Paging now uses a bitfield to represnt a paging structure entry

This commit is contained in:
pjht 2020-07-30 10:09:59 -05:00
parent 06fde84fc8
commit c6ffdc4814

View File

@ -11,28 +11,28 @@
#include <stdlib.h> #include <stdlib.h>
/** /**
* \page pg_struct_entry Format of a paging structure entry * Represents an entry in a page table/directory.
* The format of a page table/directiry entry is as following: <br> * \note Privlege bits in the page directory and page table entries for a page are ANDed together, so the most restrictive privlege between the page directory and the page table wins.
* Bits 31-11 is the physical frame number the entry points to. <br>
* Bits 11-9 are availible for use by the OS. <br>
* Bit 8 is ignored. <br>
* Bit 7 is the page size in page directories, and must be 0 in page tables. If set to 1 in a page directory, it indicates 4MB pages. <br>
* Bit 6 is the dirty bit in page tables, and must be 0 in page directories. In page tabes, it is set to 1 by the CPU when the page is written to. <br>
* Bit 5 will be set to 1 by the CPU when the page is accessed. <br>
* Bit 4 indicates whether the page has it's cache disabled. <br>
* Bit 3 indictates whether write-through caching (when it is 1), or write-back caching, (when it is 0) is enabled. <br>
* Bit 2 indictaes whether user mode code can access the page. <br>
* Bit 1 indicates whether the page is writable. <br>
* Bit 0 indicates whether the entry is present. If it is 0, the CU ignores the other 31 bits of the entry. <br>
* Privlege bits in the entries are ANDed together, so the most restrictive privlege between the page directory and the page table wins.
*/ */
typedef struct {
int pres:1; //!< Whether the page is present
int wr:1; //!< Whether the page is writeable
int usr:1; //!< Whether the page is accessible by user mode
int cachetype:1; //!< Cache type for the page. Write-through caching when 1, write-back caching when 0.
int cachedisable:1; //!< Whether caching is disabled
int accessed:1; //!< Whether the page has been accessed
int dirty:1; //!< Whether the page is dirty (has been written to)
int sz:1; //!< Page size
int osavail:4; //!< Availible for OS use
int pgno:20; //!< Physical page number this page maps to
} pg_struct_entry;
static uint32_t page_directory[1024] __attribute__((aligned(4096))); //!< The kernel process's page directory static pg_struct_entry page_directory[1024] __attribute__((aligned(4096))); //!< The kernel process's page directory
static uint32_t kern_page_tables[NUM_KERN_FRAMES] __attribute__((aligned(4096))); //!< The page tables where the kernel binary is mapped in static pg_struct_entry kern_page_tables[NUM_KERN_FRAMES] __attribute__((aligned(4096))); //!< The page tables where the kernel binary is mapped in
static uint32_t kstack_page_tables[218*1024] __attribute__((aligned(4096))); //!< Page tables for thread kernel stacks static pg_struct_entry kstack_page_tables[218*1024] __attribute__((aligned(4096))); //!< Page tables for thread kernel stacks
static uint32_t kmalloc_page_tables[4*1024] __attribute__((aligned(4096))); //!< Page tables for the kmalloc heap static pg_struct_entry kmalloc_page_tables[4*1024] __attribute__((aligned(4096))); //!< Page tables for the kmalloc heap
static uint32_t* pagdirmap=(uint32_t*)0xFFFFF000; //!< Pointer to the page directory entries in the recursive mapping static pg_struct_entry* pagdirmap=(pg_struct_entry*)0xFFFFF000; //!< Pointer to the page directory entries in the recursive mapping
static uint32_t* page_table_map=(uint32_t*)0xFFC00000; //!< Pointer to the page table entries in the recursive mapping static pg_struct_entry* page_table_map=(pg_struct_entry*)0xFFC00000; //!< Pointer to the page table entries in the recursive mapping
/** /**
* Checks whether a page is present * Checks whether a page is present
* \param page The page number to check * \param page The page number to check
@ -41,10 +41,10 @@ static uint32_t* page_table_map=(uint32_t*)0xFFC00000; //!< Pointer to the page
static char is_page_present(size_t page) { static char is_page_present(size_t page) {
int table=page>>10; int table=page>>10;
page=page&0x3FF; page=page&0x3FF;
if ((pagdirmap[table]&0x1)==0) { if (!pagdirmap[table].pres) {
return 0; return 0;
} }
return page_table_map[page+1024*table]&0x1; return page_table_map[page+1024*table].pres;
} }
void map_pages(void* virt_addr_ptr,void* phys_addr_ptr,int num_pages,char usr,char wr) { void map_pages(void* virt_addr_ptr,void* phys_addr_ptr,int num_pages,char usr,char wr) {
@ -53,16 +53,18 @@ void map_pages(void* virt_addr_ptr,void* phys_addr_ptr,int num_pages,char usr,ch
int dir_entry=(virt_addr&0xFFC00000)>>22; int dir_entry=(virt_addr&0xFFC00000)>>22;
int table_entry=(virt_addr&0x3FF000)>>12; int table_entry=(virt_addr&0x3FF000)>>12;
for (int i=0;i<num_pages;i++) { for (int i=0;i<num_pages;i++) {
if (!(pagdirmap[dir_entry]&0x1)) { if (!pagdirmap[dir_entry].pres) {
int flags=1; pg_struct_entry* entry=&pagdirmap[dir_entry];
flags=flags|((wr&1)<<1); entry->pgno=(uint32_t)pmem_alloc(1)>>12;
flags=flags|((usr&1)<<2); entry->pres=1;
pagdirmap[dir_entry]=(uint32_t)pmem_alloc(1)|flags; entry->usr=usr;
entry->wr=wr;
} }
int flags=1; pg_struct_entry* entry=&page_table_map[table_entry+1024*dir_entry];
flags=flags|((wr&1)<<1); entry->pgno=phys_addr>>12;
flags=flags|((usr&1)<<2); entry->pres=1;
page_table_map[table_entry+1024*dir_entry]=phys_addr|flags; entry->usr=usr;
entry->wr=wr;
table_entry++; table_entry++;
if (table_entry==1024) { if (table_entry==1024) {
table_entry=0; table_entry=0;
@ -131,10 +133,10 @@ void* virt_to_phys(void* virt_addr_arg) {
if (!is_page_present(virt_addr>>12)) return NULL; if (!is_page_present(virt_addr>>12)) return NULL;
int dir_idx=(virt_addr&0xFFC00000)>>22; int dir_idx=(virt_addr&0xFFC00000)>>22;
int tbl_idx=(virt_addr&0x3FFC00)>>12; int tbl_idx=(virt_addr&0x3FFC00)>>12;
if ((pagdirmap[dir_idx]&0x1)==0) { if (!pagdirmap[dir_idx].pres) {
return 0; return 0;
} }
return (void*)((page_table_map[tbl_idx+1024*dir_idx]&0xFFFFFC00)+offset); return (void*)(((page_table_map[tbl_idx+1024*dir_idx].pgno)<<12)+offset);
} }
@ -153,12 +155,15 @@ static void invl_page(void* addr) {
void* paging_new_address_space() { void* paging_new_address_space() {
void* dir=pmem_alloc(1); void* dir=pmem_alloc(1);
uint32_t* freepg=find_free_pages(1); pg_struct_entry* freepg=find_free_pages(1);
map_pages(freepg,dir,1,0,1); map_pages(freepg,dir,1,0,1);
for (size_t i=0;i<1024;i++) { for (size_t i=0;i<1024;i++) {
freepg[i]=page_directory[i]; freepg[i]=page_directory[i];
} }
freepg[1023]=((uint32_t)dir)|0x3; pg_struct_entry* entry=&freepg[1023];
entry->pres=1;
entry->wr=1;
entry->pgno=(uint32_t)dir>>12;
unmap_pages(freepg,1); unmap_pages(freepg,1);
return dir; return dir;
} }
@ -172,8 +177,9 @@ void unmap_pages(void* start_virt,int num_pages) {
int dir_entry=(virt_addr&0xFFC00000)>>22; int dir_entry=(virt_addr&0xFFC00000)>>22;
int table_entry=(virt_addr&0x3FF000)>>12; int table_entry=(virt_addr&0x3FF000)>>12;
for (int i=0;i<=num_pages;i++) { for (int i=0;i<=num_pages;i++) {
if (page_table_map[dir_entry]&0x1) { if (page_table_map[dir_entry].pres) {
page_table_map[table_entry+1024*dir_entry]=0; pg_struct_entry* entry=&page_table_map[table_entry+1024*dir_entry];
entry->pres=0;
invl_page(start_virt+(i*1024)); invl_page(start_virt+(i*1024));
table_entry++; table_entry++;
if (table_entry==1024) { if (table_entry==1024) {
@ -186,24 +192,40 @@ void unmap_pages(void* start_virt,int num_pages) {
void paging_init() { void paging_init() {
for (size_t i=0;i<NUM_KERN_FRAMES;i++) { for (size_t i=0;i<NUM_KERN_FRAMES;i++) {
kern_page_tables[i]=(i<<12)|0x3; pg_struct_entry* entry=&kern_page_tables[i];
entry->pres=1;
entry->wr=1;
entry->pgno=i;
} }
for (size_t i=0;i<218*1024;i++) { for (size_t i=0;i<218*1024;i++) {
kstack_page_tables[i]=0; pg_struct_entry* entry=&kstack_page_tables[i];
entry->pres=0;
} }
for (size_t i=0;i<4*1024;i++) { for (size_t i=0;i<4*1024;i++) {
kmalloc_page_tables[i]=(uint32_t)pmem_alloc(1)|0x3; pg_struct_entry* entry=&kmalloc_page_tables[i];
entry->pres=1;
entry->wr=1;
entry->pgno=(uint32_t)pmem_alloc(1)>>12;
} }
for (size_t i=0;i<NUM_KERN_FRAMES/1024;i++) { for (size_t i=0;i<NUM_KERN_FRAMES/1024;i++) {
uint32_t entry_virt=(uint32_t)&(kern_page_tables[i*1024]); uint32_t entry_virt=(uint32_t)&(kern_page_tables[i*1024]);
page_directory[i+768]=(entry_virt-0xC0000000)|0x3; pg_struct_entry* entry=&page_directory[i+768];
entry->pres=1;
entry->wr=1;
entry->pgno=((uint32_t)entry_virt-0xC0000000)>>12;
} }
page_directory[985]=(uint32_t)(pmem_alloc(1024))|0x83; // page_directory[985]=(uint32_t)(pmem_alloc(1024))|0x83;
for (size_t i=0;i<4;i++) { for (size_t i=0;i<4;i++) {
uint32_t entry_virt=(uint32_t)&(kmalloc_page_tables[i*1024]); uint32_t entry_virt=(uint32_t)&(kmalloc_page_tables[i*1024]);
page_directory[i+1018]=(entry_virt-0xC0000000)|0x3; pg_struct_entry* entry=&page_directory[i+1018];
entry->pres=1;
entry->wr=1;
entry->pgno=((uint32_t)entry_virt-0xC0000000)>>12;
} }
page_directory[1023]=((uint32_t)page_directory-0xC0000000)|0x3; pg_struct_entry* entry=&page_directory[1023];
entry->pres=1;
entry->wr=1;
entry->pgno=((uint32_t)page_directory-0xC0000000)>>12;
load_address_space((uint32_t*)((uint32_t)page_directory-0xC0000000)); load_address_space((uint32_t*)((uint32_t)page_directory-0xC0000000));
} }
@ -212,3 +234,8 @@ void* get_address_space() {
asm volatile("movl %%cr3, %%eax; movl %%eax, %0;":"=m"(address_space)::"%eax"); asm volatile("movl %%cr3, %%eax; movl %%eax, %0;":"=m"(address_space)::"%eax");
return address_space; return address_space;
} }
void dealloc_pages(int num_pages,void* addr) {
pmem_free((uint32_t)virt_to_phys(addr)>>12,num_pages);
unmap_pages(addr,num_pages);
}