Serde Rust Serialization Framework ================================== [![Build Status](https://api.travis-ci.org/serde-rs/serde.svg?branch=master)](https://travis-ci.org/serde-rs/serde) [![Coverage Status](https://coveralls.io/repos/serde-rs/serde/badge.svg?branch=master&service=github)](https://coveralls.io/github/serde-rs/serde?branch=master) [![Latest Version](https://img.shields.io/crates/v/serde.svg)](https://crates.io/crates/serde) Serde is a powerful framework that enables serialization libraries to generically serialize Rust data structures without the overhead of runtime type information. In many situations, the handshake protocol between serializers and serializees can be completely optimized away, leaving Serde to perform roughly the same speed as a hand written serializer for a specific type. Documentation is available at: * [serde](https://serde-rs.github.io/serde/serde/serde/index.html) * [serde\_json](https://serde-rs.github.io/serde/serde_json/serde_json/index.html) * [serde\_codegen](https://serde-rs.github.io/serde/serde_codegen/serde_codegen/index.html) Using Serde with Nightly Rust and serde\_macros =============================================== Here is a simple example that demonstrates how to use Serde by serializing and deserializing to JSON. Serde comes with some powerful code generation libraries that work with Stable and Nightly Rust that eliminate much of the complexity of hand rolling serialization and deserialization for a given type. First lets see how we would use Nightly Rust, which is currently a bit simpler than Stable Rust: `Cargo.toml`: ```toml [package] name = "serde_example_nightly" version = "0.1.0" authors = ["Erick Tryzelaar "] [dependencies] serde = "*" serde_json = "*" serde_macros = "*" ``` `src/main.rs` ```rust #![feature(custom_derive, plugin)] #![plugin(serde_macros)] extern crate serde; extern crate serde_json; #[derive(Serialize, Deserialize, Debug)] struct Point { x: i32, y: i32, } fn main() { let point = Point { x: 1, y: 2 }; let serialized = serde_json::to_string(&point).unwrap(); println!("{}", serialized); let deserialized: Point = serde_json::from_str(&serialized).unwrap(); println!("{:?}", deserialized); } ``` When run, it produces: ``` % cargo run {"x":1,"y":2} Point { x: 1, y: 2 } ``` Using Serde with Stable Rust, syntex, and serde\_codegen ======================================================== Stable Rust is a little more complicated because it does not yet support compiler plugins. Instead we need to use the code generation library [syntex](https://github.com/erickt/rust-syntex) for this: ```toml [package] name = "serde_example" version = "0.1.0" authors = ["Erick Tryzelaar "] build = "build.rs" [build-dependencies] serde_codegen = "*" syntex = "*" [dependencies] serde = "*" serde_json = "*" ``` `src/main.rs`: ```rust extern crate serde; extern crate serde_json; include!(concat!(env!("OUT_DIR"), "/main.rs")); ``` `src/main.rs.in`: ```rust #[derive(Serialize, Deserialize, Debug)] struct Point { x: i32, y: i32, } fn main() { let point = Point { x: 1, y: 2 }; let serialized = serde_json::to_string(&point).unwrap(); println!("{}", serialized); let deserialized: Point = serde_json::from_str(&serialized).unwrap(); println!("{:?}", deserialized); } ``` This also produces: ``` % cargo run {"x":1,"y":2} Point { x: 1, y: 2 } ``` While this works well with Stable Rust, be aware that the error locations currently are reported in the generated file instead of in the source file. You may find it easier to develop with Nightly Rust and `serde\_macros`, then deploy with Stable Rust and `serde_codegen`. It's possible to combine both approaches in one setup: `Cargo.toml`: ```toml [package] name = "serde_example" version = "0.1.0" authors = ["Erick Tryzelaar "] build = "build.rs" [features] default = ["serde_codegen"] nightly = ["serde_macros"] [build-dependencies] serde_codegen = { version = "*", optional = true } syntex = "*" [dependencies] serde = "*" serde_json = "*" serde_macros = { version = "*", optional = true } ``` `build.rs`: ```rust #[cfg(not(feature = "serde_macros"))] mod inner { extern crate syntex; extern crate serde_codegen; use std::env; use std::path::Path; pub fn main() { let out_dir = env::var_os("OUT_DIR").unwrap(); let src = Path::new("src/main.rs.in"); let dst = Path::new(&out_dir).join("main.rs"); let mut registry = syntex::Registry::new(); serde_codegen::register(&mut registry); registry.expand("", &src, &dst).unwrap(); } } #[cfg(feature = "serde_macros")] mod inner { pub fn main() {} } fn main() { inner::main(); } ``` `src/main.rs`: ```rust #![cfg_attr(feature = "serde_macros", feature(custom_derive, plugin))] #![cfg_attr(feature = "serde_macros", plugin(serde_macros))] extern crate serde; extern crate serde_json; #[cfg(feature = "serde_macros")] include!("main.rs.in"); #[cfg(not(feature = "serde_macros"))] include!(concat!(env!("OUT_DIR"), "/main.rs")); ``` The `src/main.rs.in` is the same as before. Then to run with stable: ``` % cargo build ... ``` Or with nightly: ```rust % cargo build --features nightly --no-default-features ... ``` Serialization without Macros ============================ Under the covers, Serde extensively uses the Visitor pattern to thread state between the [Serializer](http://serde-rs.github.io/serde/serde/ser/trait.Serializer.html) and [Serialize](http://serde-rs.github.io/serde/serde/ser/trait.Serialize.html) without the two having specific information about each other's concrete type. This has many of the same benefits as frameworks that use runtime type information without the overhead. In fact, when compiling with optimizations, Rust is able to remove most or all the visitor state, and generate code that's nearly as fast as a hand written serializer format for a specific type. To see it in action, lets look at how a simple type like `i32` is serialized. The [Serializer](http://serde-rs.github.io/serde/serde/ser/trait.Serializer.html) is threaded through the type: ```rust impl serde::Serialize for i32 { fn serialize(&self, serializer: &mut S) -> Result<(), S::Error> where S: serde::Serializer, { serializer.visit_i32(*self) } } ``` As you can see it's pretty simple. More complex types like `BTreeMap` need to pass a [MapVisitor](http://serde-rs.github.io/serde/serde/ser/trait.MapVisitor.html) to the [Serializer](http://serde-rs.github.io/serde/serde/ser/trait.Serializer.html) in order to walk through the type: ```rust impl Serialize for BTreeMap where K: Serialize + Ord, V: Serialize, { #[inline] fn serialize(&self, serializer: &mut S) -> Result<(), S::Error> where S: Serializer, { serializer.visit_map(MapIteratorVisitor::new(self.iter(), Some(self.len()))) } } pub struct MapIteratorVisitor { iter: Iter, len: Option, } impl MapIteratorVisitor where Iter: Iterator { #[inline] pub fn new(iter: Iter, len: Option) -> MapIteratorVisitor { MapIteratorVisitor { iter: iter, len: len, } } } impl MapVisitor for MapIteratorVisitor where K: Serialize, V: Serialize, I: Iterator, { #[inline] fn visit(&mut self, serializer: &mut S) -> Result, S::Error> where S: Serializer, { match self.iter.next() { Some((key, value)) => { let value = try!(serializer.visit_map_elt(key, value)); Ok(Some(value)) } None => Ok(None) } } #[inline] fn len(&self) -> Option { self.len } } ``` Serializing structs follow this same pattern. In fact, structs are represented as a named map. Its visitor uses a simple state machine to iterate through all the fields: ```rust extern crate serde; struct Point { x: i32, y: i32, } impl serde::Serialize for Point { fn serialize(&self, serializer: &mut S) -> Result<(), S::Error> where S: serde::Serializer { serializer.visit_struct("Point", PointMapVisitor { value: self, state: 0, }) } } struct PointMapVisitor<'a> { value: &'a Point, state: u8, } impl<'a> serde::ser::MapVisitor for PointMapVisitor<'a> { fn visit(&mut self, serializer: &mut S) -> Result, S::Error> where S: serde::Serializer { match self.state { 0 => { self.state += 1; Ok(Some(try!(serializer.visit_struct_elt("x", &self.value.x)))) } 1 => { self.state += 1; Ok(Some(try!(serializer.visit_struct_elt("y", &self.value.y)))) } _ => { Ok(None) } } } } ``` Deserialization without Macros ============================== Deserialization is a little more complicated since there's a bit more error handling that needs to occur. Let's start with the simple `i32` [Deserialize](http://serde-rs.github.io/serde/serde/de/trait.Deserialize.html) implementation. It passes a [Visitor](http://serde-rs.github.io/serde/serde/de/trait.Visitor.html) to the [Deserializer](http://serde-rs.github.io/serde/serde/de/trait.Deserializer.html). The [Visitor](http://serde-rs.github.io/serde/serde/de/trait.Visitor.html) can create the `i32` from a variety of different types: ```rust impl Deserialize for i32 { fn deserialize(deserializer: &mut D) -> Result where D: serde::Deserializer, { deserializer.visit(I32Visitor) } } struct I32Visitor; impl serde::de::Visitor for I32Visitor { type Value = i32; fn visit_i16(&mut self, value: i16) -> Result where E: Error, { self.visit_i32(value as i32) } fn visit_i32(&mut self, value: i32) -> Result where E: Error, { Ok(value) } ... ``` Since it's possible for this type to get passed an unexpected type, we need a way to error out. This is done by way of the [Error](http://serde-rs.github.io/serde/serde/de/trait.Error.html) trait, which allows a [Deserialize](http://serde-rs.github.io/serde/serde/de/trait.Deserialize.html) to generate an error for a few common error conditions. Here's how it could be used: ```rust ... fn visit_string(&mut self, _: String) -> Result where E: Error, { Err(serde::de::Error::syntax("expect a string")) } ... ``` Maps follow a similar pattern as before, and use a [MapVisitor](http://serde-rs.github.io/serde/serde/de/trait.MapVisitor.html) to walk through the values generated by the [Deserializer](http://serde-rs.github.io/serde/serde/de/trait.Deserializer.html). ```rust impl serde::Deserialize for BTreeMap where K: serde::Deserialize + Eq + Ord, V: serde::Deserialize, { fn deserialize(deserializer: &mut D) -> Result, D::Error> where D: serde::Deserializer, { deserializer.visit(BTreeMapVisitor::new()) } } pub struct BTreeMapVisitor { marker: PhantomData>, } impl BTreeMapVisitor { pub fn new() -> Self { BTreeMapVisitor { marker: PhantomData, } } } impl serde::de::Visitor for BTreeMapVisitor where K: serde::de::Deserialize + Ord, V: serde::de::Deserialize { type Value = BTreeMap; fn visit_unit(&mut self) -> Result, E> where E: Error, { Ok(BTreeMap::new()) } fn visit_map(&mut self, mut visitor: V_) -> Result, V_::Error> where V_: MapVisitor, { let mut values = BTreeMap::new(); while let Some((key, value)) = try!(visitor.visit()) { values.insert(key, value); } try!(visitor.end()); Ok(values) } } ``` Deserializing structs goes a step further in order to support not allocating a `String` to hold the field names. This is done by custom field enum that deserializes an enum variant from a string. So for our `Point` example from before, we need to generate: ```rust extern crate serde; struct Point { x: i32, y: i32, } enum PointField { X, Y, } impl serde::Deserialize for PointField { fn deserialize(deserializer: &mut D) -> Result where D: serde::de::Deserializer { struct PointFieldVisitor; impl serde::de::Visitor for PointFieldVisitor { type Value = PointField; fn visit_str(&mut self, value: &str) -> Result where E: serde::de::Error { match value { "x" => Ok(PointField::X), "y" => Ok(PointField::Y), _ => Err(serde::de::Error::syntax("expected x or y")), } } } deserializer.visit(PointFieldVisitor) } } impl serde::Deserialize for Point { fn deserialize(deserializer: &mut D) -> Result where D: serde::de::Deserializer { static FIELDS: &'static [&'static str] = &["x", "y"]; deserializer.visit_struct("Point", FIELDS, PointVisitor) } } struct PointVisitor; impl serde::de::Visitor for PointVisitor { type Value = Point; fn visit_map(&mut self, mut visitor: V) -> Result where V: serde::de::MapVisitor { let mut x = None; let mut y = None; loop { match try!(visitor.visit_key()) { Some(PointField::X) => { x = Some(try!(visitor.visit_value())); } Some(PointField::Y) => { y = Some(try!(visitor.visit_value())); } None => { break; } } } let x = match x { Some(x) => x, None => try!(visitor.missing_field("x")), }; let y = match y { Some(y) => y, None => try!(visitor.missing_field("y")), }; try!(visitor.end()); Ok(Point{ x: x, y: y }) } } ``` Annotations =========== `serde_codegen` and `serde_macros` support annotations that help to customize how types are serialized. Here are the supported annotations: Field Annotations: | Annotation | Function | | ---------- | -------- | | `#[serde(rename(json="name1", xml="name2"))` | Serialize this field with the given name for the given formats | | `#[serde(default)` | If the value is not specified, use the `Default::default()` | | `#[serde(rename="name")` | Serialize this field with the given name | | `#[serde(skip_serializing)` | Do not serialize this value | | `#[serde(skip_serializing_if_empty)` | Do not serialize this value if `$value.is_empty()` is `true` | | `#[serde(skip_serializing_if_none)` | Do not serialize this value if `$value.is_none()` is `true` | Structure Annotations: | Annotation | Function | | ---------- | -------- | | `#[serde(deny_unknown_fields)` | Always error during serialization when encountering unknown fields. When absent, unknown fields are ignored for self-describing formats like JSON. | Serialization Formats Using Serde ================================= | Format | Name | | ------ | ---- | | Bincode | [bincode](https://crates.io/crates/bincode) | | JSON | [serde\_json](https://crates.io/crates/serde_json) | | MessagePack | [rmp](https://crates.io/crates/rmp) | | XML | [serde\_xml](https://github.com/serde-rs/xml) | | YAML | [serde\_yaml](https://github.com/serde-rs/yaml/) |