rust/src/librustc/middle/stability.rs

771 lines
30 KiB
Rust
Raw Normal View History

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A pass that annotates every item and method with its stability level,
//! propagating default levels lexically from parent to children ast nodes.
pub use self::StabilityLevel::*;
2015-01-16 12:25:16 -06:00
use lint;
use hir::def::Def;
use hir::def_id::{CrateNum, CRATE_DEF_INDEX, DefId, LOCAL_CRATE};
use ty::{self, TyCtxt};
use middle::privacy::AccessLevels;
2017-10-28 12:39:00 -05:00
use session::DiagnosticMessageId;
use syntax::symbol::Symbol;
use syntax_pos::{Span, MultiSpan, DUMMY_SP};
use syntax::ast;
use syntax::ast::{NodeId, Attribute};
use syntax::feature_gate::{GateIssue, emit_feature_err, find_lang_feature_accepted_version};
2016-08-22 22:54:53 -05:00
use syntax::attr::{self, Stability, Deprecation};
use util::nodemap::{FxHashSet, FxHashMap};
2016-03-29 00:50:44 -05:00
use hir;
use hir::{Item, Generics, StructField, Variant, HirId};
use hir::intravisit::{self, Visitor, NestedVisitorMap};
2015-07-31 02:04:06 -05:00
use std::mem::replace;
use std::cmp::Ordering;
#[derive(RustcEncodable, RustcDecodable, PartialEq, PartialOrd, Clone, Copy, Debug, Eq, Hash)]
pub enum StabilityLevel {
Unstable,
Stable,
}
impl StabilityLevel {
pub fn from_attr_level(level: &attr::StabilityLevel) -> Self {
if level.is_stable() { Stable } else { Unstable }
}
}
2015-11-16 10:53:41 -06:00
#[derive(PartialEq)]
enum AnnotationKind {
// Annotation is required if not inherited from unstable parents
2015-11-16 12:01:06 -06:00
Required,
2015-11-16 10:53:41 -06:00
// Annotation is useless, reject it
2015-11-16 12:01:06 -06:00
Prohibited,
2015-11-16 10:53:41 -06:00
// Annotation itself is useless, but it can be propagated to children
2015-11-16 12:01:06 -06:00
Container,
2015-11-16 10:53:41 -06:00
}
/// An entry in the `depr_map`.
#[derive(Clone)]
pub struct DeprecationEntry {
/// The metadata of the attribute associated with this entry.
pub attr: Deprecation,
/// The def id where the attr was originally attached. `None` for non-local
/// `DefId`'s.
origin: Option<HirId>,
}
impl_stable_hash_for!(struct self::DeprecationEntry {
attr,
origin
});
impl DeprecationEntry {
fn local(attr: Deprecation, id: HirId) -> DeprecationEntry {
DeprecationEntry {
attr,
origin: Some(id),
}
}
pub fn external(attr: Deprecation) -> DeprecationEntry {
DeprecationEntry {
attr,
origin: None,
}
}
pub fn same_origin(&self, other: &DeprecationEntry) -> bool {
match (self.origin, other.origin) {
(Some(o1), Some(o2)) => o1 == o2,
_ => false
}
}
}
/// A stability index, giving the stability level for items and methods.
pub struct Index<'tcx> {
/// This is mostly a cache, except the stabilities of local items
/// are filled by the annotator.
stab_map: FxHashMap<HirId, &'tcx Stability>,
depr_map: FxHashMap<HirId, DeprecationEntry>,
/// Maps for each crate whether it is part of the staged API.
staged_api: FxHashMap<CrateNum, bool>,
/// Features enabled for this crate.
active_features: FxHashSet<Symbol>,
}
impl_stable_hash_for!(struct self::Index<'tcx> {
stab_map,
depr_map,
staged_api,
active_features
});
// A private tree-walker for producing an Index.
struct Annotator<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
index: &'a mut Index<'tcx>,
parent_stab: Option<&'tcx Stability>,
parent_depr: Option<DeprecationEntry>,
2015-11-16 10:53:41 -06:00
in_trait_impl: bool,
}
impl<'a, 'tcx: 'a> Annotator<'a, 'tcx> {
// Determine the stability for a node based on its attributes and inherited
// stability. The stability is recorded in the index and used as the parent.
fn annotate<F>(&mut self, id: NodeId, attrs: &[Attribute],
2015-11-16 10:53:41 -06:00
item_sp: Span, kind: AnnotationKind, visit_children: F)
where F: FnOnce(&mut Self)
2014-12-08 19:26:43 -06:00
{
2018-02-14 09:11:02 -06:00
if self.tcx.features().staged_api {
// This crate explicitly wants staged API.
debug!("annotate(id = {:?}, attrs = {:?})", id, attrs);
if let Some(..) = attr::find_deprecation(self.tcx.sess.diagnostic(), attrs, item_sp) {
self.tcx.sess.span_err(item_sp, "`#[deprecated]` cannot be used in staged api, \
use `#[rustc_deprecated]` instead");
}
2015-11-16 10:53:41 -06:00
if let Some(mut stab) = attr::find_stability(self.tcx.sess.diagnostic(),
attrs, item_sp) {
// Error if prohibited, or can't inherit anything from a container
2015-11-16 12:01:06 -06:00
if kind == AnnotationKind::Prohibited ||
(kind == AnnotationKind::Container &&
stab.level.is_stable() &&
stab.rustc_depr.is_none()) {
2015-11-16 10:53:41 -06:00
self.tcx.sess.span_err(item_sp, "This stability annotation is useless");
}
2015-06-06 17:52:28 -05:00
2015-11-16 10:53:41 -06:00
debug!("annotate: found {:?}", stab);
// If parent is deprecated and we're not, inherit this by merging
// deprecated_since and its reason.
if let Some(parent_stab) = self.parent_stab {
if parent_stab.rustc_depr.is_some() && stab.rustc_depr.is_none() {
stab.rustc_depr = parent_stab.rustc_depr.clone()
2015-11-16 10:53:41 -06:00
}
}
2015-11-16 10:53:41 -06:00
let stab = self.tcx.intern_stability(stab);
// Check if deprecated_since < stable_since. If it is,
// this is *almost surely* an accident.
if let (&Some(attr::RustcDeprecation {since: dep_since, ..}),
&attr::Stable {since: stab_since}) = (&stab.rustc_depr, &stab.level) {
2015-11-16 10:53:41 -06:00
// Explicit version of iter::order::lt to handle parse errors properly
for (dep_v, stab_v) in
dep_since.as_str().split(".").zip(stab_since.as_str().split(".")) {
2015-11-16 10:53:41 -06:00
if let (Ok(dep_v), Ok(stab_v)) = (dep_v.parse::<u64>(), stab_v.parse()) {
match dep_v.cmp(&stab_v) {
Ordering::Less => {
self.tcx.sess.span_err(item_sp, "An API can't be stabilized \
after it is deprecated");
break
}
2015-11-16 10:53:41 -06:00
Ordering::Equal => continue,
Ordering::Greater => break,
}
2015-11-16 10:53:41 -06:00
} else {
// Act like it isn't less because the question is now nonsensical,
// and this makes us not do anything else interesting.
self.tcx.sess.span_err(item_sp, "Invalid stability or deprecation \
version found");
break
}
}
2015-11-16 10:53:41 -06:00
}
let hir_id = self.tcx.hir.node_to_hir_id(id);
self.index.stab_map.insert(hir_id, stab);
2015-11-16 10:53:41 -06:00
let orig_parent_stab = replace(&mut self.parent_stab, Some(stab));
2015-11-16 10:53:41 -06:00
visit_children(self);
self.parent_stab = orig_parent_stab;
2015-11-16 10:53:41 -06:00
} else {
debug!("annotate: not found, parent = {:?}", self.parent_stab);
if let Some(stab) = self.parent_stab {
2015-11-16 10:53:41 -06:00
if stab.level.is_unstable() {
let hir_id = self.tcx.hir.node_to_hir_id(id);
self.index.stab_map.insert(hir_id, stab);
}
}
2015-11-16 10:53:41 -06:00
visit_children(self);
}
} else {
2015-11-16 10:53:41 -06:00
// Emit errors for non-staged-api crates.
for attr in attrs {
let tag = unwrap_or!(attr.name(), continue);
if tag == "unstable" || tag == "stable" || tag == "rustc_deprecated" {
attr::mark_used(attr);
2015-11-16 10:53:41 -06:00
self.tcx.sess.span_err(attr.span(), "stability attributes may not be used \
outside of the standard library");
}
}
// Propagate unstability. This can happen even for non-staged-api crates in case
// -Zforce-unstable-if-unmarked is set.
if let Some(stab) = self.parent_stab {
if stab.level.is_unstable() {
let hir_id = self.tcx.hir.node_to_hir_id(id);
self.index.stab_map.insert(hir_id, stab);
}
}
if let Some(depr) = attr::find_deprecation(self.tcx.sess.diagnostic(), attrs, item_sp) {
if kind == AnnotationKind::Prohibited {
self.tcx.sess.span_err(item_sp, "This deprecation annotation is useless");
}
// `Deprecation` is just two pointers, no need to intern it
let hir_id = self.tcx.hir.node_to_hir_id(id);
let depr_entry = DeprecationEntry::local(depr, hir_id);
self.index.depr_map.insert(hir_id, depr_entry.clone());
let orig_parent_depr = replace(&mut self.parent_depr,
Some(depr_entry));
visit_children(self);
self.parent_depr = orig_parent_depr;
} else if let Some(parent_depr) = self.parent_depr.clone() {
let hir_id = self.tcx.hir.node_to_hir_id(id);
self.index.depr_map.insert(hir_id, parent_depr);
visit_children(self);
} else {
visit_children(self);
}
}
}
}
impl<'a, 'tcx> Visitor<'tcx> for Annotator<'a, 'tcx> {
/// Because stability levels are scoped lexically, we want to walk
/// nested items in the context of the outer item, so enable
/// deep-walking.
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::All(&self.tcx.hir)
}
fn visit_item(&mut self, i: &'tcx Item) {
2015-11-16 10:53:41 -06:00
let orig_in_trait_impl = self.in_trait_impl;
2015-11-16 12:01:06 -06:00
let mut kind = AnnotationKind::Required;
2015-11-16 10:53:41 -06:00
match i.node {
// Inherent impls and foreign modules serve only as containers for other items,
// they don't have their own stability. They still can be annotated as unstable
// and propagate this unstability to children, but this annotation is completely
// optional. They inherit stability from their parents when unannotated.
2016-08-26 11:23:42 -05:00
hir::ItemImpl(.., None, _, _) | hir::ItemForeignMod(..) => {
2015-11-16 10:53:41 -06:00
self.in_trait_impl = false;
2015-11-16 12:01:06 -06:00
kind = AnnotationKind::Container;
2015-11-16 10:53:41 -06:00
}
2016-08-26 11:23:42 -05:00
hir::ItemImpl(.., Some(_), _, _) => {
2015-11-16 10:53:41 -06:00
self.in_trait_impl = true;
2015-10-01 19:53:28 -05:00
}
2015-11-16 10:53:41 -06:00
hir::ItemStruct(ref sd, _) => {
if !sd.is_struct() {
2015-11-16 12:01:06 -06:00
self.annotate(sd.id(), &i.attrs, i.span, AnnotationKind::Required, |_| {})
2015-11-16 10:53:41 -06:00
}
}
_ => {}
}
2015-11-16 10:53:41 -06:00
self.annotate(i.id, &i.attrs, i.span, kind, |v| {
intravisit::walk_item(v, i)
2015-11-16 10:53:41 -06:00
});
self.in_trait_impl = orig_in_trait_impl;
}
fn visit_trait_item(&mut self, ti: &'tcx hir::TraitItem) {
2015-11-16 12:01:06 -06:00
self.annotate(ti.id, &ti.attrs, ti.span, AnnotationKind::Required, |v| {
intravisit::walk_trait_item(v, ti);
2015-11-16 10:53:41 -06:00
});
}
fn visit_impl_item(&mut self, ii: &'tcx hir::ImplItem) {
2015-11-16 12:01:06 -06:00
let kind = if self.in_trait_impl {
AnnotationKind::Prohibited
} else {
AnnotationKind::Required
};
2015-11-16 10:53:41 -06:00
self.annotate(ii.id, &ii.attrs, ii.span, kind, |v| {
intravisit::walk_impl_item(v, ii);
2015-11-16 10:53:41 -06:00
});
}
fn visit_variant(&mut self, var: &'tcx Variant, g: &'tcx Generics, item_id: NodeId) {
2015-11-16 12:01:06 -06:00
self.annotate(var.node.data.id(), &var.node.attrs, var.span, AnnotationKind::Required, |v| {
intravisit::walk_variant(v, var, g, item_id);
2015-11-16 10:53:41 -06:00
})
}
fn visit_struct_field(&mut self, s: &'tcx StructField) {
self.annotate(s.id, &s.attrs, s.span, AnnotationKind::Required, |v| {
intravisit::walk_struct_field(v, s);
2015-11-16 10:53:41 -06:00
});
}
fn visit_foreign_item(&mut self, i: &'tcx hir::ForeignItem) {
2015-11-16 12:01:06 -06:00
self.annotate(i.id, &i.attrs, i.span, AnnotationKind::Required, |v| {
intravisit::walk_foreign_item(v, i);
2015-11-16 10:53:41 -06:00
});
}
fn visit_macro_def(&mut self, md: &'tcx hir::MacroDef) {
self.annotate(md.id, &md.attrs, md.span, AnnotationKind::Required, |_| {});
}
}
struct MissingStabilityAnnotations<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
access_levels: &'a AccessLevels,
}
impl<'a, 'tcx: 'a> MissingStabilityAnnotations<'a, 'tcx> {
fn check_missing_stability(&self, id: NodeId, span: Span) {
let hir_id = self.tcx.hir.node_to_hir_id(id);
let stab = self.tcx.stability().local_stability(hir_id);
let is_error = !self.tcx.sess.opts.test &&
stab.is_none() &&
self.access_levels.is_reachable(id);
if is_error {
self.tcx.sess.span_err(span, "This node does not have a stability attribute");
}
}
}
2016-11-28 11:10:37 -06:00
impl<'a, 'tcx> Visitor<'tcx> for MissingStabilityAnnotations<'a, 'tcx> {
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::OnlyBodies(&self.tcx.hir)
2016-11-28 11:10:37 -06:00
}
fn visit_item(&mut self, i: &'tcx Item) {
match i.node {
// Inherent impls and foreign modules serve only as containers for other items,
// they don't have their own stability. They still can be annotated as unstable
// and propagate this unstability to children, but this annotation is completely
// optional. They inherit stability from their parents when unannotated.
hir::ItemImpl(.., None, _, _) | hir::ItemForeignMod(..) => {}
_ => self.check_missing_stability(i.id, i.span)
}
intravisit::walk_item(self, i)
}
2016-11-28 11:10:37 -06:00
fn visit_trait_item(&mut self, ti: &'tcx hir::TraitItem) {
self.check_missing_stability(ti.id, ti.span);
intravisit::walk_trait_item(self, ti);
}
2016-11-28 11:10:37 -06:00
fn visit_impl_item(&mut self, ii: &'tcx hir::ImplItem) {
let impl_def_id = self.tcx.hir.local_def_id(self.tcx.hir.get_parent(ii.id));
if self.tcx.impl_trait_ref(impl_def_id).is_none() {
self.check_missing_stability(ii.id, ii.span);
}
intravisit::walk_impl_item(self, ii);
}
2016-11-28 11:10:37 -06:00
fn visit_variant(&mut self, var: &'tcx Variant, g: &'tcx Generics, item_id: NodeId) {
self.check_missing_stability(var.node.data.id(), var.span);
intravisit::walk_variant(self, var, g, item_id);
}
2016-11-28 11:10:37 -06:00
fn visit_struct_field(&mut self, s: &'tcx StructField) {
self.check_missing_stability(s.id, s.span);
intravisit::walk_struct_field(self, s);
}
2016-11-28 11:10:37 -06:00
fn visit_foreign_item(&mut self, i: &'tcx hir::ForeignItem) {
self.check_missing_stability(i.id, i.span);
intravisit::walk_foreign_item(self, i);
}
2016-11-28 11:10:37 -06:00
fn visit_macro_def(&mut self, md: &'tcx hir::MacroDef) {
self.check_missing_stability(md.id, md.span);
}
}
impl<'a, 'tcx> Index<'tcx> {
pub fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Index<'tcx> {
let is_staged_api =
tcx.sess.opts.debugging_opts.force_unstable_if_unmarked ||
2018-02-14 09:11:02 -06:00
tcx.features().staged_api;
let mut staged_api = FxHashMap();
staged_api.insert(LOCAL_CRATE, is_staged_api);
let mut index = Index {
staged_api,
stab_map: FxHashMap(),
depr_map: FxHashMap(),
active_features: FxHashSet(),
};
2018-02-14 09:11:02 -06:00
let ref active_lib_features = tcx.features().declared_lib_features;
// Put the active features into a map for quick lookup
index.active_features = active_lib_features.iter().map(|&(ref s, _)| s.clone()).collect();
{
let krate = tcx.hir.krate();
let mut annotator = Annotator {
tcx,
index: &mut index,
parent_stab: None,
parent_depr: None,
in_trait_impl: false,
};
// If the `-Z force-unstable-if-unmarked` flag is passed then we provide
// a parent stability annotation which indicates that this is private
// with the `rustc_private` feature. This is intended for use when
// compiling librustc crates themselves so we can leverage crates.io
// while maintaining the invariant that all sysroot crates are unstable
// by default and are unable to be used.
if tcx.sess.opts.debugging_opts.force_unstable_if_unmarked {
2017-10-05 20:31:59 -05:00
let reason = "this crate is being loaded from the sysroot, an \
unstable location; did you mean to load this crate \
from crates.io via `Cargo.toml` instead?";
let stability = tcx.intern_stability(Stability {
level: attr::StabilityLevel::Unstable {
reason: Some(Symbol::intern(reason)),
issue: 27812,
},
feature: Symbol::intern("rustc_private"),
rustc_depr: None,
rustc_const_unstable: None,
});
annotator.parent_stab = Some(stability);
}
annotator.annotate(ast::CRATE_NODE_ID,
&krate.attrs,
krate.span,
AnnotationKind::Required,
|v| intravisit::walk_crate(v, krate));
}
return index
}
pub fn local_stability(&self, id: HirId) -> Option<&'tcx Stability> {
self.stab_map.get(&id).cloned()
2015-02-03 09:46:08 -06:00
}
pub fn local_deprecation_entry(&self, id: HirId) -> Option<DeprecationEntry> {
self.depr_map.get(&id).cloned()
}
}
/// Cross-references the feature names of unstable APIs with enabled
/// features and possibly prints errors.
pub fn check_unstable_api_usage<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) {
let mut checker = Checker { tcx: tcx };
tcx.hir.krate().visit_all_item_likes(&mut checker.as_deep_visitor());
}
struct Checker<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
}
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
// (See issue #38412)
fn skip_stability_check_due_to_privacy(self, mut def_id: DefId) -> bool {
// Check if `def_id` is a trait method.
2017-04-27 13:27:16 -05:00
match self.describe_def(def_id) {
Some(Def::Method(_)) |
Some(Def::AssociatedTy(_)) |
Some(Def::AssociatedConst(_)) => {
match self.associated_item(def_id).container {
ty::TraitContainer(trait_def_id) => {
// Trait methods do not declare visibility (even
// for visibility info in cstore). Use containing
// trait instead, so methods of pub traits are
// themselves considered pub.
def_id = trait_def_id;
}
_ => {}
}
}
_ => {}
}
let visibility = self.visibility(def_id);
match visibility {
// must check stability for pub items.
ty::Visibility::Public => false,
// these are not visible outside crate; therefore
// stability markers are irrelevant, if even present.
ty::Visibility::Restricted(..) |
ty::Visibility::Invisible => true,
}
}
pub fn check_stability(self, def_id: DefId, id: NodeId, span: Span) {
2017-03-16 23:04:41 -05:00
if span.allows_unstable() {
debug!("stability: \
skipping span={:?} since it is internal", span);
return;
}
let lint_deprecated = |def_id: DefId, note: Option<Symbol>| {
let path = self.item_path_str(def_id);
let msg = if let Some(note) = note {
format!("use of deprecated item '{}': {}", path, note)
} else {
format!("use of deprecated item '{}'", path)
};
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 23:51:09 -05:00
self.lint_node(lint::builtin::DEPRECATED, id, span, &msg);
};
// Deprecated attributes apply in-crate and cross-crate.
if let Some(depr_entry) = self.lookup_deprecation_entry(def_id) {
let skip = if id == ast::DUMMY_NODE_ID {
true
} else {
let parent_def_id = self.hir.local_def_id(self.hir.get_parent(id));
self.lookup_deprecation_entry(parent_def_id).map_or(false, |parent_depr| {
parent_depr.same_origin(&depr_entry)
})
};
if !skip {
lint_deprecated(def_id, depr_entry.attr.note);
}
}
let is_staged_api = self.lookup_stability(DefId {
index: CRATE_DEF_INDEX,
..def_id
}).is_some();
if !is_staged_api {
return;
}
let stability = self.lookup_stability(def_id);
debug!("stability: \
inspecting def_id={:?} span={:?} of stability={:?}", def_id, span, stability);
if let Some(&Stability{rustc_depr: Some(attr::RustcDeprecation { reason, .. }), ..})
= stability {
if id != ast::DUMMY_NODE_ID {
lint_deprecated(def_id, Some(reason));
}
}
// Only the cross-crate scenario matters when checking unstable APIs
let cross_crate = !def_id.is_local();
2015-09-28 19:46:01 -05:00
if !cross_crate {
return
}
// Issue 38412: private items lack stability markers.
if self.skip_stability_check_due_to_privacy(def_id) {
return
}
match stability {
Some(&Stability { level: attr::Unstable {ref reason, issue}, ref feature, .. }) => {
if self.stability().active_features.contains(feature) {
return
}
// When we're compiling the compiler itself we may pull in
// crates from crates.io, but those crates may depend on other
// crates also pulled in from crates.io. We want to ideally be
// able to compile everything without requiring upstream
// modifications, so in the case that this looks like a
// rustc_private crate (e.g. a compiler crate) and we also have
// the `-Z force-unstable-if-unmarked` flag present (we're
// compiling a compiler crate), then let this missing feature
// annotation slide.
if *feature == "rustc_private" && issue == 27812 {
if self.sess.opts.debugging_opts.force_unstable_if_unmarked {
return
}
}
let msg = match *reason {
Some(ref r) => format!("use of unstable library feature '{}': {}",
feature.as_str(), &r),
None => format!("use of unstable library feature '{}'", &feature)
};
let msp: MultiSpan = span.into();
let cm = &self.sess.parse_sess.codemap();
2017-10-28 12:39:00 -05:00
let span_key = msp.primary_span().and_then(|sp: Span|
if sp != DUMMY_SP {
let file = cm.lookup_char_pos(sp.lo()).file;
if file.name.is_macros() {
None
2017-10-28 12:39:00 -05:00
} else {
Some(span)
}
2017-10-28 12:39:00 -05:00
} else {
None
}
);
2017-10-28 12:39:00 -05:00
let error_id = (DiagnosticMessageId::StabilityId(issue), span_key, msg.clone());
let fresh = self.sess.one_time_diagnostics.borrow_mut().insert(error_id);
if fresh {
emit_feature_err(&self.sess.parse_sess, &feature.as_str(), span,
GateIssue::Library(Some(issue)), &msg);
}
}
Some(_) => {
// Stable APIs are always ok to call and deprecated APIs are
// handled by the lint emitting logic above.
}
None => {
span_bug!(span, "encountered unmarked API");
}
}
}
}
impl<'a, 'tcx> Visitor<'tcx> for Checker<'a, 'tcx> {
/// Because stability levels are scoped lexically, we want to walk
/// nested items in the context of the outer item, so enable
/// deep-walking.
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::OnlyBodies(&self.tcx.hir)
2016-10-28 15:58:32 -05:00
}
fn visit_item(&mut self, item: &'tcx hir::Item) {
match item.node {
hir::ItemExternCrate(_) => {
// compiler-generated `extern crate` items have a dummy span.
if item.span == DUMMY_SP { return }
let def_id = self.tcx.hir.local_def_id(item.id);
let cnum = match self.tcx.extern_mod_stmt_cnum(def_id) {
Some(cnum) => cnum,
None => return,
};
let def_id = DefId { krate: cnum, index: CRATE_DEF_INDEX };
self.tcx.check_stability(def_id, item.id, item.span);
}
// For implementations of traits, check the stability of each item
// individually as it's possible to have a stable trait with unstable
// items.
hir::ItemImpl(.., Some(ref t), _, ref impl_item_refs) => {
if let Def::Trait(trait_did) = t.path.def {
for impl_item_ref in impl_item_refs {
let impl_item = self.tcx.hir.impl_item(impl_item_ref.id);
let trait_item_def_id = self.tcx.associated_items(trait_did)
.find(|item| item.name == impl_item.name).map(|item| item.def_id);
if let Some(def_id) = trait_item_def_id {
// Pass `DUMMY_NODE_ID` to skip deprecation warnings.
self.tcx.check_stability(def_id, ast::DUMMY_NODE_ID, impl_item.span);
}
}
}
}
// There's no good place to insert stability check for non-Copy unions,
// so semi-randomly perform it here in stability.rs
2018-02-14 09:11:02 -06:00
hir::ItemUnion(..) if !self.tcx.features().untagged_unions => {
let def_id = self.tcx.hir.local_def_id(item.id);
let adt_def = self.tcx.adt_def(def_id);
let ty = self.tcx.type_of(def_id);
if adt_def.has_dtor(self.tcx) {
emit_feature_err(&self.tcx.sess.parse_sess,
"untagged_unions", item.span, GateIssue::Language,
"unions with `Drop` implementations are unstable");
} else {
let param_env = self.tcx.param_env(def_id);
if !param_env.can_type_implement_copy(self.tcx, ty, item.span).is_ok() {
emit_feature_err(&self.tcx.sess.parse_sess,
"untagged_unions", item.span, GateIssue::Language,
"unions with non-`Copy` fields are unstable");
}
}
}
_ => (/* pass */)
}
intravisit::walk_item(self, item);
}
fn visit_path(&mut self, path: &'tcx hir::Path, id: ast::NodeId) {
match path.def {
Def::Local(..) | Def::Upvar(..) |
Def::PrimTy(..) | Def::SelfTy(..) | Def::Err => {}
_ => self.tcx.check_stability(path.def.def_id(), id, path.span)
}
intravisit::walk_path(self, path)
}
}
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
pub fn lookup_deprecation(self, id: DefId) -> Option<Deprecation> {
self.lookup_deprecation_entry(id).map(|depr| depr.attr)
}
}
Preliminary feature staging This partially implements the feature staging described in the [release channel RFC][rc]. It does not yet fully conform to the RFC as written, but does accomplish its goals sufficiently for the 1.0 alpha release. It has three primary user-visible effects: * On the nightly channel, use of unstable APIs generates a warning. * On the beta channel, use of unstable APIs generates a warning. * On the beta channel, use of feature gates generates a warning. Code that does not trigger these warnings is considered 'stable', modulo pre-1.0 bugs. Disabling the warnings for unstable APIs continues to be done in the existing (i.e. old) style, via `#[allow(...)]`, not that specified in the RFC. I deem this marginally acceptable since any code that must do this is not using the stable dialect of Rust. Use of feature gates is itself gated with the new 'unstable_features' lint, on nightly set to 'allow', and on beta 'warn'. The attribute scheme used here corresponds to an older version of the RFC, with the `#[staged_api]` crate attribute toggling the staging behavior of the stability attributes, but the user impact is only in-tree so I'm not concerned about having to make design changes later (and I may ultimately prefer the scheme here after all, with the `#[staged_api]` crate attribute). Since the Rust codebase itself makes use of unstable features the compiler and build system to a midly elaborate dance to allow it to bootstrap while disobeying these lints (which would otherwise be errors because Rust builds with `-D warnings`). This patch includes one significant hack that causes a regression. Because the `format_args!` macro emits calls to unstable APIs it would trigger the lint. I added a hack to the lint to make it not trigger, but this in turn causes arguments to `println!` not to be checked for feature gates. I don't presently understand macro expansion well enough to fix. This is bug #20661. Closes #16678 [rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md
2015-01-06 08:26:08 -06:00
/// Given the list of enabled features that were not language features (i.e. that
/// were expected to be library features), and the list of features used from
/// libraries, identify activated features that don't exist and error about them.
pub fn check_unused_or_stable_features<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) {
let access_levels = &tcx.privacy_access_levels(LOCAL_CRATE);
if tcx.stability().staged_api[&LOCAL_CRATE] {
let krate = tcx.hir.krate();
let mut missing = MissingStabilityAnnotations {
tcx,
access_levels,
};
missing.check_missing_stability(ast::CRATE_NODE_ID, krate.span);
intravisit::walk_crate(&mut missing, krate);
krate.visit_all_item_likes(&mut missing.as_deep_visitor());
}
2018-02-14 09:11:02 -06:00
let ref declared_lib_features = tcx.features().declared_lib_features;
let mut remaining_lib_features: FxHashMap<Symbol, Span>
= declared_lib_features.clone().into_iter().collect();
remaining_lib_features.remove(&Symbol::intern("proc_macro"));
2018-02-14 09:11:02 -06:00
for &(ref stable_lang_feature, span) in &tcx.features().declared_stable_lang_features {
let version = find_lang_feature_accepted_version(&stable_lang_feature.as_str())
.expect("unexpectedly couldn't find version feature was stabilized");
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 23:51:09 -05:00
tcx.lint_node(lint::builtin::STABLE_FEATURES,
ast::CRATE_NODE_ID,
span,
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 23:51:09 -05:00
&format_stable_since_msg(version));
}
// FIXME(#44232) the `used_features` table no longer exists, so we don't
// lint about unknown or unused features. We should reenable
// this one day!
//
// let index = tcx.stability();
// for (used_lib_feature, level) in &index.used_features {
// remaining_lib_features.remove(used_lib_feature);
// }
//
// for &span in remaining_lib_features.values() {
// tcx.lint_node(lint::builtin::UNUSED_FEATURES,
// ast::CRATE_NODE_ID,
// span,
// "unused or unknown feature");
// }
}
2015-01-16 12:25:16 -06:00
fn format_stable_since_msg(version: &str) -> String {
format!("this feature has been stable since {}. Attribute no longer needed", version)
Preliminary feature staging This partially implements the feature staging described in the [release channel RFC][rc]. It does not yet fully conform to the RFC as written, but does accomplish its goals sufficiently for the 1.0 alpha release. It has three primary user-visible effects: * On the nightly channel, use of unstable APIs generates a warning. * On the beta channel, use of unstable APIs generates a warning. * On the beta channel, use of feature gates generates a warning. Code that does not trigger these warnings is considered 'stable', modulo pre-1.0 bugs. Disabling the warnings for unstable APIs continues to be done in the existing (i.e. old) style, via `#[allow(...)]`, not that specified in the RFC. I deem this marginally acceptable since any code that must do this is not using the stable dialect of Rust. Use of feature gates is itself gated with the new 'unstable_features' lint, on nightly set to 'allow', and on beta 'warn'. The attribute scheme used here corresponds to an older version of the RFC, with the `#[staged_api]` crate attribute toggling the staging behavior of the stability attributes, but the user impact is only in-tree so I'm not concerned about having to make design changes later (and I may ultimately prefer the scheme here after all, with the `#[staged_api]` crate attribute). Since the Rust codebase itself makes use of unstable features the compiler and build system to a midly elaborate dance to allow it to bootstrap while disobeying these lints (which would otherwise be errors because Rust builds with `-D warnings`). This patch includes one significant hack that causes a regression. Because the `format_args!` macro emits calls to unstable APIs it would trigger the lint. I added a hack to the lint to make it not trigger, but this in turn causes arguments to `println!` not to be checked for feature gates. I don't presently understand macro expansion well enough to fix. This is bug #20661. Closes #16678 [rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md
2015-01-06 08:26:08 -06:00
}