Serde Rust Serialization Framework ================================== [![Build Status](https://api.travis-ci.org/serde-rs/serde.png?branch=master)](https://travis-ci.org/serde-rs/serde) [![Latest Version](https://img.shields.io/crates/v/serde.svg)](https://crates.io/crates/serde) Serde is a powerful framework that enables serialization libraries to generically serialize Rust data structures without the overhead of runtime type information. In many situations, the handshake protocol between serializers and serializees can be completely optimized away, leaving Serde to perform roughly the same speed as a hand written serializer for a specific type. Documentation is available at http://serde-rs.github.io/serde/serde Making a Type Serializable ========================== The simplest way to make a type serializable is to use the `serde_macros` syntax extension, which comes with a `#[derive(Serialize, Deserialize)]` annotation, which automatically generates implementations of [Serialize](http://serde-rs.github.io/serde/serde/ser/trait.Serialize.html) and [Deserialize](http://serde-rs.github.io/serde/serde/de/trait.Deserialize.html) for the annotated type: ```rust #[feature(custom_derive, plugin)] #[plugin(serde_macros)] extern crate serde; ... #[derive(Serialize, Deserialize)] struct Point { x: i32, y: i32, } ``` Serde bundles a high performance JSON serializer and deserializer, [serde::json](http://serde-rs.github.io/serde/serde/json/index.html), which comes with the helper functions [to_string](http://serde-rs.github.io/serde/serde/json/ser/fn.to_string.html) and [from_str](http://serde-rs.github.io/serde/serde/json/de/fn.from_str.html) that make it easy to go to and from JSON: ```rust use serde::json; ... let point = Point { x: 1, y: 2 }; let serialized_point = json::to_string(&point).unwrap(); println!("{}", serialized_point); // prints: {"x":1,"y":2} let deserialize_point: Point = json::from_str(&serialized_point).unwrap(); ``` [serde::json](http://serde-rs.github.io/serde/serde/json/index.html) also supports a generic [Value](http://serde-rs.github.io/serde/serde/json/value/enum.Value.html) type, which can represent any JSON value. Also, any [Serialize](http://serde-rs.github.io/serde/serde/ser/trait.Serialize.html) and [Deserialize](http://serde-rs.github.io/serde/serde/de/trait.Deserialize.html) can be converted into a [Value](http://serde-rs.github.io/serde/serde/json/value/enum.Value.html) with the methods [to_value](http://serde-rs.github.io/serde/serde/json/value/fn.to_value.html) and [from_value](http://serde-rs.github.io/serde/serde/json/value/fn.from_value.html): ```rust let point = Point { x: 1, y: 2 }; let point_value = json::to_value(&point).unwrap(); println!("{}", point_value.find("x")); // prints: Some(1) let deserialize_point: Point = json::from_value(point_value).unwrap(); ``` Serialization without Macros ============================ Under the covers, Serde extensively uses the Visitor pattern to thread state between the [Serializer](http://serde-rs.github.io/serde/serde/ser/trait.Serializer.html) and [Serialize](http://serde-rs.github.io/serde/serde/ser/trait.Serialize.html) without the two having specific information about each other's concrete type. This has many of the same benefits as frameworks that use runtime type information without the overhead. In fact, when compiling with optimizations, Rust is able to remove most or all the visitor state, and generate code that's nearly as fast as a hand written serializer format for a specific type. To see it in action, lets look at how a simple type like `i32` is serialized. The [Serializer](http://serde-rs.github.io/serde/serde/ser/trait.Serializer.html) is threaded through the type: ```rust impl serde::Serialize for i32 { fn serialize(&self, serializer: &mut S) -> Result<(), S::Error> where S: serde::Serializer, { serializer.visit_i32(*self) } } ``` As you can see it's pretty simple. More complex types like `BTreeMap` need to pass a [MapVisitor](http://serde-rs.github.io/serde/serde/ser/trait.MapVisitor.html) to the [Serializer](http://serde-rs.github.io/serde/serde/ser/trait.Serializer.html) in order to walk through the type: ```rust impl Serialize for BTreeMap where K: Serialize + Ord, V: Serialize, { #[inline] fn serialize(&self, serializer: &mut S) -> Result<(), S::Error> where S: Serializer, { serializer.visit_map(MapIteratorVisitor::new(self.iter(), Some(self.len()))) } } pub struct MapIteratorVisitor { iter: Iter, len: Option, } impl MapIteratorVisitor where Iter: Iterator { #[inline] pub fn new(iter: Iter, len: Option) -> MapIteratorVisitor { MapIteratorVisitor { iter: iter, len: len, } } } impl MapVisitor for MapIteratorVisitor where K: Serialize, V: Serialize, I: Iterator, { #[inline] fn visit(&mut self, serializer: &mut S) -> Result, S::Error> where S: Serializer, { match self.iter.next() { Some((key, value)) => { let value = try!(serializer.visit_map_elt(key, value)); Ok(Some(value)) } None => Ok(None) } } #[inline] fn len(&self) -> Option { self.len } } ``` Serializing structs follow this same pattern. In fact, structs are represented as a named map. It's visitor uses a simple state machine to iterate through all the fields: ```rust struct Point { x: i32, y: i32, } impl serde::Serialize for Point { fn serialize(&self, serializer: &mut S) -> Result<(), S::Error> where S: serde::Serializer { serializer.visit_named_map("Point", PointMapVisitor { value: self, state: 0, }) } } struct PointMapVisitor<'a> { value: &'a Point, state: u8, } impl<'a> serde::ser::MapVisitor for PointMapVisitor<'a> { fn visit(&mut self, serializer: &mut S) -> Result, S::Error> where S: serde::Serializer { match self.state { 0 => { self.state += 1; Ok(Some(try!(serializer.visit_map_elt("x", &self.value.x)))) } 1 => { self.state += 1; Ok(Some(try!(serializer.visit_map_elt("y", &self.value.y)))) } _ => { Ok(None) } } } } ``` Deserialization without Macros ============================== Deserialization is a little more complicated since there's a bit more error handling that needs to occur. Let's start with the simple `i32` [Deserialize](http://serde-rs.github.io/serde/serde/de/trait.Deserialize.html) implementation. It passes a [Visitor](http://serde-rs.github.io/serde/serde/de/trait.Visitor.html) to the [Deserializer](http://serde-rs.github.io/serde/serde/de/trait.Deserializer.html). The [Visitor](http://serde-rs.github.io/serde/serde/de/trait.Visitor.html) can create the `i32` from a variety of different types: ```rust impl Deserialize for i32 { fn deserialize(deserializer: &mut D) -> Result where D: serde::Deserializer, { deserializer.visit(I32Visitor) } } struct I32Visitor; impl serde::de::Visitor for I32Visitor { type Value = i32; fn visit_i16(&mut self, value: i16) -> Result where E: Error, { self.visit_i32(value as i32) } fn visit_i32(&mut self, value: i32) -> Result where E: Error, { Ok(value) } ... ``` Since it's possible for this type to get passed an unexpected type, we need a way to error out. This is done by way of the [Error](http://serde-rs.github.io/serde/serde/de/trait.Error.html) trait, which allows a [Deserialize](http://serde-rs.github.io/serde/serde/de/trait.Deserialize.html) to generate an error for a few common error conditions. Here's how it could be used: ```rust ... fn visit_string(&mut self, _: String) -> Result where E: Error, { Err(serde::de::Error::syntax_error()) } ... ``` Maps follow a similar pattern as before, and use a [MapVisitor](http://serde-rs.github.io/serde/serde/de/trait.MapVisitor.html) to walk through the values generated by the [Deserializer](http://serde-rs.github.io/serde/serde/de/trait.Deserializer.html). ```rust impl serde::Deserialize for BTreeMap where K: serde::Deserialize + Eq + Ord, V: serde::Deserialize, { fn deserialize(deserializer: &mut D) -> Result, D::Error> where D: serde::Deserializer, { deserializer.visit(BTreeMapVisitor::new()) } } pub struct BTreeMapVisitor { marker: PhantomData>, } impl BTreeMapVisitor { pub fn new() -> Self { BTreeMapVisitor { marker: PhantomData, } } } impl serde::de::Visitor for BTreeMapVisitor where K: serde::de::Deserialize + Ord, V: serde::de::Deserialize { type Value = BTreeMap; fn visit_unit(&mut self) -> Result, E> where E: Error, { Ok(BTreeMap::new()) } fn visit_map(&mut self, mut visitor: V_) -> Result, V_::Error> where V_: MapVisitor, { let mut values = BTreeMap::new(); while let Some((key, value)) = try!(visitor.visit()) { values.insert(key, value); } try!(visitor.end()); Ok(values) } } ``` Deserializing structs goes a step further in order to support not allocating a `String` to hold the field names. This is done by custom field enum that deserializes an enum variant from a string. So for our `Point` example from before, we need to generate: ```rust enum PointField { X, Y, } impl serde::Deserialize for PointField { fn deserialize(deserializer: &mut D) -> Result where D: serde::de::Deserializer { struct FieldVisitor; impl serde::de::Visitor for FieldVisitor { type Value = Field; fn visit_str(&mut self, value: &str) -> Result where E: serde::de::Error { match value { "x" => Ok(Field::X), "y" => Ok(Field::Y), _ => Err(serde::de::Error::syntax_error()), } } } deserializer.visit(FieldVisitor) } } ``` This is then used in our actual deserializer: ```rust impl serde::Deserialize for Point { fn deserialize(deserializer: &mut D) -> Result where D: serde::de::Deserializer { deserializer.visit_named_map("Point", PointVisitor) } } struct PointVisitor; impl serde::de::Visitor for PointVisitor { type Value = Point; fn visit_map(&mut self, mut visitor: V) -> Result where V: serde::de::MapVisitor { let mut x = None; let mut y = None; loop { match try!(visitor.visit_key()) { Some(Field::X) => { x = Some(try!(visitor.visit_value())); } Some(Field::Y) => { y = Some(try!(visitor.visit_value())); } None => { break; } } } let x = match x { Some(x) => x, None => try!(visitor.missing_field("x")), }; let y = match y { Some(y) => y, None => try!(visitor.missing_field("y")), }; try!(visitor.end()); Ok(Point{ x: x, y: y }) } } ```