/** * \file */ #include "../../pmem.h" #include "../../vga_err.h" #include "../halt.h" #include "../paging.h" #include "arch_consts.h" #include #include #include /** * \page pg_struct_entry Format of a paging structure entry * The format of a page table/directiry entry is as following:
* Bits 31-11 is the physical frame number the entry points to.
* Bits 11-9 are availible for use by the OS.
* Bit 8 is ignored.
* Bit 7 is the page size in page directories, and must be 0 in page tables. If set to 1 in a page directory, it indicates 4MB pages.
* Bit 6 is the dirty bit in page tables, and must be 0 in page directories. In page tabes, it is set to 1 by the CPU when the page is written to.
* Bit 5 will be set to 1 by the CPU when the page is accessed.
* Bit 4 indicates whether the page has it's cache disabled.
* Bit 3 indictates whether write-through caching (when it is 1), or write-back caching, (when it is 0) is enabled.
* Bit 2 indictaes whether user mode code can access the page.
* Bit 1 indicates whether the page is writable.
* Bit 0 indicates whether the entry is present. If it is 0, the CU ignores the other 31 bits of the entry.
* Privlege bits in the entries are ANDed together, so the most restrictive privlege between the page directory and the page table wins. */ static uint32_t page_directory[1024] __attribute__((aligned(4096))); //!< The kernel process's page directory static uint32_t kern_page_tables[NUM_KERN_FRAMES] __attribute__((aligned(4096))); //!< The page tables where the kernel binary is mapped in static uint32_t kstack_page_tables[218*1024] __attribute__((aligned(4096))); //!< Page tables for thread kernel stacks static uint32_t kmalloc_page_tables[4*1024] __attribute__((aligned(4096))); //!< Page tables for the kmalloc heap static uint32_t* pagdirmap=(uint32_t*)0xFFFFF000; //!< Pointer to the page directory entries in the recursive mapping static uint32_t* pagtblmap=(uint32_t*)0xFFC00000; //!< Pointer to the page table entries in the recursive mapping /** * Checks whether a page is present * \param page The page number to check * \return Whether the page is present */ static char is_page_present(size_t page) { int table=page>>10; page=page&0x3FF; if ((pagdirmap[table]&0x1)==0) { return 0; } return pagtblmap[page+1024*table]&0x1; } void map_pages(void* virt_addr_ptr,void* phys_addr_ptr,int num_pages,char usr,char wr) { uint32_t virt_addr=(uint32_t)virt_addr_ptr; uint32_t phys_addr=(uint32_t)phys_addr_ptr; int dir_entry=(virt_addr&0xFFC00000)>>22; int table_entry=(virt_addr&0x3FF000)>>12; for (int i=0;i>12)) return NULL; int dir_idx=(virt_addr&0xFFC00000)>>22; int tbl_idx=(virt_addr&0x3FFC00)>>12; if ((pagdirmap[dir_idx]&0x1)==0) { return 0; } return (void*)((pagtblmap[tbl_idx+1024*dir_idx]&0xFFFFFC00)+offset); } void alloc_pages_virt(int num_pages,void* addr) { void* phys_addr=pmem_alloc(num_pages); map_pages(addr,phys_addr,num_pages,1,1); } /** * Invalidates a page in the TLB, * \param addr The address of the page to invalidate. */ static void invl_page(void* addr) { asm volatile("invlpg (%0)"::"r"(addr):"memory"); } void* paging_new_address_space() { void* dir=pmem_alloc(1); uint32_t* freepg=find_free_pages(1); map_pages(freepg,dir,1,0,1); for (size_t i=0;i<1024;i++) { freepg[i]=page_directory[i]; } freepg[1023]=((uint32_t)dir)|0x3; unmap_pages(freepg,1); return dir; } void load_address_space(void* cr3) { asm volatile("movl %0, %%eax; movl %%eax, %%cr3;":"=m"(cr3)::"%eax"); } void unmap_pages(void* start_virt,int num_pages) { uint32_t virt_addr=(uint32_t)start_virt; int dir_entry=(virt_addr&0xFFC00000)>>22; int table_entry=(virt_addr&0x3FF000)>>12; for (int i=0;i<=num_pages;i++) { if (pagtblmap[dir_entry]&0x1) { pagtblmap[table_entry+1024*dir_entry]=0; invl_page(start_virt+(i*1024)); table_entry++; if (table_entry==1024) { dir_entry++; table_entry=0; } } } } void paging_init() { for (size_t i=0;i