/** * \file */ #include #include #define NUM_ENTRIES 6 //!< Number of entries in the GDT extern uint32_t int_stack_top; //!< Initial kernel stack before the kernel's first yield /** * Represents an entry in the GDT. */ typedef struct { uint16_t limit_low16;//!< Low 16 bits of the limit uint16_t base_low16; //!< Low 16 bits of the base uint8_t base_mid8; //!< Middle 8 bits of the base uint8_t access; /**< Access byte. Gives info about the descriptor.
Format:
Bit 7: Present. Must be 1 for all valid selectors.
Bits 6-5. Privilege. Contains the ring level for the selector. 0 for kernel mode, 3 for user mode.
Bit 4. Descriptor type. Must be set for code/data segments and cleared for system segments like the TSS.
Bit 3. Executable. If this bit is set, it is a code selector, otherwise a data selector.
Bit 2. Direction/Conforming. Too complex to explain, should be set to 0.
Bit 1. Readable/Writable. For code sels, this bit sets whther you can use it like a read-only data segment. For data sels, it sets whether the selector is writable.
Bit 0. Acessed bit. Set to 0.
*/ uint8_t limit_flags; /**< High nibble of this contains two flags, and the lower niblle contains the high 4 bits of the limit.
The flags are:
Bit 3. Granularity. 0 for byte granularity, 1 for 4 KB granularity.
Bit 2. Size. 0 for 16 bit protected mode, 1 for 32 bit protected mode.
Bits 1-0. Unused. Set to 0.
*/ uint8_t base_high8; //!< High 8 bits of the base } __attribute__((packed)) gdt_entry; /** * Pointed to by the GDTR to tell the processor the GDT's size and address. */ typedef struct { uint16_t size; //!< Size of the GDT. gdt_entry* address; //!< Address of the GDT. } __attribute__((packed)) gdt_description; /** * Represents a TSS. */ typedef struct { uint32_t prev_tss; //!< The previous TSS - if we used hardware task switching this would form a linked list. uint32_t esp0; //!< The stack pointer to load when we change to kernel mode. uint32_t ss0; //!< The stack segment to load when we change to kernel mode. uint32_t esp1; //!< Unused uint32_t ss1; //!< Unused uint32_t ss2; //!< Unused uint32_t esp2; //!< Unused uint32_t cr3; //!< Unused uint32_t eip; //!< Unused uint32_t eflags; //!< Unused uint32_t eax; //!< Unused uint32_t ecx; //!< Unused uint32_t edx; //!< Unused uint32_t ebx; //!< Unused uint32_t esp; //!< Unused uint32_t ebp; //!< Unused uint32_t esi; //!< Unused uint32_t edi; //!< Unused uint32_t es; //!< The value to load into ES when we change to kernel mode. uint32_t cs; //!< The value to load into CS when we change to kernel mode. uint32_t ss; //!< The value to load into SS when we change to kernel mode. uint32_t ds; //!< The value to load into DS when we change to kernel mode. uint32_t fs; //!< The value to load into FS when we change to kernel mode. uint32_t gs; //!< The value to load into GS when we change to kernel mode. uint32_t ldt; //!< Unused uint16_t trap; //!< Unused uint16_t iomap_base; //!< Offset of the IOPB in the TSS. char iopb[8192]; //!< IO port bitmap uint8_t set_ff; //!< Must be set to 0xFF to mark the end of the IOPB } __attribute__((packed)) tss_entry; static gdt_entry gdt[NUM_ENTRIES]; //!< The GDT static gdt_description gdt_desc; //!< The value to load into the GDTR tss_entry tss; //!< The TSS /** * Set a GDT entry. * \param i The GDT entry to set. * \param base The base of the GDT entry. * \param limit The limit of the GDT entry. * \param access The access byte of the GDT entry. */ static void set_entry(int i,uint32_t base,uint32_t limit,uint8_t access) { gdt[i].limit_low16=limit&0xFFFF; gdt[i].base_low16=base&0xFFFFF; gdt[i].base_mid8=(base&0xFF0000)>>16; gdt[i].access=access; uint8_t limit_high4=(limit&0xF0000)>>16; gdt[i].limit_flags=0xC0|limit_high4; gdt[i].base_high8=(base&0xFF000000)>>24; } /** * Set a GDT entry. * \param num The GDT entry to set. * \param ss0 The kernel stack selector. * \param esp0 The kernel stack pointer. */ static void write_tss(int32_t num, uint16_t ss0, uint32_t esp0) { // Firstly, let's compute the base and limit of our entry into the GDT. uint32_t base = (uint32_t) &tss; uint32_t limit = base + sizeof(tss_entry); // Now, add our TSS descriptor's address to the GDT. gdt[num].limit_low16=limit&0xFFFF; gdt[num].base_low16=base&0xFFFFF; gdt[num].base_mid8=(base&0xFF0000)>>16; gdt[num].access=0xe9; gdt[num].limit_flags=(limit&0xF0000)>>16; gdt[num].base_high8=(base&0xFF000000)>>24; // Ensure the descriptor is initially zero. memset((void*)&tss,0,sizeof(tss)); tss.ss0 = ss0; // Set the kernel stack segment. tss.esp0 = esp0; // Set the kernel stack pointer. //Set the last byte to 0xFF (End marker for IOPB) tss.set_ff=0xFF; // Now, set the offset for the IOPB // (All ports are already OK from the zeroing) tss.iomap_base=104; // Here we set the cs, ss, ds, es, fs and gs entries in the TSS. These specify what // segments should be loaded when the processor switches to kernel mode. Therefore // they are just our normal kernel code/data segments - 0x08 and 0x10 respectively, // but with the last two bits set, making 0x0b and 0x13. The setting of these bits // sets the RPL (requested privilege level) to 3, meaning that this TSS can be used // to switch to kernel mode from ring 3. tss.cs = 0x0b; tss.ss = tss.ds = tss.es = tss.fs = tss.gs = 0x13; } void allow_all_ports() { for (int i=0;i<8192;i++) { tss.iopb[i]=0; } } void block_all_ports() { for (int i=0;i<8192;i++) { tss.iopb[i]=0xFF; } } void gdt_init() { set_entry(0,0,0,0); set_entry(1,0,0xFFFFF,0b10011010); set_entry(2,0,0xFFFFF,0b10010010); set_entry(3,0,0xFFFFF,0b11111010); set_entry(4,0,0xFFFFF,0b11110010); write_tss(5,0x10,int_stack_top+0xC0000000); gdt_desc.size=(sizeof(gdt_entry)*NUM_ENTRIES)-1; gdt_desc.address=gdt; asm volatile(" \ lgdt (%%eax); \ jmp $0x8,$gdt_init_asm_code_upd; \ gdt_init_asm_code_upd: \ mov $0x10, %%ax; \ mov %%ax, %%ds; \ mov %%ax, %%ss; \ mov %%ax, %%es; \ mov %%ax, %%fs; \ mov %%ax, %%gs; \ "::"a"((uint32_t)&gdt_desc)); asm volatile("mov $0x2B, %ax; \ ltr %ax; \ "); }