os/kernel/cpu/i386/paging.c

215 lines
6.7 KiB
C

/**
* \file
*/
#include "../../pmem.h"
#include "../../vga_err.h"
#include "../halt.h"
#include "../paging.h"
#include "arch_consts.h"
#include <stdint.h>
#include <stdlib.h>
/**
* \page pg_struct_entry Format of a paging structure entry
* The format of a page table/directiry entry is as following: <br>
* Bits 31-11 is the physical frame number the entry points to. <br>
* Bits 11-9 are availible for use by the OS. <br>
* Bit 8 is ignored. <br>
* Bit 7 is the page size in page directories, and must be 0 in page tables. If set to 1 in a page directory, it indicates 4MB pages. <br>
* Bit 6 is the dirty bit in page tables, and must be 0 in page directories. In page tabes, it is set to 1 by the CPU when the page is written to. <br>
* Bit 5 will be set to 1 by the CPU when the page is accessed. <br>
* Bit 4 indicates whether the page has it's cache disabled. <br>
* Bit 3 indictates whether write-through caching (when it is 1), or write-back caching, (when it is 0) is enabled. <br>
* Bit 2 indictaes whether user mode code can access the page. <br>
* Bit 1 indicates whether the page is writable. <br>
* Bit 0 indicates whether the entry is present. If it is 0, the CU ignores the other 31 bits of the entry. <br>
* Privlege bits in the entries are ANDed together, so the most restrictive privlege between the page directory and the page table wins.
*/
static uint32_t page_directory[1024] __attribute__((aligned(4096))); //!< The kernel process's page directory
static uint32_t kern_page_tables[NUM_KERN_FRAMES] __attribute__((aligned(4096))); //!< The page tables where the kernel binary is mapped in
static uint32_t kstack_page_tables[218*1024] __attribute__((aligned(4096))); //!< Page tables for thread kernel stacks
static uint32_t kmalloc_page_tables[4*1024] __attribute__((aligned(4096))); //!< Page tables for the kmalloc heap
static uint32_t* pagdirmap=(uint32_t*)0xFFFFF000; //!< Pointer to the page directory entries in the recursive mapping
static uint32_t* page_table_map=(uint32_t*)0xFFC00000; //!< Pointer to the page table entries in the recursive mapping
/**
* Checks whether a page is present
* \param page The page number to check
* \return Whether the page is present
*/
static char is_page_present(size_t page) {
int table=page>>10;
page=page&0x3FF;
if ((pagdirmap[table]&0x1)==0) {
return 0;
}
return page_table_map[page+1024*table]&0x1;
}
void map_pages(void* virt_addr_ptr,void* phys_addr_ptr,int num_pages,char usr,char wr) {
uint32_t virt_addr=(uint32_t)virt_addr_ptr;
uint32_t phys_addr=(uint32_t)phys_addr_ptr;
int dir_entry=(virt_addr&0xFFC00000)>>22;
int table_entry=(virt_addr&0x3FF000)>>12;
for (int i=0;i<num_pages;i++) {
if (!(pagdirmap[dir_entry]&0x1)) {
int flags=1;
flags=flags|((wr&1)<<1);
flags=flags|((usr&1)<<2);
pagdirmap[dir_entry]=(uint32_t)pmem_alloc(1)|flags;
}
int flags=1;
flags=flags|((wr&1)<<1);
flags=flags|((usr&1)<<2);
page_table_map[table_entry+1024*dir_entry]=phys_addr|flags;
table_entry++;
if (table_entry==1024) {
table_entry=0;
dir_entry++;
}
phys_addr+=0x1000;
}
}
void* find_free_pages(int num_pages) {
size_t bmap_index;
size_t remaining_blks;
for(size_t i=1;i<131072;i++) {
char got_0=0;
remaining_blks=num_pages;
size_t old_j;
for (size_t j=i*8;;j++) {
char bit=is_page_present(j);
if (got_0) {
if (bit) {
if (remaining_blks==0) {
bmap_index=old_j;
break;
} else {
i+=j/8;
i--;
break;
}
} else {
remaining_blks--;
}
} else {
if (!bit) {
got_0=1;
old_j=j;
remaining_blks--;
}
}
if (remaining_blks==0) {
bmap_index=old_j;
break;
}
}
if (remaining_blks==0) {
break;
}
}
if (remaining_blks!=0) {
vga_write_string("[PANIC] Out of memory");
halt();
}
return (void*)(bmap_index<<12);
}
void* alloc_pages(int num_pages) {
void* phys_addr=pmem_alloc(num_pages);
void* addr=find_free_pages(num_pages);
map_pages(addr,phys_addr,num_pages,1,1);
return addr;
}
void* virt_to_phys(void* virt_addr_arg) {
uint32_t virt_addr=(uint32_t)virt_addr_arg;
int offset=virt_addr&0x3FF;
virt_addr=virt_addr&0xFFFFFC00;
if (!is_page_present(virt_addr>>12)) return NULL;
int dir_idx=(virt_addr&0xFFC00000)>>22;
int tbl_idx=(virt_addr&0x3FFC00)>>12;
if ((pagdirmap[dir_idx]&0x1)==0) {
return 0;
}
return (void*)((page_table_map[tbl_idx+1024*dir_idx]&0xFFFFFC00)+offset);
}
void alloc_pages_virt(int num_pages,void* addr) {
void* phys_addr=pmem_alloc(num_pages);
map_pages(addr,phys_addr,num_pages,1,1);
}
/**
* Invalidates a page in the TLB,
* \param addr The address of the page to invalidate.
*/
static void invl_page(void* addr) {
asm volatile("invlpg (%0)"::"r"(addr):"memory");
}
void* paging_new_address_space() {
void* dir=pmem_alloc(1);
uint32_t* freepg=find_free_pages(1);
map_pages(freepg,dir,1,0,1);
for (size_t i=0;i<1024;i++) {
freepg[i]=page_directory[i];
}
freepg[1023]=((uint32_t)dir)|0x3;
unmap_pages(freepg,1);
return dir;
}
void load_address_space(void* address_space) {
asm volatile("movl %0, %%eax; movl %%eax, %%cr3;":"=m"(address_space)::"%eax");
}
void unmap_pages(void* start_virt,int num_pages) {
uint32_t virt_addr=(uint32_t)start_virt;
int dir_entry=(virt_addr&0xFFC00000)>>22;
int table_entry=(virt_addr&0x3FF000)>>12;
for (int i=0;i<=num_pages;i++) {
if (page_table_map[dir_entry]&0x1) {
page_table_map[table_entry+1024*dir_entry]=0;
invl_page(start_virt+(i*1024));
table_entry++;
if (table_entry==1024) {
dir_entry++;
table_entry=0;
}
}
}
}
void paging_init() {
for (size_t i=0;i<NUM_KERN_FRAMES;i++) {
kern_page_tables[i]=(i<<12)|0x3;
}
for (size_t i=0;i<218*1024;i++) {
kstack_page_tables[i]=0;
}
for (size_t i=0;i<4*1024;i++) {
kmalloc_page_tables[i]=(uint32_t)pmem_alloc(1)|0x3;
}
for (size_t i=0;i<NUM_KERN_FRAMES/1024;i++) {
uint32_t entry_virt=(uint32_t)&(kern_page_tables[i*1024]);
page_directory[i+768]=(entry_virt-0xC0000000)|0x3;
}
page_directory[985]=(uint32_t)(pmem_alloc(1024))|0x83;
for (size_t i=0;i<4;i++) {
uint32_t entry_virt=(uint32_t)&(kmalloc_page_tables[i*1024]);
page_directory[i+1018]=(entry_virt-0xC0000000)|0x3;
}
page_directory[1023]=((uint32_t)page_directory-0xC0000000)|0x3;
load_address_space((uint32_t*)((uint32_t)page_directory-0xC0000000));
}
void* get_address_space() {
void* address_space;
asm volatile("movl %%cr3, %%eax; movl %%eax, %0;":"=m"(address_space)::"%eax");
return address_space;
}