2017-04-14 12:24:35 -07:00

1617 lines
55 KiB
Rust

// Copyright 2017 Serde Developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use syn::{self, Ident};
use quote::{self, Tokens, ToTokens};
use bound;
use fragment::{Fragment, Expr, Stmts, Match};
use internals::ast::{Body, Field, Item, Style, Variant};
use internals::{self, attr};
use std::collections::BTreeSet;
pub fn expand_derive_deserialize(item: &syn::DeriveInput) -> Result<Tokens, String> {
let ctxt = internals::Ctxt::new();
let item = Item::from_ast(&ctxt, item);
try!(ctxt.check());
let ident = &item.ident;
let params = Parameters::new(&item);
let dummy_const = Ident::new(format!("_IMPL_DESERIALIZE_FOR_{}", ident));
let body = Stmts(deserialize_body(&item, &params));
let impl_item = if let Some(remote) = item.attrs.remote() {
let (impl_generics, ty_generics, where_clause) = item.generics.split_for_impl();
let de_lifetime = params.de_lifetime_def();
quote! {
impl #impl_generics #ident #ty_generics #where_clause {
fn deserialize<#de_lifetime, __D>(__deserializer: __D) -> _serde::export::Result<#remote #ty_generics, __D::Error>
where __D: _serde::Deserializer<'de>
{
#body
}
}
}
} else {
let (de_impl_generics, _, ty_generics, where_clause) = split_with_de_lifetime(&params);
quote! {
#[automatically_derived]
impl #de_impl_generics _serde::Deserialize<'de> for #ident #ty_generics #where_clause {
fn deserialize<__D>(__deserializer: __D) -> _serde::export::Result<Self, __D::Error>
where __D: _serde::Deserializer<'de>
{
#body
}
}
}
};
Ok(
quote! {
#[allow(non_upper_case_globals, unused_attributes, unused_qualifications)]
const #dummy_const: () = {
extern crate serde as _serde;
#impl_item
};
},
)
}
struct Parameters {
/// Name of the type the `derive` is on.
local: syn::Ident,
/// Path to the type the impl is for. Either a single `Ident` for local
/// types or `some::remote::Ident` for remote types. Does not include
/// generic parameters.
this: syn::Path,
/// Generics including any explicit and inferred bounds for the impl.
generics: syn::Generics,
/// Lifetimes borrowed from the deserializer. These will become bounds on
/// the `'de` lifetime of the deserializer.
borrowed: BTreeSet<syn::Lifetime>,
/// At least one field has a serde(getter) attribute, implying that the
/// remote type has a private field.
has_getter: bool,
}
impl Parameters {
fn new(item: &Item) -> Self {
let local = item.ident.clone();
let this = match item.attrs.remote() {
Some(remote) => remote.clone(),
None => item.ident.clone().into(),
};
let generics = build_generics(item);
let borrowed = borrowed_lifetimes(item);
let has_getter = item.body.has_getter();
Parameters {
local: local,
this: this,
generics: generics,
borrowed: borrowed,
has_getter: has_getter,
}
}
/// Type name to use in error messages and `&'static str` arguments to
/// various Deserializer methods.
fn type_name(&self) -> &str {
self.this.segments.last().unwrap().ident.as_ref()
}
fn de_lifetime_def(&self) -> syn::LifetimeDef {
syn::LifetimeDef {
attrs: Vec::new(),
lifetime: syn::Lifetime::new("'de"),
bounds: self.borrowed.iter().cloned().collect(),
}
}
}
// All the generics in the input, plus a bound `T: Deserialize` for each generic
// field type that will be deserialized by us, plus a bound `T: Default` for
// each generic field type that will be set to a default value.
fn build_generics(item: &Item) -> syn::Generics {
let generics = bound::without_defaults(item.generics);
let generics = bound::with_where_predicates_from_fields(item, &generics, attr::Field::de_bound);
match item.attrs.de_bound() {
Some(predicates) => bound::with_where_predicates(&generics, predicates),
None => {
let generics = match *item.attrs.default() {
attr::Default::Default => {
bound::with_self_bound(item, &generics, &path!(_serde::export::Default))
}
attr::Default::None |
attr::Default::Path(_) => generics,
};
let generics = bound::with_bound(
item,
&generics,
needs_deserialize_bound,
&path!(_serde::Deserialize<'de>),
);
bound::with_bound(
item,
&generics,
requires_default,
&path!(_serde::export::Default),
)
}
}
}
// Fields with a `skip_deserializing` or `deserialize_with` attribute are not
// deserialized by us so we do not generate a bound. Fields with a `bound`
// attribute specify their own bound so we do not generate one. All other fields
// may need a `T: Deserialize` bound where T is the type of the field.
fn needs_deserialize_bound(attrs: &attr::Field) -> bool {
!attrs.skip_deserializing() && attrs.deserialize_with().is_none() && attrs.de_bound().is_none()
}
// Fields with a `default` attribute (not `default=...`), and fields with a
// `skip_deserializing` attribute that do not also have `default=...`.
fn requires_default(attrs: &attr::Field) -> bool {
attrs.default() == &attr::Default::Default
}
// The union of lifetimes borrowed by each field of the item.
//
// These turn into bounds on the `'de` lifetime of the Deserialize impl. If
// lifetimes `'a` and `'b` are borrowed but `'c` is not, the impl is:
//
// impl<'de: 'a + 'b, 'a, 'b, 'c> Deserialize<'de> for S<'a, 'b, 'c>
fn borrowed_lifetimes(item: &Item) -> BTreeSet<syn::Lifetime> {
let mut lifetimes = BTreeSet::new();
for field in item.body.all_fields() {
lifetimes.extend(field.attrs.borrowed_lifetimes().iter().cloned());
}
lifetimes
}
fn deserialize_body(item: &Item, params: &Parameters) -> Fragment {
if let Some(from_type) = item.attrs.from_type() {
deserialize_from(from_type)
} else {
match item.body {
Body::Enum(ref variants) => deserialize_item_enum(params, variants, &item.attrs),
Body::Struct(Style::Struct, ref fields) => {
if fields.iter().any(|field| field.ident.is_none()) {
panic!("struct has unnamed fields");
}
deserialize_struct(None, params, fields, &item.attrs, None)
}
Body::Struct(Style::Tuple, ref fields) |
Body::Struct(Style::Newtype, ref fields) => {
if fields.iter().any(|field| field.ident.is_some()) {
panic!("tuple struct has named fields");
}
deserialize_tuple(None, params, fields, &item.attrs, None)
}
Body::Struct(Style::Unit, _) => deserialize_unit_struct(params, &item.attrs),
}
}
}
fn deserialize_from(from_type: &syn::Ty) -> Fragment {
quote_block! {
_serde::export::Result::map(
<#from_type as _serde::Deserialize>::deserialize(__deserializer),
_serde::export::From::from)
}
}
fn deserialize_unit_struct(params: &Parameters, item_attrs: &attr::Item) -> Fragment {
let this = &params.this;
let type_name = item_attrs.name().deserialize_name();
let expecting = format!("unit struct {}", params.type_name());
quote_block! {
struct __Visitor;
impl<'de> _serde::de::Visitor<'de> for __Visitor {
type Value = #this;
fn expecting(&self, formatter: &mut _serde::export::Formatter) -> _serde::export::fmt::Result {
_serde::export::Formatter::write_str(formatter, #expecting)
}
#[inline]
fn visit_unit<__E>(self) -> _serde::export::Result<Self::Value, __E>
where __E: _serde::de::Error
{
_serde::export::Ok(#this)
}
}
_serde::Deserializer::deserialize_unit_struct(__deserializer, #type_name, __Visitor)
}
}
fn deserialize_tuple(
variant_ident: Option<&syn::Ident>,
params: &Parameters,
fields: &[Field],
item_attrs: &attr::Item,
deserializer: Option<Tokens>,
) -> Fragment {
let this = &params.this;
let (de_impl_generics, de_ty_generics, ty_generics, where_clause) = split_with_de_lifetime(params,);
// If there are getters (implying private fields), construct the local type
// and use an `Into` conversion to get the remote type. If there are no
// getters then construct the target type directly.
let construct = if params.has_getter {
let local = &params.local;
quote!(#local)
} else {
quote!(#this)
};
let is_enum = variant_ident.is_some();
let type_path = match variant_ident {
Some(variant_ident) => quote!(#construct::#variant_ident),
None => construct,
};
let expecting = match variant_ident {
Some(variant_ident) => format!("tuple variant {}::{}", params.type_name(), variant_ident),
None => format!("tuple struct {}", params.type_name()),
};
let nfields = fields.len();
let visit_newtype_struct = if !is_enum && nfields == 1 {
Some(deserialize_newtype_struct(&type_path, params, &fields[0]))
} else {
None
};
let visit_seq = Stmts(deserialize_seq(&type_path, params, fields, false, item_attrs),);
let visitor_expr = quote! {
__Visitor {
marker: _serde::export::PhantomData::<#this #ty_generics>,
lifetime: _serde::export::PhantomData,
}
};
let dispatch = if let Some(deserializer) = deserializer {
quote!(_serde::Deserializer::deserialize_tuple(#deserializer, #nfields, #visitor_expr))
} else if is_enum {
quote!(_serde::de::VariantAccess::deserialize_tuple(__variant, #nfields, #visitor_expr))
} else if nfields == 1 {
let type_name = item_attrs.name().deserialize_name();
quote!(_serde::Deserializer::deserialize_newtype_struct(__deserializer, #type_name, #visitor_expr))
} else {
let type_name = item_attrs.name().deserialize_name();
quote!(_serde::Deserializer::deserialize_tuple_struct(__deserializer, #type_name, #nfields, #visitor_expr))
};
let all_skipped = fields
.iter()
.all(|field| field.attrs.skip_deserializing());
let visitor_var = if all_skipped {
quote!(_)
} else {
quote!(mut __seq)
};
quote_block! {
struct __Visitor #de_impl_generics #where_clause {
marker: _serde::export::PhantomData<#this #ty_generics>,
lifetime: _serde::export::PhantomData<&'de ()>,
}
impl #de_impl_generics _serde::de::Visitor<'de> for __Visitor #de_ty_generics #where_clause {
type Value = #this #ty_generics;
fn expecting(&self, formatter: &mut _serde::export::Formatter) -> _serde::export::fmt::Result {
_serde::export::Formatter::write_str(formatter, #expecting)
}
#visit_newtype_struct
#[inline]
fn visit_seq<__A>(self, #visitor_var: __A) -> _serde::export::Result<Self::Value, __A::Error>
where __A: _serde::de::SeqAccess<'de>
{
#visit_seq
}
}
#dispatch
}
}
fn deserialize_seq(
type_path: &Tokens,
params: &Parameters,
fields: &[Field],
is_struct: bool,
item_attrs: &attr::Item,
) -> Fragment {
let vars = (0..fields.len()).map(field_i as fn(_) -> _);
let deserialized_count = fields
.iter()
.filter(|field| !field.attrs.skip_deserializing())
.count();
let expecting = format!("tuple of {} elements", deserialized_count);
let mut index_in_seq = 0usize;
let let_values = vars.clone().zip(fields)
.map(|(var, field)| {
if field.attrs.skip_deserializing() {
let default = Expr(expr_is_missing(&field, item_attrs));
quote! {
let #var = #default;
}
} else {
let visit = match field.attrs.deserialize_with() {
None => {
let field_ty = &field.ty;
quote!(try!(_serde::de::SeqAccess::next_element::<#field_ty>(&mut __seq)))
}
Some(path) => {
let (wrapper, wrapper_ty) = wrap_deserialize_with(
params, field.ty, path);
quote!({
#wrapper
_serde::export::Option::map(
try!(_serde::de::SeqAccess::next_element::<#wrapper_ty>(&mut __seq)),
|__wrap| __wrap.value)
})
}
};
let assign = quote! {
let #var = match #visit {
Some(__value) => __value,
None => {
return _serde::export::Err(_serde::de::Error::invalid_length(#index_in_seq, &#expecting));
}
};
};
index_in_seq += 1;
assign
}
});
let mut result = if is_struct {
let names = fields.iter().map(|f| &f.ident);
quote! {
#type_path { #( #names: #vars ),* }
}
} else {
quote! {
#type_path ( #(#vars),* )
}
};
if params.has_getter {
let this = &params.this;
result = quote! {
_serde::export::Into::<#this>::into(#result)
};
}
quote_block! {
#(#let_values)*
_serde::export::Ok(#result)
}
}
fn deserialize_newtype_struct(type_path: &Tokens, params: &Parameters, field: &Field) -> Tokens {
let value = match field.attrs.deserialize_with() {
None => {
let field_ty = &field.ty;
quote! {
try!(<#field_ty as _serde::Deserialize>::deserialize(__e))
}
}
Some(path) => {
let (wrapper, wrapper_ty) = wrap_deserialize_with(params, field.ty, path);
quote!({
#wrapper
try!(<#wrapper_ty as _serde::Deserialize>::deserialize(__e)).value
})
}
};
let mut result = quote!(#type_path(#value));
if params.has_getter {
let this = &params.this;
result = quote! {
_serde::export::Into::<#this>::into(#result)
};
}
quote! {
#[inline]
fn visit_newtype_struct<__E>(self, __e: __E) -> _serde::export::Result<Self::Value, __E::Error>
where __E: _serde::Deserializer<'de>
{
_serde::export::Ok(#result)
}
}
}
fn deserialize_struct(
variant_ident: Option<&syn::Ident>,
params: &Parameters,
fields: &[Field],
item_attrs: &attr::Item,
deserializer: Option<Tokens>,
) -> Fragment {
let is_enum = variant_ident.is_some();
let is_untagged = deserializer.is_some();
let this = &params.this;
let (de_impl_generics, de_ty_generics, ty_generics, where_clause) = split_with_de_lifetime(params,);
// If there are getters (implying private fields), construct the local type
// and use an `Into` conversion to get the remote type. If there are no
// getters then construct the target type directly.
let construct = if params.has_getter {
let local = &params.local;
quote!(#local)
} else {
quote!(#this)
};
let type_path = match variant_ident {
Some(variant_ident) => quote!(#construct::#variant_ident),
None => construct,
};
let expecting = match variant_ident {
Some(variant_ident) => format!("struct variant {}::{}", params.type_name(), variant_ident),
None => format!("struct {}", params.type_name()),
};
let visit_seq = Stmts(deserialize_seq(&type_path, params, fields, true, item_attrs),);
let (field_visitor, fields_stmt, visit_map) =
deserialize_struct_visitor(type_path, params, fields, item_attrs);
let field_visitor = Stmts(field_visitor);
let fields_stmt = Stmts(fields_stmt);
let visit_map = Stmts(visit_map);
let visitor_expr = quote! {
__Visitor {
marker: _serde::export::PhantomData::<#this #ty_generics>,
lifetime: _serde::export::PhantomData,
}
};
let dispatch = if let Some(deserializer) = deserializer {
quote! {
_serde::Deserializer::deserialize(#deserializer, #visitor_expr)
}
} else if is_enum {
quote! {
_serde::de::VariantAccess::deserialize_struct(__variant, FIELDS, #visitor_expr)
}
} else {
let type_name = item_attrs.name().deserialize_name();
quote! {
_serde::Deserializer::deserialize_struct(__deserializer, #type_name, FIELDS, #visitor_expr)
}
};
let all_skipped = fields
.iter()
.all(|field| field.attrs.skip_deserializing());
let visitor_var = if all_skipped {
quote!(_)
} else {
quote!(mut __seq)
};
let visit_seq = if is_untagged {
// untagged struct variants do not get a visit_seq method
None
} else {
Some(quote! {
#[inline]
fn visit_seq<__A>(self, #visitor_var: __A) -> _serde::export::Result<Self::Value, __A::Error>
where __A: _serde::de::SeqAccess<'de>
{
#visit_seq
}
})
};
quote_block! {
#field_visitor
struct __Visitor #de_impl_generics #where_clause {
marker: _serde::export::PhantomData<#this #ty_generics>,
lifetime: _serde::export::PhantomData<&'de ()>,
}
impl #de_impl_generics _serde::de::Visitor<'de> for __Visitor #de_ty_generics #where_clause {
type Value = #this #ty_generics;
fn expecting(&self, formatter: &mut _serde::export::Formatter) -> _serde::export::fmt::Result {
_serde::export::Formatter::write_str(formatter, #expecting)
}
#visit_seq
#[inline]
fn visit_map<__A>(self, mut __map: __A) -> _serde::export::Result<Self::Value, __A::Error>
where __A: _serde::de::MapAccess<'de>
{
#visit_map
}
}
#fields_stmt
#dispatch
}
}
fn deserialize_item_enum(
params: &Parameters,
variants: &[Variant],
item_attrs: &attr::Item,
) -> Fragment {
match *item_attrs.tag() {
attr::EnumTag::External => deserialize_externally_tagged_enum(params, variants, item_attrs),
attr::EnumTag::Internal { ref tag } => {
deserialize_internally_tagged_enum(params, variants, item_attrs, tag)
}
attr::EnumTag::Adjacent {
ref tag,
ref content,
} => deserialize_adjacently_tagged_enum(params, variants, item_attrs, tag, content),
attr::EnumTag::None => deserialize_untagged_enum(params, variants, item_attrs),
}
}
fn deserialize_externally_tagged_enum(
params: &Parameters,
variants: &[Variant],
item_attrs: &attr::Item,
) -> Fragment {
let this = &params.this;
let (de_impl_generics, de_ty_generics, ty_generics, where_clause) = split_with_de_lifetime(params,);
let type_name = item_attrs.name().deserialize_name();
let expecting = format!("enum {}", params.type_name());
let variant_names_idents: Vec<_> = variants
.iter()
.enumerate()
.filter(|&(_, variant)| !variant.attrs.skip_deserializing())
.map(|(i, variant)| (variant.attrs.name().deserialize_name(), field_i(i)),)
.collect();
let variants_stmt = {
let variant_names = variant_names_idents.iter().map(|&(ref name, _)| name);
quote! {
const VARIANTS: &'static [&'static str] = &[ #(#variant_names),* ];
}
};
let variant_visitor = Stmts(deserialize_field_visitor(variant_names_idents, item_attrs, true),);
// Match arms to extract a variant from a string
let variant_arms =
variants
.iter()
.enumerate()
.filter(|&(_, variant)| !variant.attrs.skip_deserializing())
.map(
|(i, variant)| {
let variant_name = field_i(i);
let block =
Match(deserialize_externally_tagged_variant(params, variant, item_attrs),);
quote! {
(__Field::#variant_name, __variant) => #block
}
},
);
let all_skipped = variants
.iter()
.all(|variant| variant.attrs.skip_deserializing());
let match_variant = if all_skipped {
// This is an empty enum like `enum Impossible {}` or an enum in which
// all variants have `#[serde(skip_deserializing)]`.
quote! {
// FIXME: Once we drop support for Rust 1.15:
// let _serde::export::Err(__err) = _serde::de::EnumAccess::variant::<__Field>(__data);
// _serde::export::Err(__err)
_serde::export::Result::map(
_serde::de::EnumAccess::variant::<__Field>(__data),
|(__impossible, _)| match __impossible {})
}
} else {
quote! {
match try!(_serde::de::EnumAccess::variant(__data)) {
#(#variant_arms)*
}
}
};
quote_block! {
#variant_visitor
struct __Visitor #de_impl_generics #where_clause {
marker: _serde::export::PhantomData<#this #ty_generics>,
lifetime: _serde::export::PhantomData<&'de ()>,
}
impl #de_impl_generics _serde::de::Visitor<'de> for __Visitor #de_ty_generics #where_clause {
type Value = #this #ty_generics;
fn expecting(&self, formatter: &mut _serde::export::Formatter) -> _serde::export::fmt::Result {
_serde::export::Formatter::write_str(formatter, #expecting)
}
fn visit_enum<__A>(self, __data: __A) -> _serde::export::Result<Self::Value, __A::Error>
where __A: _serde::de::EnumAccess<'de>
{
#match_variant
}
}
#variants_stmt
_serde::Deserializer::deserialize_enum(__deserializer, #type_name, VARIANTS,
__Visitor {
marker: _serde::export::PhantomData::<#this #ty_generics>,
lifetime: _serde::export::PhantomData,
})
}
}
fn deserialize_internally_tagged_enum(
params: &Parameters,
variants: &[Variant],
item_attrs: &attr::Item,
tag: &str,
) -> Fragment {
let variant_names_idents: Vec<_> = variants
.iter()
.enumerate()
.filter(|&(_, variant)| !variant.attrs.skip_deserializing())
.map(|(i, variant)| (variant.attrs.name().deserialize_name(), field_i(i)),)
.collect();
let variants_stmt = {
let variant_names = variant_names_idents.iter().map(|&(ref name, _)| name);
quote! {
const VARIANTS: &'static [&'static str] = &[ #(#variant_names),* ];
}
};
let variant_visitor = Stmts(deserialize_field_visitor(variant_names_idents, item_attrs, true),);
// Match arms to extract a variant from a string
let variant_arms = variants.iter()
.enumerate()
.filter(|&(_, variant)| !variant.attrs.skip_deserializing())
.map(|(i, variant)| {
let variant_name = field_i(i);
let block = Match(deserialize_internally_tagged_variant(
params,
variant,
item_attrs,
quote!(_serde::private::de::ContentDeserializer::<__D::Error>::new(__tagged.content)),
));
quote! {
__Field::#variant_name => #block
}
});
quote_block! {
#variant_visitor
#variants_stmt
let __tagged = try!(_serde::Deserializer::deserialize(
__deserializer,
_serde::private::de::TaggedContentVisitor::<__Field>::new(#tag)));
match __tagged.tag {
#(#variant_arms)*
}
}
}
fn deserialize_adjacently_tagged_enum(
params: &Parameters,
variants: &[Variant],
item_attrs: &attr::Item,
tag: &str,
content: &str,
) -> Fragment {
let this = &params.this;
let (de_impl_generics, de_ty_generics, ty_generics, where_clause) = split_with_de_lifetime(params,);
let variant_names_idents: Vec<_> = variants
.iter()
.enumerate()
.filter(|&(_, variant)| !variant.attrs.skip_deserializing())
.map(|(i, variant)| (variant.attrs.name().deserialize_name(), field_i(i)),)
.collect();
let variants_stmt = {
let variant_names = variant_names_idents.iter().map(|&(ref name, _)| name);
quote! {
const VARIANTS: &'static [&'static str] = &[ #(#variant_names),* ];
}
};
let variant_visitor = Stmts(deserialize_field_visitor(variant_names_idents, item_attrs, true),);
let ref variant_arms: Vec<_> = variants
.iter()
.enumerate()
.filter(|&(_, variant)| !variant.attrs.skip_deserializing())
.map(
|(i, variant)| {
let variant_index = field_i(i);
let block = Match(
deserialize_untagged_variant(
params,
variant,
item_attrs,
quote!(__deserializer),
),
);
quote! {
__Field::#variant_index => #block
}
},
)
.collect();
let expecting = format!("adjacently tagged enum {}", params.type_name());
let type_name = item_attrs.name().deserialize_name();
let tag_or_content = quote! {
_serde::private::de::TagOrContentFieldVisitor {
tag: #tag,
content: #content,
}
};
fn is_unit(variant: &Variant) -> bool {
match variant.style {
Style::Unit => true,
Style::Struct | Style::Tuple | Style::Newtype => false,
}
}
let mut missing_content = quote! {
_serde::export::Err(<__A::Error as _serde::de::Error>::missing_field(#content))
};
if variants.iter().any(is_unit) {
let fallthrough = if variants.iter().all(is_unit) {
None
} else {
Some(
quote! {
_ => #missing_content
},
)
};
let arms = variants
.iter()
.enumerate()
.filter(|&(_, variant)| !variant.attrs.skip_deserializing() && is_unit(variant),)
.map(
|(i, variant)| {
let variant_index = field_i(i);
let variant_ident = &variant.ident;
quote! {
__Field::#variant_index => _serde::export::Ok(#this::#variant_ident),
}
},
);
missing_content = quote! {
match __field {
#(#arms)*
#fallthrough
}
};
}
let visit_third_key = quote! {
// Visit the third key in the map, hopefully there isn't one.
match try!(_serde::de::MapAccess::next_key_seed(&mut __map, #tag_or_content)) {
_serde::export::Some(_serde::private::de::TagOrContentField::Tag) => {
_serde::export::Err(<__A::Error as _serde::de::Error>::duplicate_field(#tag))
}
_serde::export::Some(_serde::private::de::TagOrContentField::Content) => {
_serde::export::Err(<__A::Error as _serde::de::Error>::duplicate_field(#content))
}
_serde::export::None => _serde::export::Ok(__ret),
}
};
quote_block! {
#variant_visitor
#variants_stmt
struct __Seed #de_impl_generics #where_clause {
field: __Field,
marker: _serde::export::PhantomData<#this #ty_generics>,
lifetime: _serde::export::PhantomData<&'de ()>,
}
impl #de_impl_generics _serde::de::DeserializeSeed<'de> for __Seed #de_ty_generics #where_clause {
type Value = #this #ty_generics;
fn deserialize<__D>(self, __deserializer: __D) -> _serde::export::Result<Self::Value, __D::Error>
where __D: _serde::Deserializer<'de>
{
match self.field {
#(#variant_arms)*
}
}
}
struct __Visitor #de_impl_generics #where_clause {
marker: _serde::export::PhantomData<#this #ty_generics>,
lifetime: _serde::export::PhantomData<&'de ()>,
}
impl #de_impl_generics _serde::de::Visitor<'de> for __Visitor #de_ty_generics #where_clause {
type Value = #this #ty_generics;
fn expecting(&self, formatter: &mut _serde::export::Formatter) -> _serde::export::fmt::Result {
_serde::export::Formatter::write_str(formatter, #expecting)
}
fn visit_map<__A>(self, mut __map: __A) -> _serde::export::Result<Self::Value, __A::Error>
where __A: _serde::de::MapAccess<'de>
{
// Visit the first key.
match try!(_serde::de::MapAccess::next_key_seed(&mut __map, #tag_or_content)) {
// First key is the tag.
_serde::export::Some(_serde::private::de::TagOrContentField::Tag) => {
// Parse the tag.
let __field = try!(_serde::de::MapAccess::next_value(&mut __map));
// Visit the second key.
match try!(_serde::de::MapAccess::next_key_seed(&mut __map, #tag_or_content)) {
// Second key is a duplicate of the tag.
_serde::export::Some(_serde::private::de::TagOrContentField::Tag) => {
_serde::export::Err(<__A::Error as _serde::de::Error>::duplicate_field(#tag))
}
// Second key is the content.
_serde::export::Some(_serde::private::de::TagOrContentField::Content) => {
let __ret = try!(_serde::de::MapAccess::next_value_seed(&mut __map,
__Seed {
field: __field,
marker: _serde::export::PhantomData,
lifetime: _serde::export::PhantomData,
}));
// Visit the third key, hopefully there isn't one.
#visit_third_key
}
// There is no second key; might be okay if the we have a unit variant.
_serde::export::None => #missing_content
}
}
// First key is the content.
_serde::export::Some(_serde::private::de::TagOrContentField::Content) => {
// Buffer up the content.
let __content = try!(_serde::de::MapAccess::next_value::<_serde::private::de::Content>(&mut __map));
// Visit the second key.
match try!(_serde::de::MapAccess::next_key_seed(&mut __map, #tag_or_content)) {
// Second key is the tag.
_serde::export::Some(_serde::private::de::TagOrContentField::Tag) => {
let __deserializer = _serde::private::de::ContentDeserializer::<__A::Error>::new(__content);
// Parse the tag.
let __ret = try!(match try!(_serde::de::MapAccess::next_value(&mut __map)) {
// Deserialize the buffered content now that we know the variant.
#(#variant_arms)*
});
// Visit the third key, hopefully there isn't one.
#visit_third_key
}
// Second key is a duplicate of the content.
_serde::export::Some(_serde::private::de::TagOrContentField::Content) => {
_serde::export::Err(<__A::Error as _serde::de::Error>::duplicate_field(#content))
}
// There is no second key.
_serde::export::None => {
_serde::export::Err(<__A::Error as _serde::de::Error>::missing_field(#tag))
}
}
}
// There is no first key.
_serde::export::None => {
_serde::export::Err(<__A::Error as _serde::de::Error>::missing_field(#tag))
}
}
}
fn visit_seq<__A>(self, mut __seq: __A) -> _serde::export::Result<Self::Value, __A::Error>
where __A: _serde::de::SeqAccess<'de>
{
// Visit the first element - the tag.
match try!(_serde::de::SeqAccess::next_element(&mut __seq)) {
_serde::export::Some(__field) => {
// Visit the second element - the content.
match try!(_serde::de::SeqAccess::next_element_seed(&mut __seq,
__Seed {
field: __field,
marker: _serde::export::PhantomData,
lifetime: _serde::export::PhantomData,
})) {
_serde::export::Some(__ret) => _serde::export::Ok(__ret),
// There is no second element.
_serde::export::None => {
_serde::export::Err(_serde::de::Error::invalid_length(1, &self))
}
}
}
// There is no first element.
_serde::export::None => {
_serde::export::Err(_serde::de::Error::invalid_length(0, &self))
}
}
}
}
const FIELDS: &'static [&'static str] = &[#tag, #content];
_serde::Deserializer::deserialize_struct(__deserializer, #type_name, FIELDS,
__Visitor {
marker: _serde::export::PhantomData::<#this #ty_generics>,
lifetime: _serde::export::PhantomData,
})
}
}
fn deserialize_untagged_enum(
params: &Parameters,
variants: &[Variant],
item_attrs: &attr::Item,
) -> Fragment {
let attempts = variants
.iter()
.filter(|variant| !variant.attrs.skip_deserializing())
.map(
|variant| {
Expr(deserialize_untagged_variant(
params,
variant,
item_attrs,
quote!(_serde::private::de::ContentRefDeserializer::<__D::Error>::new(&__content)),
))
},
);
// TODO this message could be better by saving the errors from the failed
// attempts. The heuristic used by TOML was to count the number of fields
// processed before an error, and use the error that happened after the
// largest number of fields. I'm not sure I like that. Maybe it would be
// better to save all the errors and combine them into one message that
// explains why none of the variants matched.
let fallthrough_msg =
format!("data did not match any variant of untagged enum {}", params.type_name());
quote_block! {
let __content = try!(<_serde::private::de::Content as _serde::Deserialize>::deserialize(__deserializer));
#(
if let _serde::export::Ok(__ok) = #attempts {
return _serde::export::Ok(__ok);
}
)*
_serde::export::Err(_serde::de::Error::custom(#fallthrough_msg))
}
}
fn deserialize_externally_tagged_variant(
params: &Parameters,
variant: &Variant,
item_attrs: &attr::Item,
) -> Fragment {
let variant_ident = &variant.ident;
match variant.style {
Style::Unit => {
let this = &params.this;
quote_block! {
try!(_serde::de::VariantAccess::deserialize_unit(__variant));
_serde::export::Ok(#this::#variant_ident)
}
}
Style::Newtype => {
deserialize_externally_tagged_newtype_variant(variant_ident, params, &variant.fields[0])
}
Style::Tuple => {
deserialize_tuple(
Some(variant_ident),
params,
&variant.fields,
item_attrs,
None,
)
}
Style::Struct => {
deserialize_struct(
Some(variant_ident),
params,
&variant.fields,
item_attrs,
None,
)
}
}
}
fn deserialize_internally_tagged_variant(
params: &Parameters,
variant: &Variant,
item_attrs: &attr::Item,
deserializer: Tokens,
) -> Fragment {
let variant_ident = &variant.ident;
match variant.style {
Style::Unit => {
let this = &params.this;
let type_name = params.type_name();
let variant_name = variant.ident.as_ref();
quote_block! {
try!(_serde::Deserializer::deserialize(#deserializer, _serde::private::de::InternallyTaggedUnitVisitor::new(#type_name, #variant_name)));
_serde::export::Ok(#this::#variant_ident)
}
}
Style::Newtype | Style::Struct => {
deserialize_untagged_variant(params, variant, item_attrs, deserializer)
}
Style::Tuple => unreachable!("checked in serde_codegen_internals"),
}
}
fn deserialize_untagged_variant(
params: &Parameters,
variant: &Variant,
item_attrs: &attr::Item,
deserializer: Tokens,
) -> Fragment {
let variant_ident = &variant.ident;
match variant.style {
Style::Unit => {
let this = &params.this;
let type_name = params.type_name();
let variant_name = variant.ident.as_ref();
quote_expr! {
_serde::export::Result::map(
_serde::Deserializer::deserialize(
#deserializer,
_serde::private::de::UntaggedUnitVisitor::new(#type_name, #variant_name)
),
|()| #this::#variant_ident)
}
}
Style::Newtype => {
deserialize_untagged_newtype_variant(
variant_ident,
params,
&variant.fields[0],
deserializer,
)
}
Style::Tuple => {
deserialize_tuple(
Some(variant_ident),
params,
&variant.fields,
item_attrs,
Some(deserializer),
)
}
Style::Struct => {
deserialize_struct(
Some(variant_ident),
params,
&variant.fields,
item_attrs,
Some(deserializer),
)
}
}
}
fn deserialize_externally_tagged_newtype_variant(
variant_ident: &syn::Ident,
params: &Parameters,
field: &Field,
) -> Fragment {
let this = &params.this;
match field.attrs.deserialize_with() {
None => {
let field_ty = &field.ty;
quote_expr! {
_serde::export::Result::map(
_serde::de::VariantAccess::deserialize_newtype::<#field_ty>(__variant),
#this::#variant_ident)
}
}
Some(path) => {
let (wrapper, wrapper_ty) = wrap_deserialize_with(params, field.ty, path);
quote_block! {
#wrapper
_serde::export::Result::map(
_serde::de::VariantAccess::deserialize_newtype::<#wrapper_ty>(__variant),
|__wrapper| #this::#variant_ident(__wrapper.value))
}
}
}
}
fn deserialize_untagged_newtype_variant(
variant_ident: &syn::Ident,
params: &Parameters,
field: &Field,
deserializer: Tokens,
) -> Fragment {
let this = &params.this;
match field.attrs.deserialize_with() {
None => {
let field_ty = &field.ty;
quote_expr! {
_serde::export::Result::map(
<#field_ty as _serde::Deserialize>::deserialize(#deserializer),
#this::#variant_ident)
}
}
Some(path) => {
let (wrapper, wrapper_ty) = wrap_deserialize_with(params, field.ty, path);
quote_block! {
#wrapper
_serde::export::Result::map(
<#wrapper_ty as _serde::Deserialize>::deserialize(#deserializer),
|__wrapper| #this::#variant_ident(__wrapper.value))
}
}
}
}
fn deserialize_field_visitor(
fields: Vec<(String, Ident)>,
item_attrs: &attr::Item,
is_variant: bool,
) -> Fragment {
let field_strs = fields.iter().map(|&(ref name, _)| name);
let field_bytes = fields.iter().map(|&(ref name, _)| quote::ByteStr(name));
let field_idents: &Vec<_> = &fields.iter().map(|&(_, ref ident)| ident).collect();
let ignore_variant = if is_variant || item_attrs.deny_unknown_fields() {
None
} else {
Some(quote!(__ignore,))
};
let visit_index = if is_variant {
let variant_indices = 0u32..;
let fallthrough_msg = format!("variant index 0 <= i < {}", fields.len());
Some(
quote! {
fn visit_u32<__E>(self, __value: u32) -> _serde::export::Result<__Field, __E>
where __E: _serde::de::Error
{
match __value {
#(
#variant_indices => _serde::export::Ok(__Field::#field_idents),
)*
_ => _serde::export::Err(_serde::de::Error::invalid_value(
_serde::de::Unexpected::Unsigned(__value as u64),
&#fallthrough_msg))
}
}
},
)
} else {
None
};
let fallthrough_arm = if is_variant {
quote! {
_serde::export::Err(_serde::de::Error::unknown_variant(__value, VARIANTS))
}
} else if item_attrs.deny_unknown_fields() {
quote! {
_serde::export::Err(_serde::de::Error::unknown_field(__value, FIELDS))
}
} else {
quote! {
_serde::export::Ok(__Field::__ignore)
}
};
let bytes_to_str = if is_variant || item_attrs.deny_unknown_fields() {
Some(
quote! {
let __value = &_serde::export::from_utf8_lossy(__value);
},
)
} else {
None
};
quote_block! {
#[allow(non_camel_case_types)]
enum __Field {
#(#field_idents,)*
#ignore_variant
}
impl<'de> _serde::Deserialize<'de> for __Field {
#[inline]
fn deserialize<__D>(__deserializer: __D) -> _serde::export::Result<__Field, __D::Error>
where __D: _serde::Deserializer<'de>
{
struct __FieldVisitor;
impl<'de> _serde::de::Visitor<'de> for __FieldVisitor {
type Value = __Field;
fn expecting(&self, formatter: &mut _serde::export::Formatter) -> _serde::export::fmt::Result {
_serde::export::Formatter::write_str(formatter, "field name")
}
#visit_index
fn visit_str<__E>(self, __value: &str) -> _serde::export::Result<__Field, __E>
where __E: _serde::de::Error
{
match __value {
#(
#field_strs => _serde::export::Ok(__Field::#field_idents),
)*
_ => #fallthrough_arm
}
}
fn visit_bytes<__E>(self, __value: &[u8]) -> _serde::export::Result<__Field, __E>
where __E: _serde::de::Error
{
match __value {
#(
#field_bytes => _serde::export::Ok(__Field::#field_idents),
)*
_ => {
#bytes_to_str
#fallthrough_arm
}
}
}
}
_serde::Deserializer::deserialize_identifier(__deserializer, __FieldVisitor)
}
}
}
}
fn deserialize_struct_visitor(
struct_path: Tokens,
params: &Parameters,
fields: &[Field],
item_attrs: &attr::Item,
) -> (Fragment, Fragment, Fragment) {
let field_names_idents: Vec<_> = fields
.iter()
.enumerate()
.filter(|&(_, field)| !field.attrs.skip_deserializing())
.map(|(i, field)| (field.attrs.name().deserialize_name(), field_i(i)),)
.collect();
let fields_stmt = {
let field_names = field_names_idents.iter().map(|&(ref name, _)| name);
quote_block! {
const FIELDS: &'static [&'static str] = &[ #(#field_names),* ];
}
};
let field_visitor = deserialize_field_visitor(field_names_idents, item_attrs, false);
let visit_map = deserialize_map(struct_path, params, fields, item_attrs);
(field_visitor, fields_stmt, visit_map)
}
fn deserialize_map(
struct_path: Tokens,
params: &Parameters,
fields: &[Field],
item_attrs: &attr::Item,
) -> Fragment {
// Create the field names for the fields.
let fields_names: Vec<_> = fields
.iter()
.enumerate()
.map(|(i, field)| (field, field_i(i)))
.collect();
// Declare each field that will be deserialized.
let let_values = fields_names
.iter()
.filter(|&&(field, _)| !field.attrs.skip_deserializing())
.map(
|&(field, ref name)| {
let field_ty = &field.ty;
quote! {
let mut #name: _serde::export::Option<#field_ty> = _serde::export::None;
}
},
);
// Match arms to extract a value for a field.
let value_arms = fields_names.iter()
.filter(|&&(field, _)| !field.attrs.skip_deserializing())
.map(|&(field, ref name)| {
let deser_name = field.attrs.name().deserialize_name();
let visit = match field.attrs.deserialize_with() {
None => {
let field_ty = &field.ty;
quote! {
try!(_serde::de::MapAccess::next_value::<#field_ty>(&mut __map))
}
}
Some(path) => {
let (wrapper, wrapper_ty) = wrap_deserialize_with(
params, field.ty, path);
quote!({
#wrapper
try!(_serde::de::MapAccess::next_value::<#wrapper_ty>(&mut __map)).value
})
}
};
quote! {
__Field::#name => {
if _serde::export::Option::is_some(&#name) {
return _serde::export::Err(<__A::Error as _serde::de::Error>::duplicate_field(#deser_name));
}
#name = _serde::export::Some(#visit);
}
}
});
// Visit ignored values to consume them
let ignored_arm = if item_attrs.deny_unknown_fields() {
None
} else {
Some(quote! {
_ => { let _ = try!(_serde::de::MapAccess::next_value::<_serde::de::IgnoredAny>(&mut __map)); }
})
};
let all_skipped = fields
.iter()
.all(|field| field.attrs.skip_deserializing());
let match_keys = if item_attrs.deny_unknown_fields() && all_skipped {
quote! {
// FIXME: Once we drop support for Rust 1.15:
// let _serde::export::None::<__Field> = try!(_serde::de::MapAccess::next_key(&mut __map));
_serde::export::Option::map(
try!(_serde::de::MapAccess::next_key::<__Field>(&mut __map)),
|__impossible| match __impossible {});
}
} else {
quote! {
while let _serde::export::Some(__key) = try!(_serde::de::MapAccess::next_key::<__Field>(&mut __map)) {
match __key {
#(#value_arms)*
#ignored_arm
}
}
}
};
let extract_values = fields_names
.iter()
.filter(|&&(field, _)| !field.attrs.skip_deserializing())
.map(
|&(field, ref name)| {
let missing_expr = Match(expr_is_missing(&field, item_attrs));
quote! {
let #name = match #name {
_serde::export::Some(#name) => #name,
_serde::export::None => #missing_expr
};
}
},
);
let result = fields_names
.iter()
.map(
|&(field, ref name)| {
let ident = field
.ident
.clone()
.expect("struct contains unnamed fields");
if field.attrs.skip_deserializing() {
let value = Expr(expr_is_missing(&field, item_attrs));
quote!(#ident: #value)
} else {
quote!(#ident: #name)
}
},
);
let let_default = match *item_attrs.default() {
attr::Default::Default => {
Some(
quote!(
let __default: Self::Value = _serde::export::Default::default();
),
)
}
attr::Default::Path(ref path) => {
Some(
quote!(
let __default: Self::Value = #path();
),
)
}
attr::Default::None => {
// We don't need the default value, to prevent an unused variable warning
// we'll leave the line empty.
None
}
};
let mut result = quote!(#struct_path { #(#result),* });
if params.has_getter {
let this = &params.this;
result = quote! {
_serde::export::Into::<#this>::into(#result)
};
}
quote_block! {
#(#let_values)*
#match_keys
#let_default
#(#extract_values)*
_serde::export::Ok(#result)
}
}
fn field_i(i: usize) -> Ident {
Ident::new(format!("__field{}", i))
}
/// This function wraps the expression in `#[serde(deserialize_with = "...")]`
/// in a trait to prevent it from accessing the internal `Deserialize` state.
fn wrap_deserialize_with(
params: &Parameters,
field_ty: &syn::Ty,
deserialize_with: &syn::Path,
) -> (Tokens, Tokens) {
let this = &params.this;
let (de_impl_generics, de_ty_generics, ty_generics, where_clause) = split_with_de_lifetime(params,);
let wrapper = quote! {
struct __DeserializeWith #de_impl_generics #where_clause {
value: #field_ty,
phantom: _serde::export::PhantomData<#this #ty_generics>,
lifetime: _serde::export::PhantomData<&'de ()>,
}
impl #de_impl_generics _serde::Deserialize<'de> for __DeserializeWith #de_ty_generics #where_clause {
fn deserialize<__D>(__deserializer: __D) -> _serde::export::Result<Self, __D::Error>
where __D: _serde::Deserializer<'de>
{
_serde::export::Ok(__DeserializeWith {
value: try!(#deserialize_with(__deserializer)),
phantom: _serde::export::PhantomData,
lifetime: _serde::export::PhantomData,
})
}
}
};
let wrapper_ty = quote!(__DeserializeWith #de_ty_generics);
(wrapper, wrapper_ty)
}
fn expr_is_missing(field: &Field, item_attrs: &attr::Item) -> Fragment {
match *field.attrs.default() {
attr::Default::Default => {
return quote_expr!(_serde::export::Default::default());
}
attr::Default::Path(ref path) => {
return quote_expr!(#path());
}
attr::Default::None => { /* below */ }
}
match *item_attrs.default() {
attr::Default::Default |
attr::Default::Path(_) => {
let ident = &field.ident;
return quote_expr!(__default.#ident);
}
attr::Default::None => { /* below */ }
}
let name = field.attrs.name().deserialize_name();
match field.attrs.deserialize_with() {
None => {
quote_expr! {
try!(_serde::private::de::missing_field(#name))
}
}
Some(_) => {
quote_expr! {
return _serde::export::Err(<__A::Error as _serde::de::Error>::missing_field(#name))
}
}
}
}
struct DeImplGenerics<'a>(&'a Parameters);
impl<'a> ToTokens for DeImplGenerics<'a> {
fn to_tokens(&self, tokens: &mut Tokens) {
let mut generics = self.0.generics.clone();
generics.lifetimes.insert(0, self.0.de_lifetime_def());
let (impl_generics, _, _) = generics.split_for_impl();
impl_generics.to_tokens(tokens);
}
}
struct DeTyGenerics<'a>(&'a syn::Generics);
impl<'a> ToTokens for DeTyGenerics<'a> {
fn to_tokens(&self, tokens: &mut Tokens) {
let mut generics = self.0.clone();
generics
.lifetimes
.insert(0, syn::LifetimeDef::new("'de"));
let (_, ty_generics, _) = generics.split_for_impl();
ty_generics.to_tokens(tokens);
}
}
fn split_with_de_lifetime(params: &Parameters,)
-> (DeImplGenerics, DeTyGenerics, syn::TyGenerics, &syn::WhereClause) {
let de_impl_generics = DeImplGenerics(&params);
let de_ty_generics = DeTyGenerics(&params.generics);
let (_, ty_generics, where_clause) = params.generics.split_for_impl();
(de_impl_generics, de_ty_generics, ty_generics, where_clause)
}