serde/serde_codegen/src/bound.rs

136 lines
4.4 KiB
Rust
Raw Normal View History

use std::collections::HashSet;
use aster::AstBuilder;
use syntax::ast;
use syntax::ext::base::ExtCtxt;
use syntax::ptr::P;
use syntax::visit;
pub fn with_bound(
cx: &ExtCtxt,
builder: &AstBuilder,
item: &ast::Item,
generics: &ast::Generics,
filter: &Fn(&ast::StructField) -> bool,
bound: &[&'static str],
) -> ast::Generics {
let path = builder.path().global().ids(bound).build();
builder.from_generics(generics.clone())
.with_predicates(
all_variants(cx, item).iter()
.flat_map(|variant_data| all_struct_fields(variant_data))
.filter(|field| filter(field))
.map(|field| &field.ty)
// TODO this filter can be removed later, see comment on function
.filter(|ty| contains_generic(ty, generics))
.map(|ty| strip_reference(ty))
.map(|ty| builder.where_predicate()
// the type that is being bounded e.g. T
.bound().build(ty.clone())
// the bound e.g. Serialize
.bound().trait_(path.clone()).build()
.build()))
.build()
}
fn all_variants<'a>(cx: &ExtCtxt, item: &'a ast::Item) -> Vec<&'a ast::VariantData> {
match item.node {
ast::ItemKind::Struct(ref variant_data, _) => {
vec![variant_data]
}
ast::ItemKind::Enum(ref enum_def, _) => {
enum_def.variants.iter()
.map(|variant| &variant.node.data)
.collect()
}
_ => {
cx.span_bug(item.span, "expected Item to be Struct or Enum");
}
}
}
fn all_struct_fields(variant_data: &ast::VariantData) -> &[ast::StructField] {
match *variant_data {
ast::VariantData::Struct(ref fields, _) |
ast::VariantData::Tuple(ref fields, _) => {
fields
}
ast::VariantData::Unit(_) => {
&[]
}
}
}
// Rust <1.7 enforces that `where` clauses involve generic type parameters. The
// corresponding compiler error is E0193. It is no longer enforced in Rust >=1.7
// so this filtering can be removed in the future when we stop supporting <1.7.
//
// E0193 means we must not generate a `where` clause like `i32: Serialize`
// because even though i32 implements Serialize, i32 is not a generic type
// parameter. Clauses like `T: Serialize` and `Option<T>: Serialize` are okay.
// This function decides whether a given type references any of the generic type
// parameters in the input `Generics`.
fn contains_generic(ty: &ast::Ty, generics: &ast::Generics) -> bool {
struct FindGeneric<'a> {
generic_names: &'a HashSet<ast::Name>,
found_generic: bool,
}
impl<'a, 'v> visit::Visitor<'v> for FindGeneric<'a> {
fn visit_path(&mut self, path: &'v ast::Path, _id: ast::NodeId) {
if !path.global
&& path.segments.len() == 1
&& self.generic_names.contains(&path.segments[0].identifier.name) {
self.found_generic = true;
} else {
visit::walk_path(self, path);
}
}
}
let generic_names: HashSet<_> = generics.ty_params.iter()
.map(|ty_param| ty_param.ident.name)
.collect();
let mut visitor = FindGeneric {
generic_names: &generic_names,
found_generic: false,
};
visit::walk_ty(&mut visitor, ty);
visitor.found_generic
}
// This is required to handle types that use both a reference and a value of
// the same type, as in:
//
// enum Test<'a, T> where T: 'a {
// Lifetime(&'a T),
// NoLifetime(T),
// }
//
// Preserving references, we would generate an impl like:
//
// impl<'a, T> Serialize for Test<'a, T>
// where &'a T: Serialize,
// T: Serialize { ... }
//
// And taking a reference to one of the elements would fail with:
//
// error: cannot infer an appropriate lifetime for pattern due
// to conflicting requirements [E0495]
// Test::NoLifetime(ref v) => { ... }
// ^~~~~
//
// Instead, we strip references before adding `T: Serialize` bounds in order to
// generate:
//
// impl<'a, T> Serialize for Test<'a, T>
// where T: Serialize { ... }
fn strip_reference(ty: &P<ast::Ty>) -> &P<ast::Ty> {
match ty.node {
ast::TyKind::Rptr(_, ref mut_ty) => &mut_ty.ty,
_ => ty
}
}