ```
2015-11-03 15:27:03 +00:00
//! # #![allow(dead_code)]
2015-04-10 13:23:17 -07:00
//! use std::fs::File;
//! use std::io::prelude::*;
//! use std::io;
2014-04-12 16:33:21 -07:00
//!
//! struct Info {
//! name: String,
//! age: i32,
//! rating: i32,
//! }
2014-04-12 16:33:21 -07:00
//!
2015-04-10 13:23:17 -07:00
//! fn write_info(info: &Info) -> io::Result<()> {
2014-04-12 16:33:21 -07:00
//! // Early return on error
//! let mut file = match File::create("my_best_friends.txt") {
//! Err(e) => return Err(e),
//! Ok(f) => f,
//! };
2015-04-10 13:23:17 -07:00
//! if let Err(e) = file.write_all(format!("name: {}\n", info.name).as_bytes()) {
//! return Err(e)
//! }
//! if let Err(e) = file.write_all(format!("age: {}\n", info.age).as_bytes()) {
//! return Err(e)
2014-04-12 16:33:21 -07:00
//! }
2015-04-10 13:23:17 -07:00
//! if let Err(e) = file.write_all(format!("rating: {}\n", info.rating).as_bytes()) {
//! return Err(e)
2014-04-12 16:33:21 -07:00
//! }
2015-04-10 13:23:17 -07:00
//! Ok(())
2014-04-12 16:33:21 -07:00
//! }
//! ```
2014-04-12 16:33:21 -07:00
//!
//! With this:
//!
//! ```
2015-11-03 15:27:03 +00:00
//! # #![allow(dead_code)]
2015-04-10 13:23:17 -07:00
//! use std::fs::File;
//! use std::io::prelude::*;
//! use std::io;
2014-04-12 16:33:21 -07:00
//!
//! struct Info {
//! name: String,
//! age: i32,
//! rating: i32,
//! }
2014-04-12 16:33:21 -07:00
//!
2015-04-10 13:23:17 -07:00
//! fn write_info(info: &Info) -> io::Result<()> {
//! let mut file = try!(File::create("my_best_friends.txt"));
2014-04-12 16:33:21 -07:00
//! // Early return on error
2015-04-10 13:23:17 -07:00
//! try!(file.write_all(format!("name: {}\n", info.name).as_bytes()));
//! try!(file.write_all(format!("age: {}\n", info.age).as_bytes()));
//! try!(file.write_all(format!("rating: {}\n", info.rating).as_bytes()));
//! Ok(())
2014-04-12 16:33:21 -07:00
//! }
//! ```
2014-04-12 16:33:21 -07:00
//!
//! *It's much nicer!*
//!
2016-09-09 16:08:04 +02:00
//! Wrapping an expression in [`try!`] will result in the unwrapped
//! success ([`Ok`]) value, unless the result is [`Err`], in which case
//! [`Err`] is returned early from the enclosing function. Its simple definition
2014-04-12 16:33:21 -07:00
//! makes it clear:
//!
//! ```
//! macro_rules! try {
2014-04-12 16:33:21 -07:00
//! ($e:expr) => (match $e { Ok(e) => e, Err(e) => return Err(e) })
//! }
//! ```
2014-04-12 16:33:21 -07:00
//!
2016-09-09 16:08:04 +02:00
//! [`try!`] is imported by the prelude and is available everywhere, but it can only
//! be used in functions that return [`Result`] because of the early return of
//! [`Err`] that it provides.
//!
//! [`expect`]: enum.Result.html#method.expect
//! [`Write`]: ../../std/io/trait.Write.html
//! [`write_all`]: ../../std/io/trait.Write.html#method.write_all
//! [`io::Result`]: ../../std/io/type.Result.html
//! [`try!`]: ../../std/macro.try.html
//! [`Result`]: enum.Result.html
//! [`Ok(T)`]: enum.Result.html#variant.Ok
//! [`Err(E)`]: enum.Result.html#variant.Err
//! [`io::Error`]: ../../std/io/struct.Error.html
//! [`Ok`]: enum.Result.html#variant.Ok
//! [`Err`]: enum.Result.html#variant.Err
2015-01-23 21:48:20 -08:00
#![stable(feature = "rust1", since = "1.0.0")]
std: Stabilize the std::fmt module This commit performs a final stabilization pass over the std::fmt module, marking all necessary APIs as stable. One of the more interesting aspects of this module is that it exposes a good deal of its runtime representation to the outside world in order for `format_args!` to be able to construct the format strings. Instead of hacking the compiler to assume that these items are stable, this commit instead lays out a story for the stabilization and evolution of these APIs. There are three primary details used by the `format_args!` macro: 1. `Arguments` - an opaque package of a "compiled format string". This structure is passed around and the `write` function is the source of truth for transforming a compiled format string into a string at runtime. This must be able to be constructed in stable code. 2. `Argument` - an opaque structure representing an argument to a format string. This is *almost* a trait object as it's just a pointer/function pair, but due to the function originating from one of many traits, it's not actually a trait object. Like `Arguments`, this must be constructed from stable code. 3. `fmt::rt` - this module contains the runtime type definitions primarily for the `rt::Argument` structure. Whenever an argument is formatted with nonstandard flags, a corresponding `rt::Argument` is generated describing how the argument is being formatted. This can be used to construct an `Arguments`. The primary interface to `std::fmt` is the `Arguments` structure, and as such this type name is stabilize as-is today. It is expected for libraries to pass around an `Arguments` structure to represent a pending formatted computation. The remaining portions are largely "cruft" which would rather not be stabilized, but due to the stability checks they must be. As a result, almost all pieces have been renamed to represent that they are "version 1" of the formatting representation. The theory is that at a later date if we change the representation of these types we can add new definitions called "version 2" and corresponding constructors for `Arguments`. One of the other remaining large questions about the fmt module were how the pending I/O reform would affect the signatures of methods in the module. Due to [RFC 526][rfc], however, the writers of fmt are now incompatible with the writers of io, so this question has largely been solved. As a result the interfaces are largely stabilized as-is today. [rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0526-fmt-text-writer.md Specifically, the following changes were made: * The contents of `fmt::rt` were all moved under `fmt::rt::v1` * `fmt::rt` is stable * `fmt::rt::v1` is stable * `Error` is stable * `Writer` is stable * `Writer::write_str` is stable * `Writer::write_fmt` is stable * `Formatter` is stable * `Argument` has been renamed to `ArgumentV1` and is stable * `ArgumentV1::new` is stable * `ArgumentV1::from_uint` is stable * `Arguments::new_v1` is stable (renamed from `new`) * `Arguments::new_v1_formatted` is stable (renamed from `with_placeholders`) * All formatting traits are now stable, as well as the `fmt` method. * `fmt::write` is stable * `fmt::format` is stable * `Formatter::pad_integral` is stable * `Formatter::pad` is stable * `Formatter::write_str` is stable * `Formatter::write_fmt` is stable * Some assorted top level items which were only used by `format_args!` were removed in favor of static functions on `ArgumentV1` as well. * The formatting-flag-accessing methods remain unstable Within the contents of the `fmt::rt::v1` module, the following actions were taken: * Reexports of all enum variants were removed * All prefixes on enum variants were removed * A few miscellaneous enum variants were renamed * Otherwise all structs, fields, and variants were marked stable. In addition to these actions in the `std::fmt` module, many implementations of `Show` and `String` were stabilized as well. In some other modules: * `ToString` is now stable * `ToString::to_string` is now stable * `Vec` no longer implements `fmt::Writer` (this has moved to `String`) This is a breaking change due to all of the changes to the `fmt::rt` module, but this likely will not have much impact on existing programs. Closes #20661 [breaking-change]
2015-01-13 15:42:53 -08:00
use fmt;
2016-08-22 10:02:28 +00:00
use iter::{FromIterator, FusedIterator};
/// `Result` is a type that represents either success (`Ok`) or failure (`Err`).
2014-04-12 16:33:21 -07:00
///
/// See the [`std::result`](index.html) module documentation for details.
2015-01-28 08:34:18 -05:00
#[derive(Clone, Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)]
#[must_use]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub enum Result<T, E> {
2013-12-06 22:23:23 +01:00
/// Contains the success value
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2016-02-19 16:08:36 -08:00
Ok(#[stable(feature = "rust1", since = "1.0.0")] T),
2013-12-06 22:23:23 +01:00
/// Contains the error value
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
Err(#[stable(feature = "rust1", since = "1.0.0")] E),
}
/////////////////////////////////////////////////////////////////////////////
// Type implementation
/////////////////////////////////////////////////////////////////////////////
2013-12-06 22:23:23 +01:00
impl<T, E> Result<T, E> {
/////////////////////////////////////////////////////////////////////////
// Querying the contained values
/////////////////////////////////////////////////////////////////////////
2013-04-10 13:11:35 -07:00
2016-09-09 16:08:04 +02:00
/// Returns true if the result is `Ok`.
2014-04-12 16:33:21 -07:00
///
/// # Examples
2014-04-12 16:33:21 -07:00
///
/// Basic usage:
///
2014-09-16 17:09:24 +02:00
/// ```
/// let x: Result<i32, &str> = Ok(-3);
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.is_ok(), true);
///
/// let x: Result<i32, &str> = Err("Some error message");
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.is_ok(), false);
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2013-07-26 18:03:44 -07:00
pub fn is_ok(&self) -> bool {
match *self {
Ok(_) => true,
Err(_) => false
}
}
2012-04-01 15:44:01 -07:00
2016-09-09 16:08:04 +02:00
/// Returns true if the result is `Err`.
2014-04-12 16:33:21 -07:00
///
/// # Examples
2014-04-12 16:33:21 -07:00
///
/// Basic usage:
///
2014-09-16 17:09:24 +02:00
/// ```
/// let x: Result<i32, &str> = Ok(-3);
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.is_err(), false);
2014-04-12 16:33:21 -07:00
///
/// let x: Result<i32, &str> = Err("Some error message");
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.is_err(), true);
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2013-07-26 18:03:44 -07:00
pub fn is_err(&self) -> bool {
!self.is_ok()
}
2012-04-01 15:44:01 -07:00
/////////////////////////////////////////////////////////////////////////
2013-12-06 22:23:23 +01:00
// Adapter for each variant
/////////////////////////////////////////////////////////////////////////
2016-09-09 16:08:04 +02:00
/// Converts from `Result<T, E>` to [`Option<T>`].
2014-04-12 16:33:21 -07:00
///
2016-09-09 16:08:04 +02:00
/// Converts `self` into an [`Option<T>`], consuming `self`,
2014-04-12 16:33:21 -07:00
/// and discarding the error, if any.
///
2016-09-09 16:08:04 +02:00
/// [`Option<T>`]: ../../std/option/enum.Option.html
///
/// # Examples
2014-04-12 16:33:21 -07:00
///
/// Basic usage:
///
2014-09-16 17:09:24 +02:00
/// ```
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Ok(2);
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.ok(), Some(2));
2014-04-12 16:33:21 -07:00
///
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Err("Nothing here");
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.ok(), None);
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2013-12-06 22:23:23 +01:00
pub fn ok(self) -> Option<T> {
match self {
2013-12-06 22:23:23 +01:00
Ok(x) => Some(x),
Err(_) => None,
}
}
2016-09-09 16:08:04 +02:00
/// Converts from `Result<T, E>` to [`Option<E>`].
2014-04-12 16:33:21 -07:00
///
2016-09-09 16:08:04 +02:00
/// Converts `self` into an [`Option<E>`], consuming `self`,
2015-03-18 14:36:23 +02:00
/// and discarding the success value, if any.
2014-09-16 17:09:24 +02:00
///
2016-09-09 16:08:04 +02:00
/// [`Option<E>`]: ../../std/option/enum.Option.html
///
/// # Examples
2014-09-16 17:09:24 +02:00
///
/// Basic usage:
///
2014-09-16 17:09:24 +02:00
/// ```
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Ok(2);
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.err(), None);
///
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Err("Nothing here");
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.err(), Some("Nothing here"));
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2013-12-06 22:23:23 +01:00
pub fn err(self) -> Option<E> {
match self {
2013-12-06 22:23:23 +01:00
Ok(_) => None,
Err(x) => Some(x),
}
}
2013-12-06 22:23:23 +01:00
/////////////////////////////////////////////////////////////////////////
// Adapter for working with references
/////////////////////////////////////////////////////////////////////////
2016-09-09 16:08:04 +02:00
/// Converts from `Result<T, E>` to `Result<&T, &E>`.
2014-04-12 16:33:21 -07:00
///
/// Produces a new `Result`, containing a reference
/// into the original, leaving the original in place.
2014-09-16 17:09:24 +02:00
///
/// # Examples
///
/// Basic usage:
///
2014-09-16 17:09:24 +02:00
/// ```
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Ok(2);
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.as_ref(), Ok(&2));
///
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Err("Error");
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.as_ref(), Err(&"Error"));
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn as_ref(&self) -> Result<&T, &E> {
2013-12-06 22:23:23 +01:00
match *self {
Ok(ref x) => Ok(x),
Err(ref x) => Err(x),
}
}
2016-09-09 16:08:04 +02:00
/// Converts from `Result<T, E>` to `Result<&mut T, &mut E>`.
2014-09-16 17:09:24 +02:00
///
/// # Examples
///
/// Basic usage:
///
2014-09-16 17:09:24 +02:00
/// ```
/// fn mutate(r: &mut Result<i32, i32>) {
2014-09-16 17:09:24 +02:00
/// match r.as_mut() {
/// Ok(v) => *v = 42,
/// Err(e) => *e = 0,
2014-09-16 17:09:24 +02:00
/// }
/// }
///
/// let mut x: Result<i32, i32> = Ok(2);
2014-09-16 17:09:24 +02:00
/// mutate(&mut x);
/// assert_eq!(x.unwrap(), 42);
///
/// let mut x: Result<i32, i32> = Err(13);
2014-09-16 17:09:24 +02:00
/// mutate(&mut x);
/// assert_eq!(x.unwrap_err(), 0);
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn as_mut(&mut self) -> Result<&mut T, &mut E> {
2013-12-06 22:23:23 +01:00
match *self {
Ok(ref mut x) => Ok(x),
Err(ref mut x) => Err(x),
}
}
/////////////////////////////////////////////////////////////////////////
// Transforming contained values
/////////////////////////////////////////////////////////////////////////
/// Maps a `Result<T, E>` to `Result<U, E>` by applying a function to a
/// contained `Ok` value, leaving an `Err` value untouched.
///
/// This function can be used to compose the results of two functions.
///
/// # Examples
2014-04-12 16:33:21 -07:00
///
2015-04-10 13:23:17 -07:00
/// Print the numbers on each line of a string multiplied by two.
2014-04-12 16:33:21 -07:00
///
/// ```
2015-04-10 13:23:17 -07:00
/// let line = "1\n2\n3\n4\n";
2014-04-12 16:33:21 -07:00
///
2015-04-10 13:23:17 -07:00
/// for num in line.lines() {
/// match num.parse::<i32>().map(|i| i * 2) {
/// Ok(n) => println!("{}", n),
/// Err(..) => {}
/// }
2014-04-12 16:33:21 -07:00
/// }
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn map<U, F: FnOnce(T) -> U>(self, op: F) -> Result<U,E> {
match self {
Ok(t) => Ok(op(t)),
Err(e) => Err(e)
}
}
/// Maps a `Result<T, E>` to `Result<T, F>` by applying a function to a
/// contained `Err` value, leaving an `Ok` value untouched.
///
/// This function can be used to pass through a successful result while handling
/// an error.
2014-09-16 17:09:24 +02:00
///
/// # Examples
2014-09-16 17:09:24 +02:00
///
/// Basic usage:
///
2014-09-16 17:09:24 +02:00
/// ```
2015-02-15 10:24:47 -05:00
/// fn stringify(x: u32) -> String { format!("error code: {}", x) }
2014-09-16 17:09:24 +02:00
///
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, u32> = Ok(2);
/// assert_eq!(x.map_err(stringify), Ok(2));
2014-09-16 17:09:24 +02:00
///
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, u32> = Err(13);
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string()));
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn map_err<F, O: FnOnce(E) -> F>(self, op: O) -> Result<T,F> {
match self {
Ok(t) => Ok(t),
Err(e) => Err(op(e))
}
}
/////////////////////////////////////////////////////////////////////////
// Iterator constructors
/////////////////////////////////////////////////////////////////////////
/// Returns an iterator over the possibly contained value.
2014-09-16 17:09:24 +02:00
///
/// # Examples
2014-09-16 17:09:24 +02:00
///
/// Basic usage:
///
2014-09-16 17:09:24 +02:00
/// ```
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Ok(7);
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.iter().next(), Some(&7));
///
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Err("nothing!");
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.iter().next(), None);
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter(&self) -> Iter<T> {
Iter { inner: self.as_ref().ok() }
}
/// Returns a mutable iterator over the possibly contained value.
2014-09-16 17:09:24 +02:00
///
/// # Examples
2014-09-16 17:09:24 +02:00
///
/// Basic usage:
///
2014-09-16 17:09:24 +02:00
/// ```
2015-02-15 10:24:47 -05:00
/// let mut x: Result<u32, &str> = Ok(7);
2014-09-16 17:09:24 +02:00
/// match x.iter_mut().next() {
/// Some(v) => *v = 40,
2014-09-16 17:09:24 +02:00
/// None => {},
/// }
/// assert_eq!(x, Ok(40));
///
2015-02-15 10:24:47 -05:00
/// let mut x: Result<u32, &str> = Err("nothing!");
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.iter_mut().next(), None);
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter_mut(&mut self) -> IterMut<T> {
IterMut { inner: self.as_mut().ok() }
}
////////////////////////////////////////////////////////////////////////
// Boolean operations on the values, eager and lazy
/////////////////////////////////////////////////////////////////////////
/// Returns `res` if the result is `Ok`, otherwise returns the `Err` value of `self`.
2014-09-16 17:09:24 +02:00
///
/// # Examples
2014-09-16 17:09:24 +02:00
///
/// Basic usage:
///
2014-09-16 17:09:24 +02:00
/// ```
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Ok(2);
2014-09-16 17:09:24 +02:00
/// let y: Result<&str, &str> = Err("late error");
/// assert_eq!(x.and(y), Err("late error"));
///
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Err("early error");
2014-09-16 17:09:24 +02:00
/// let y: Result<&str, &str> = Ok("foo");
/// assert_eq!(x.and(y), Err("early error"));
///
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Err("not a 2");
2014-09-16 17:09:24 +02:00
/// let y: Result<&str, &str> = Err("late error");
/// assert_eq!(x.and(y), Err("not a 2"));
///
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Ok(2);
2014-09-16 17:09:24 +02:00
/// let y: Result<&str, &str> = Ok("different result type");
/// assert_eq!(x.and(y), Ok("different result type"));
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn and<U>(self, res: Result<U, E>) -> Result<U, E> {
match self {
Ok(_) => res,
Err(e) => Err(e),
}
}
/// Calls `op` if the result is `Ok`, otherwise returns the `Err` value of `self`.
///
2016-09-09 16:08:04 +02:00
/// This function can be used for control flow based on `Result` values.
2014-09-16 17:09:24 +02:00
///
/// # Examples
2014-09-16 17:09:24 +02:00
///
/// Basic usage:
///
2014-09-16 17:09:24 +02:00
/// ```
2015-02-15 10:24:47 -05:00
/// fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
/// fn err(x: u32) -> Result<u32, u32> { Err(x) }
2014-09-16 17:09:24 +02:00
///
/// assert_eq!(Ok(2).and_then(sq).and_then(sq), Ok(16));
/// assert_eq!(Ok(2).and_then(sq).and_then(err), Err(4));
/// assert_eq!(Ok(2).and_then(err).and_then(sq), Err(2));
/// assert_eq!(Err(3).and_then(sq).and_then(sq), Err(3));
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn and_then<U, F: FnOnce(T) -> Result<U, E>>(self, op: F) -> Result<U, E> {
match self {
Ok(t) => op(t),
Err(e) => Err(e),
}
}
/// Returns `res` if the result is `Err`, otherwise returns the `Ok` value of `self`.
2014-09-16 17:09:24 +02:00
///
/// # Examples
2014-09-16 17:09:24 +02:00
///
/// Basic usage:
///
2014-09-16 17:09:24 +02:00
/// ```
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Ok(2);
/// let y: Result<u32, &str> = Err("late error");
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.or(y), Ok(2));
///
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Err("early error");
/// let y: Result<u32, &str> = Ok(2);
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.or(y), Ok(2));
///
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Err("not a 2");
/// let y: Result<u32, &str> = Err("late error");
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.or(y), Err("late error"));
///
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Ok(2);
/// let y: Result<u32, &str> = Ok(100);
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.or(y), Ok(2));
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn or<F>(self, res: Result<T, F>) -> Result<T, F> {
match self {
Ok(v) => Ok(v),
Err(_) => res,
}
}
/// Calls `op` if the result is `Err`, otherwise returns the `Ok` value of `self`.
///
2014-09-16 17:09:24 +02:00
/// This function can be used for control flow based on result values.
///
/// # Examples
2014-09-16 17:09:24 +02:00
///
/// Basic usage:
///
2014-09-16 17:09:24 +02:00
/// ```
2015-02-15 10:24:47 -05:00
/// fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
/// fn err(x: u32) -> Result<u32, u32> { Err(x) }
2014-09-16 17:09:24 +02:00
///
/// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2));
/// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2));
/// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9));
/// assert_eq!(Err(3).or_else(err).or_else(err), Err(3));
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn or_else<F, O: FnOnce(E) -> Result<T, F>>(self, op: O) -> Result<T, F> {
match self {
Ok(t) => Ok(t),
Err(e) => op(e),
}
}
2013-12-06 22:23:23 +01:00
/// Unwraps a result, yielding the content of an `Ok`.
2016-09-09 16:08:04 +02:00
/// Else, it returns `optb`.
2014-09-16 17:09:24 +02:00
///
/// # Examples
2014-09-16 17:09:24 +02:00
///
/// Basic usage:
///
2014-09-16 17:09:24 +02:00
/// ```
/// let optb = 2;
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Ok(9);
/// assert_eq!(x.unwrap_or(optb), 9);
2014-09-16 17:09:24 +02:00
///
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Err("error");
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.unwrap_or(optb), optb);
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn unwrap_or(self, optb: T) -> T {
2013-12-06 22:23:23 +01:00
match self {
Ok(t) => t,
Err(_) => optb
2013-12-06 22:23:23 +01:00
}
}
/// Unwraps a result, yielding the content of an `Ok`.
/// If the value is an `Err` then it calls `op` with its value.
2014-09-16 17:09:24 +02:00
///
/// # Examples
2014-09-16 17:09:24 +02:00
///
/// Basic usage:
///
2014-09-16 17:09:24 +02:00
/// ```
2015-02-15 10:24:47 -05:00
/// fn count(x: &str) -> usize { x.len() }
2014-09-16 17:09:24 +02:00
///
/// assert_eq!(Ok(2).unwrap_or_else(count), 2);
/// assert_eq!(Err("foo").unwrap_or_else(count), 3);
2014-09-16 17:09:24 +02:00
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn unwrap_or_else<F: FnOnce(E) -> T>(self, op: F) -> T {
match self {
Ok(t) => t,
Err(e) => op(e)
}
}
}
std: Stabilize the std::fmt module This commit performs a final stabilization pass over the std::fmt module, marking all necessary APIs as stable. One of the more interesting aspects of this module is that it exposes a good deal of its runtime representation to the outside world in order for `format_args!` to be able to construct the format strings. Instead of hacking the compiler to assume that these items are stable, this commit instead lays out a story for the stabilization and evolution of these APIs. There are three primary details used by the `format_args!` macro: 1. `Arguments` - an opaque package of a "compiled format string". This structure is passed around and the `write` function is the source of truth for transforming a compiled format string into a string at runtime. This must be able to be constructed in stable code. 2. `Argument` - an opaque structure representing an argument to a format string. This is *almost* a trait object as it's just a pointer/function pair, but due to the function originating from one of many traits, it's not actually a trait object. Like `Arguments`, this must be constructed from stable code. 3. `fmt::rt` - this module contains the runtime type definitions primarily for the `rt::Argument` structure. Whenever an argument is formatted with nonstandard flags, a corresponding `rt::Argument` is generated describing how the argument is being formatted. This can be used to construct an `Arguments`. The primary interface to `std::fmt` is the `Arguments` structure, and as such this type name is stabilize as-is today. It is expected for libraries to pass around an `Arguments` structure to represent a pending formatted computation. The remaining portions are largely "cruft" which would rather not be stabilized, but due to the stability checks they must be. As a result, almost all pieces have been renamed to represent that they are "version 1" of the formatting representation. The theory is that at a later date if we change the representation of these types we can add new definitions called "version 2" and corresponding constructors for `Arguments`. One of the other remaining large questions about the fmt module were how the pending I/O reform would affect the signatures of methods in the module. Due to [RFC 526][rfc], however, the writers of fmt are now incompatible with the writers of io, so this question has largely been solved. As a result the interfaces are largely stabilized as-is today. [rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0526-fmt-text-writer.md Specifically, the following changes were made: * The contents of `fmt::rt` were all moved under `fmt::rt::v1` * `fmt::rt` is stable * `fmt::rt::v1` is stable * `Error` is stable * `Writer` is stable * `Writer::write_str` is stable * `Writer::write_fmt` is stable * `Formatter` is stable * `Argument` has been renamed to `ArgumentV1` and is stable * `ArgumentV1::new` is stable * `ArgumentV1::from_uint` is stable * `Arguments::new_v1` is stable (renamed from `new`) * `Arguments::new_v1_formatted` is stable (renamed from `with_placeholders`) * All formatting traits are now stable, as well as the `fmt` method. * `fmt::write` is stable * `fmt::format` is stable * `Formatter::pad_integral` is stable * `Formatter::pad` is stable * `Formatter::write_str` is stable * `Formatter::write_fmt` is stable * Some assorted top level items which were only used by `format_args!` were removed in favor of static functions on `ArgumentV1` as well. * The formatting-flag-accessing methods remain unstable Within the contents of the `fmt::rt::v1` module, the following actions were taken: * Reexports of all enum variants were removed * All prefixes on enum variants were removed * A few miscellaneous enum variants were renamed * Otherwise all structs, fields, and variants were marked stable. In addition to these actions in the `std::fmt` module, many implementations of `Show` and `String` were stabilized as well. In some other modules: * `ToString` is now stable * `ToString::to_string` is now stable * `Vec` no longer implements `fmt::Writer` (this has moved to `String`) This is a breaking change due to all of the changes to the `fmt::rt` module, but this likely will not have much impact on existing programs. Closes #20661 [breaking-change]
2015-01-13 15:42:53 -08:00
impl<T, E: fmt::Debug> Result<T, E> {
/// Unwraps a result, yielding the content of an `Ok`.
///
/// # Panics
///
2015-04-20 00:07:23 +08:00
/// Panics if the value is an `Err`, with a panic message provided by the
/// `Err`'s value.
2014-09-16 17:09:24 +02:00
///
/// # Examples
2014-09-16 17:09:24 +02:00
///
/// Basic usage:
///
2014-09-16 17:09:24 +02:00
/// ```
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Ok(2);
/// assert_eq!(x.unwrap(), 2);
2014-09-16 17:09:24 +02:00
/// ```
///
/// ```{.should_panic}
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Err("emergency failure");
/// x.unwrap(); // panics with `emergency failure`
2014-09-16 17:09:24 +02:00
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn unwrap(self) -> T {
match self {
Ok(t) => t,
Err(e) => unwrap_failed("called `Result::unwrap()` on an `Err` value", e),
}
}
/// Unwraps a result, yielding the content of an `Ok`.
///
/// # Panics
///
/// Panics if the value is an `Err`, with a panic message including the
/// passed message, and the content of the `Err`.
///
/// # Examples
///
/// Basic usage:
///
/// ```{.should_panic}
/// let x: Result<u32, &str> = Err("emergency failure");
/// x.expect("Testing expect"); // panics with `Testing expect: emergency failure`
/// ```
#[inline]
std: Stabilize/deprecate features for 1.4 The FCP is coming to a close and 1.4 is coming out soon, so this brings in the libs team decision for all library features this cycle. Stabilized APIs: * `<Box<str>>::into_string` * `Arc::downgrade` * `Arc::get_mut` * `Arc::make_mut` * `Arc::try_unwrap` * `Box::from_raw` * `Box::into_raw` * `CStr::to_str` * `CStr::to_string_lossy` * `CString::from_raw` * `CString::into_raw` * `IntoRawFd::into_raw_fd` * `IntoRawFd` * `IntoRawHandle::into_raw_handle` * `IntoRawHandle` * `IntoRawSocket::into_raw_socket` * `IntoRawSocket` * `Rc::downgrade` * `Rc::get_mut` * `Rc::make_mut` * `Rc::try_unwrap` * `Result::expect` * `String::into_boxed_slice` * `TcpSocket::read_timeout` * `TcpSocket::set_read_timeout` * `TcpSocket::set_write_timeout` * `TcpSocket::write_timeout` * `UdpSocket::read_timeout` * `UdpSocket::set_read_timeout` * `UdpSocket::set_write_timeout` * `UdpSocket::write_timeout` * `Vec::append` * `Vec::split_off` * `VecDeque::append` * `VecDeque::retain` * `VecDeque::split_off` * `rc::Weak::upgrade` * `rc::Weak` * `slice::Iter::as_slice` * `slice::IterMut::into_slice` * `str::CharIndices::as_str` * `str::Chars::as_str` * `str::split_at_mut` * `str::split_at` * `sync::Weak::upgrade` * `sync::Weak` * `thread::park_timeout` * `thread::sleep` Deprecated APIs * `BTreeMap::with_b` * `BTreeSet::with_b` * `Option::as_mut_slice` * `Option::as_slice` * `Result::as_mut_slice` * `Result::as_slice` * `f32::from_str_radix` * `f64::from_str_radix` Closes #27277 Closes #27718 Closes #27736 Closes #27764 Closes #27765 Closes #27766 Closes #27767 Closes #27768 Closes #27769 Closes #27771 Closes #27773 Closes #27775 Closes #27776 Closes #27785 Closes #27792 Closes #27795 Closes #27797
2015-09-10 13:26:44 -07:00
#[stable(feature = "result_expect", since = "1.4.0")]
pub fn expect(self, msg: &str) -> T {
match self {
Ok(t) => t,
Err(e) => unwrap_failed(msg, e),
}
}
}
std: Stabilize the std::fmt module This commit performs a final stabilization pass over the std::fmt module, marking all necessary APIs as stable. One of the more interesting aspects of this module is that it exposes a good deal of its runtime representation to the outside world in order for `format_args!` to be able to construct the format strings. Instead of hacking the compiler to assume that these items are stable, this commit instead lays out a story for the stabilization and evolution of these APIs. There are three primary details used by the `format_args!` macro: 1. `Arguments` - an opaque package of a "compiled format string". This structure is passed around and the `write` function is the source of truth for transforming a compiled format string into a string at runtime. This must be able to be constructed in stable code. 2. `Argument` - an opaque structure representing an argument to a format string. This is *almost* a trait object as it's just a pointer/function pair, but due to the function originating from one of many traits, it's not actually a trait object. Like `Arguments`, this must be constructed from stable code. 3. `fmt::rt` - this module contains the runtime type definitions primarily for the `rt::Argument` structure. Whenever an argument is formatted with nonstandard flags, a corresponding `rt::Argument` is generated describing how the argument is being formatted. This can be used to construct an `Arguments`. The primary interface to `std::fmt` is the `Arguments` structure, and as such this type name is stabilize as-is today. It is expected for libraries to pass around an `Arguments` structure to represent a pending formatted computation. The remaining portions are largely "cruft" which would rather not be stabilized, but due to the stability checks they must be. As a result, almost all pieces have been renamed to represent that they are "version 1" of the formatting representation. The theory is that at a later date if we change the representation of these types we can add new definitions called "version 2" and corresponding constructors for `Arguments`. One of the other remaining large questions about the fmt module were how the pending I/O reform would affect the signatures of methods in the module. Due to [RFC 526][rfc], however, the writers of fmt are now incompatible with the writers of io, so this question has largely been solved. As a result the interfaces are largely stabilized as-is today. [rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0526-fmt-text-writer.md Specifically, the following changes were made: * The contents of `fmt::rt` were all moved under `fmt::rt::v1` * `fmt::rt` is stable * `fmt::rt::v1` is stable * `Error` is stable * `Writer` is stable * `Writer::write_str` is stable * `Writer::write_fmt` is stable * `Formatter` is stable * `Argument` has been renamed to `ArgumentV1` and is stable * `ArgumentV1::new` is stable * `ArgumentV1::from_uint` is stable * `Arguments::new_v1` is stable (renamed from `new`) * `Arguments::new_v1_formatted` is stable (renamed from `with_placeholders`) * All formatting traits are now stable, as well as the `fmt` method. * `fmt::write` is stable * `fmt::format` is stable * `Formatter::pad_integral` is stable * `Formatter::pad` is stable * `Formatter::write_str` is stable * `Formatter::write_fmt` is stable * Some assorted top level items which were only used by `format_args!` were removed in favor of static functions on `ArgumentV1` as well. * The formatting-flag-accessing methods remain unstable Within the contents of the `fmt::rt::v1` module, the following actions were taken: * Reexports of all enum variants were removed * All prefixes on enum variants were removed * A few miscellaneous enum variants were renamed * Otherwise all structs, fields, and variants were marked stable. In addition to these actions in the `std::fmt` module, many implementations of `Show` and `String` were stabilized as well. In some other modules: * `ToString` is now stable * `ToString::to_string` is now stable * `Vec` no longer implements `fmt::Writer` (this has moved to `String`) This is a breaking change due to all of the changes to the `fmt::rt` module, but this likely will not have much impact on existing programs. Closes #20661 [breaking-change]
2015-01-13 15:42:53 -08:00
impl<T: fmt::Debug, E> Result<T, E> {
/// Unwraps a result, yielding the content of an `Err`.
///
/// # Panics
///
/// Panics if the value is an `Ok`, with a custom panic message provided
/// by the `Ok`'s value.
2014-09-16 17:09:24 +02:00
///
/// # Examples
2014-09-16 17:09:24 +02:00
///
/// ```{.should_panic}
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Ok(2);
/// x.unwrap_err(); // panics with `2`
2014-09-16 17:09:24 +02:00
/// ```
///
/// ```
2015-02-15 10:24:47 -05:00
/// let x: Result<u32, &str> = Err("emergency failure");
2014-09-16 17:09:24 +02:00
/// assert_eq!(x.unwrap_err(), "emergency failure");
/// ```
#[inline]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn unwrap_err(self) -> E {
match self {
Ok(t) => unwrap_failed("called `Result::unwrap_err()` on an `Ok` value", t),
Err(e) => e,
}
}
}
// This is a separate function to reduce the code size of the methods
#[inline(never)]
#[cold]
fn unwrap_failed<E: fmt::Debug>(msg: &str, error: E) -> ! {
panic!("{}: {:?}", msg, error)
}
/////////////////////////////////////////////////////////////////////////////
// Trait implementations
/////////////////////////////////////////////////////////////////////////////
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, E> IntoIterator for Result<T, E> {
type Item = T;
type IntoIter = IntoIter<T>;
/// Returns a consuming iterator over the possibly contained value.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let x: Result<u32, &str> = Ok(5);
/// let v: Vec<u32> = x.into_iter().collect();
/// assert_eq!(v, [5]);
///
/// let x: Result<u32, &str> = Err("nothing!");
/// let v: Vec<u32> = x.into_iter().collect();
/// assert_eq!(v, []);
/// ```
#[inline]
fn into_iter(self) -> IntoIter<T> {
IntoIter { inner: self.ok() }
}
}
#[stable(since = "1.4.0", feature = "result_iter")]
impl<'a, T, E> IntoIterator for &'a Result<T, E> {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
#[stable(since = "1.4.0", feature = "result_iter")]
impl<'a, T, E> IntoIterator for &'a mut Result<T, E> {
type Item = &'a mut T;
type IntoIter = IterMut<'a, T>;
fn into_iter(mut self) -> IterMut<'a, T> {
self.iter_mut()
}
}
/////////////////////////////////////////////////////////////////////////////
// The Result Iterators
/////////////////////////////////////////////////////////////////////////////
2016-09-09 16:08:04 +02:00
/// An iterator over a reference to the [`Ok`] variant of a [`Result`].
///
/// [`Ok`]: enum.Result.html#variant.Ok
/// [`Result`]: enum.Result.html
#[derive(Debug)]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Iter<'a, T: 'a> { inner: Option<&'a T> }
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a T;
#[inline]
fn next(&mut self) -> Option<&'a T> { self.inner.take() }
#[inline]
2015-02-15 10:24:47 -05:00
fn size_hint(&self) -> (usize, Option<usize>) {
let n = if self.inner.is_some() {1} else {0};
(n, Some(n))
}
}
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a T> { self.inner.take() }
}
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> ExactSizeIterator for Iter<'a, T> {}
#[unstable(feature = "fused", issue = "35602")]
impl<'a, T> FusedIterator for Iter<'a, T> {}
2015-11-16 19:54:28 +03:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Clone for Iter<'a, T> {
fn clone(&self) -> Iter<'a, T> { Iter { inner: self.inner } }
}
2016-09-09 16:08:04 +02:00
/// An iterator over a mutable reference to the [`Ok`] variant of a [`Result`].
///
/// [`Ok`]: enum.Result.html#variant.Ok
/// [`Result`]: enum.Result.html
#[derive(Debug)]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IterMut<'a, T: 'a> { inner: Option<&'a mut T> }
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Iterator for IterMut<'a, T> {
type Item = &'a mut T;
#[inline]
fn next(&mut self) -> Option<&'a mut T> { self.inner.take() }
#[inline]
2015-02-15 10:24:47 -05:00
fn size_hint(&self) -> (usize, Option<usize>) {
let n = if self.inner.is_some() {1} else {0};
(n, Some(n))
}
}
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a mut T> { self.inner.take() }
}
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> ExactSizeIterator for IterMut<'a, T> {}
#[unstable(feature = "fused", issue = "35602")]
impl<'a, T> FusedIterator for IterMut<'a, T> {}
2016-09-09 16:08:04 +02:00
/// An iterator over the value in a [`Ok`] variant of a [`Result`]. This struct is
/// created by the [`into_iter`] method on [`Result`][`Result`] (provided by
/// the [`IntoIterator`] trait).
///
2016-09-09 16:08:04 +02:00
/// [`Ok`]: enum.Result.html#variant.Ok
/// [`Result`]: enum.Result.html
/// [`into_iter`]: ../iter/trait.IntoIterator.html#tymethod.into_iter
/// [`IntoIterator`]: ../iter/trait.IntoIterator.html
#[derive(Debug)]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IntoIter<T> { inner: Option<T> }
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Iterator for IntoIter<T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> { self.inner.take() }
#[inline]
2015-02-15 10:24:47 -05:00
fn size_hint(&self) -> (usize, Option<usize>) {
let n = if self.inner.is_some() {1} else {0};
(n, Some(n))
}
}
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> DoubleEndedIterator for IntoIter<T> {
#[inline]
fn next_back(&mut self) -> Option<T> { self.inner.take() }
}
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ExactSizeIterator for IntoIter<T> {}
#[unstable(feature = "fused", issue = "35602")]
impl<T> FusedIterator for IntoIter<T> {}
/////////////////////////////////////////////////////////////////////////////
// FromIterator
/////////////////////////////////////////////////////////////////////////////
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A, E, V: FromIterator<A>> FromIterator<Result<A, E>> for Result<V, E> {
/// Takes each element in the `Iterator`: if it is an `Err`, no further
/// elements are taken, and the `Err` is returned. Should no `Err` occur, a
/// container with the values of each `Result` is returned.
///
/// Here is an example which increments every integer in a vector,
/// checking for overflow:
///
/// ```
2015-02-15 10:24:47 -05:00
/// use std::u32;
///
/// let v = vec!(1, 2);
2015-02-15 10:24:47 -05:00
/// let res: Result<Vec<u32>, &'static str> = v.iter().map(|&x: &u32|
/// if x == u32::MAX { Err("Overflow!") }
/// else { Ok(x + 1) }
/// ).collect();
/// assert!(res == Ok(vec!(2, 3)));
/// ```
#[inline]
fn from_iter<I: IntoIterator<Item=Result<A, E>>>(iter: I) -> Result<V, E> {
// FIXME(#11084): This could be replaced with Iterator::scan when this
// performance bug is closed.
struct Adapter<Iter, E> {
iter: Iter,
err: Option<E>,
}
impl<T, E, Iter: Iterator<Item=Result<T, E>>> Iterator for Adapter<Iter, E> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> {
match self.iter.next() {
Some(Ok(value)) => Some(value),
Some(Err(err)) => {
self.err = Some(err);
None
}
None => None,
}
}
}
let mut adapter = Adapter { iter: iter.into_iter(), err: None };
let v: V = FromIterator::from_iter(adapter.by_ref());
match adapter.err {
Some(err) => Err(err),
None => Ok(v),
}
}
}