rust/src/librustc_mir/const_eval.rs
2019-06-12 13:38:28 +03:00

706 lines
25 KiB
Rust

// Not in interpret to make sure we do not use private implementation details
use std::fmt;
use std::error::Error;
use std::borrow::{Borrow, Cow};
use std::hash::Hash;
use std::collections::hash_map::Entry;
use std::convert::TryInto;
use rustc::hir::def::DefKind;
use rustc::hir::def_id::DefId;
use rustc::mir::interpret::{ConstEvalErr, ErrorHandled};
use rustc::mir;
use rustc::ty::{self, TyCtxt, query::TyCtxtAt};
use rustc::ty::layout::{self, LayoutOf, VariantIdx};
use rustc::ty::subst::Subst;
use rustc::traits::Reveal;
use rustc::util::common::ErrorReported;
use rustc_data_structures::fx::FxHashMap;
use syntax::ast::Mutability;
use syntax::source_map::{Span, DUMMY_SP};
use crate::interpret::{self,
PlaceTy, MPlaceTy, MemPlace, OpTy, ImmTy, Immediate, Scalar,
RawConst, ConstValue,
InterpResult, InterpErrorInfo, InterpError, GlobalId, InterpretCx, StackPopCleanup,
Allocation, AllocId, MemoryKind,
snapshot, RefTracking,
};
/// Number of steps until the detector even starts doing anything.
/// Also, a warning is shown to the user when this number is reached.
const STEPS_UNTIL_DETECTOR_ENABLED: isize = 1_000_000;
/// The number of steps between loop detector snapshots.
/// Should be a power of two for performance reasons.
const DETECTOR_SNAPSHOT_PERIOD: isize = 256;
/// The `InterpretCx` is only meant to be used to do field and index projections into constants for
/// `simd_shuffle` and const patterns in match arms.
///
/// The function containing the `match` that is currently being analyzed may have generic bounds
/// that inform us about the generic bounds of the constant. E.g., using an associated constant
/// of a function's generic parameter will require knowledge about the bounds on the generic
/// parameter. These bounds are passed to `mk_eval_cx` via the `ParamEnv` argument.
pub(crate) fn mk_eval_cx<'mir, 'tcx>(
tcx: TyCtxt<'tcx, 'tcx>,
span: Span,
param_env: ty::ParamEnv<'tcx>,
) -> CompileTimeEvalContext<'mir, 'tcx> {
debug!("mk_eval_cx: {:?}", param_env);
InterpretCx::new(tcx.at(span), param_env, CompileTimeInterpreter::new())
}
pub(crate) fn eval_promoted<'mir, 'tcx>(
tcx: TyCtxt<'tcx, 'tcx>,
cid: GlobalId<'tcx>,
body: &'mir mir::Body<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
let span = tcx.def_span(cid.instance.def_id());
let mut ecx = mk_eval_cx(tcx, span, param_env);
eval_body_using_ecx(&mut ecx, cid, body, param_env)
}
fn mplace_to_const<'tcx>(
ecx: &CompileTimeEvalContext<'_, 'tcx>,
mplace: MPlaceTy<'tcx>,
) -> &'tcx ty::Const<'tcx> {
let MemPlace { ptr, align, meta } = *mplace;
// extract alloc-offset pair
assert!(meta.is_none());
let ptr = ptr.to_ptr().unwrap();
let alloc = ecx.memory.get(ptr.alloc_id).unwrap();
assert!(alloc.align >= align);
assert!(alloc.bytes.len() as u64 - ptr.offset.bytes() >= mplace.layout.size.bytes());
let mut alloc = alloc.clone();
alloc.align = align;
// FIXME shouldn't it be the case that `mark_static_initialized` has already
// interned this? I thought that is the entire point of that `FinishStatic` stuff?
let alloc = ecx.tcx.intern_const_alloc(alloc);
let val = ConstValue::ByRef(ptr, alloc);
ecx.tcx.mk_const(ty::Const { val, ty: mplace.layout.ty })
}
fn op_to_const<'tcx>(
ecx: &CompileTimeEvalContext<'_, 'tcx>,
op: OpTy<'tcx>,
) -> &'tcx ty::Const<'tcx> {
// We do not normalize just any data. Only non-union scalars and slices.
let normalize = match op.layout.abi {
layout::Abi::Scalar(..) => op.layout.ty.ty_adt_def().map_or(true, |adt| !adt.is_union()),
layout::Abi::ScalarPair(..) => match op.layout.ty.sty {
ty::Ref(_, inner, _) => match inner.sty {
ty::Slice(elem) => elem == ecx.tcx.types.u8,
ty::Str => true,
_ => false,
},
_ => false,
},
_ => false,
};
let normalized_op = if normalize {
Err(*ecx.read_immediate(op).expect("normalization works on validated constants"))
} else {
op.try_as_mplace()
};
let val = match normalized_op {
Ok(mplace) => return mplace_to_const(ecx, mplace),
Err(Immediate::Scalar(x)) =>
ConstValue::Scalar(x.not_undef().unwrap()),
Err(Immediate::ScalarPair(a, b)) => {
let (data, start) = match a.not_undef().unwrap() {
Scalar::Ptr(ptr) => (
ecx.tcx.alloc_map.lock().unwrap_memory(ptr.alloc_id),
ptr.offset.bytes(),
),
Scalar::Raw { .. } => (
ecx.tcx.intern_const_alloc(Allocation::from_byte_aligned_bytes(
b"" as &[u8],
)),
0,
),
};
let len = b.to_usize(&ecx.tcx.tcx).unwrap();
let start = start.try_into().unwrap();
let len: usize = len.try_into().unwrap();
ConstValue::Slice {
data,
start,
end: start + len,
}
},
};
ecx.tcx.mk_const(ty::Const { val, ty: op.layout.ty })
}
// Returns a pointer to where the result lives
fn eval_body_using_ecx<'mir, 'tcx>(
ecx: &mut CompileTimeEvalContext<'mir, 'tcx>,
cid: GlobalId<'tcx>,
body: &'mir mir::Body<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
debug!("eval_body_using_ecx: {:?}, {:?}", cid, param_env);
let tcx = ecx.tcx.tcx;
let layout = ecx.layout_of(body.return_ty().subst(tcx, cid.instance.substs))?;
assert!(!layout.is_unsized());
let ret = ecx.allocate(layout, MemoryKind::Stack);
let name = ty::tls::with(|tcx| tcx.def_path_str(cid.instance.def_id()));
let prom = cid.promoted.map_or(String::new(), |p| format!("::promoted[{:?}]", p));
trace!("eval_body_using_ecx: pushing stack frame for global: {}{}", name, prom);
assert!(body.arg_count == 0);
ecx.push_stack_frame(
cid.instance,
body.span,
body,
Some(ret.into()),
StackPopCleanup::None { cleanup: false },
)?;
// The main interpreter loop.
ecx.run()?;
// Intern the result
let mutability = if tcx.is_mutable_static(cid.instance.def_id()) ||
!layout.ty.is_freeze(tcx, param_env, body.span) {
Mutability::Mutable
} else {
Mutability::Immutable
};
ecx.memory.intern_static(ret.ptr.to_ptr()?.alloc_id, mutability)?;
debug!("eval_body_using_ecx done: {:?}", *ret);
Ok(ret)
}
impl<'tcx> Into<InterpErrorInfo<'tcx>> for ConstEvalError {
fn into(self) -> InterpErrorInfo<'tcx> {
InterpError::MachineError(self.to_string()).into()
}
}
#[derive(Clone, Debug)]
enum ConstEvalError {
NeedsRfc(String),
}
impl fmt::Display for ConstEvalError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use self::ConstEvalError::*;
match *self {
NeedsRfc(ref msg) => {
write!(
f,
"\"{}\" needs an rfc before being allowed inside constants",
msg
)
}
}
}
}
impl Error for ConstEvalError {
fn description(&self) -> &str {
use self::ConstEvalError::*;
match *self {
NeedsRfc(_) => "this feature needs an rfc before being allowed inside constants",
}
}
fn cause(&self) -> Option<&dyn Error> {
None
}
}
// Extra machine state for CTFE, and the Machine instance
pub struct CompileTimeInterpreter<'mir, 'tcx> {
/// When this value is negative, it indicates the number of interpreter
/// steps *until* the loop detector is enabled. When it is positive, it is
/// the number of steps after the detector has been enabled modulo the loop
/// detector period.
pub(super) steps_since_detector_enabled: isize,
/// Extra state to detect loops.
pub(super) loop_detector: snapshot::InfiniteLoopDetector<'mir, 'tcx>,
}
impl<'mir, 'tcx> CompileTimeInterpreter<'mir, 'tcx> {
fn new() -> Self {
CompileTimeInterpreter {
loop_detector: Default::default(),
steps_since_detector_enabled: -STEPS_UNTIL_DETECTOR_ENABLED,
}
}
}
impl<K: Hash + Eq, V> interpret::AllocMap<K, V> for FxHashMap<K, V> {
#[inline(always)]
fn contains_key<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> bool
where K: Borrow<Q>
{
FxHashMap::contains_key(self, k)
}
#[inline(always)]
fn insert(&mut self, k: K, v: V) -> Option<V>
{
FxHashMap::insert(self, k, v)
}
#[inline(always)]
fn remove<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> Option<V>
where K: Borrow<Q>
{
FxHashMap::remove(self, k)
}
#[inline(always)]
fn filter_map_collect<T>(&self, mut f: impl FnMut(&K, &V) -> Option<T>) -> Vec<T> {
self.iter()
.filter_map(move |(k, v)| f(k, &*v))
.collect()
}
#[inline(always)]
fn get_or<E>(
&self,
k: K,
vacant: impl FnOnce() -> Result<V, E>
) -> Result<&V, E>
{
match self.get(&k) {
Some(v) => Ok(v),
None => {
vacant()?;
bug!("The CTFE machine shouldn't ever need to extend the alloc_map when reading")
}
}
}
#[inline(always)]
fn get_mut_or<E>(
&mut self,
k: K,
vacant: impl FnOnce() -> Result<V, E>
) -> Result<&mut V, E>
{
match self.entry(k) {
Entry::Occupied(e) => Ok(e.into_mut()),
Entry::Vacant(e) => {
let v = vacant()?;
Ok(e.insert(v))
}
}
}
}
type CompileTimeEvalContext<'mir, 'tcx> =
InterpretCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>>;
impl interpret::MayLeak for ! {
#[inline(always)]
fn may_leak(self) -> bool {
// `self` is uninhabited
self
}
}
impl<'mir, 'tcx> interpret::Machine<'mir, 'tcx> for CompileTimeInterpreter<'mir, 'tcx> {
type MemoryKinds = !;
type PointerTag = ();
type FrameExtra = ();
type MemoryExtra = ();
type AllocExtra = ();
type MemoryMap = FxHashMap<AllocId, (MemoryKind<!>, Allocation)>;
const STATIC_KIND: Option<!> = None; // no copying of statics allowed
#[inline(always)]
fn enforce_validity(_ecx: &InterpretCx<'mir, 'tcx, Self>) -> bool {
false // for now, we don't enforce validity
}
fn find_fn(
ecx: &mut InterpretCx<'mir, 'tcx, Self>,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx>],
dest: Option<PlaceTy<'tcx>>,
ret: Option<mir::BasicBlock>,
) -> InterpResult<'tcx, Option<&'mir mir::Body<'tcx>>> {
debug!("eval_fn_call: {:?}", instance);
// Only check non-glue functions
if let ty::InstanceDef::Item(def_id) = instance.def {
// Execution might have wandered off into other crates, so we cannot to a stability-
// sensitive check here. But we can at least rule out functions that are not const
// at all.
if !ecx.tcx.is_const_fn_raw(def_id) {
// Some functions we support even if they are non-const -- but avoid testing
// that for const fn! We certainly do *not* want to actually call the fn
// though, so be sure we return here.
return if ecx.hook_fn(instance, args, dest)? {
ecx.goto_block(ret)?; // fully evaluated and done
Ok(None)
} else {
err!(MachineError(format!("calling non-const function `{}`", instance)))
};
}
}
// This is a const fn. Call it.
Ok(Some(match ecx.load_mir(instance.def) {
Ok(body) => body,
Err(err) => {
if let InterpError::NoMirFor(ref path) = err.kind {
return Err(
ConstEvalError::NeedsRfc(format!("calling extern function `{}`", path))
.into(),
);
}
return Err(err);
}
}))
}
fn call_intrinsic(
ecx: &mut InterpretCx<'mir, 'tcx, Self>,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx>],
dest: PlaceTy<'tcx>,
) -> InterpResult<'tcx> {
if ecx.emulate_intrinsic(instance, args, dest)? {
return Ok(());
}
// An intrinsic that we do not support
let intrinsic_name = &ecx.tcx.item_name(instance.def_id()).as_str()[..];
Err(
ConstEvalError::NeedsRfc(format!("calling intrinsic `{}`", intrinsic_name)).into()
)
}
fn ptr_op(
_ecx: &InterpretCx<'mir, 'tcx, Self>,
_bin_op: mir::BinOp,
_left: ImmTy<'tcx>,
_right: ImmTy<'tcx>,
) -> InterpResult<'tcx, (Scalar, bool)> {
Err(
ConstEvalError::NeedsRfc("pointer arithmetic or comparison".to_string()).into(),
)
}
fn find_foreign_static(
_def_id: DefId,
_tcx: TyCtxtAt<'tcx, 'tcx>,
) -> InterpResult<'tcx, Cow<'tcx, Allocation<Self::PointerTag>>> {
err!(ReadForeignStatic)
}
#[inline(always)]
fn tag_allocation<'b>(
_id: AllocId,
alloc: Cow<'b, Allocation>,
_kind: Option<MemoryKind<!>>,
_memory_extra: &(),
) -> (Cow<'b, Allocation<Self::PointerTag>>, Self::PointerTag) {
// We do not use a tag so we can just cheaply forward the allocation
(alloc, ())
}
#[inline(always)]
fn tag_static_base_pointer(
_id: AllocId,
_memory_extra: &(),
) -> Self::PointerTag {
()
}
fn box_alloc(
_ecx: &mut InterpretCx<'mir, 'tcx, Self>,
_dest: PlaceTy<'tcx>,
) -> InterpResult<'tcx> {
Err(
ConstEvalError::NeedsRfc("heap allocations via `box` keyword".to_string()).into(),
)
}
fn before_terminator(ecx: &mut InterpretCx<'mir, 'tcx, Self>) -> InterpResult<'tcx> {
{
let steps = &mut ecx.machine.steps_since_detector_enabled;
*steps += 1;
if *steps < 0 {
return Ok(());
}
*steps %= DETECTOR_SNAPSHOT_PERIOD;
if *steps != 0 {
return Ok(());
}
}
let span = ecx.frame().span;
ecx.machine.loop_detector.observe_and_analyze(
*ecx.tcx,
span,
&ecx.memory,
&ecx.stack[..],
)
}
#[inline(always)]
fn stack_push(_ecx: &mut InterpretCx<'mir, 'tcx, Self>) -> InterpResult<'tcx> {
Ok(())
}
/// Called immediately before a stack frame gets popped.
#[inline(always)]
fn stack_pop(_ecx: &mut InterpretCx<'mir, 'tcx, Self>, _extra: ()) -> InterpResult<'tcx> {
Ok(())
}
}
/// Extracts a field of a (variant of a) const.
// this function uses `unwrap` copiously, because an already validated constant must have valid
// fields and can thus never fail outside of compiler bugs
pub fn const_field<'tcx>(
tcx: TyCtxt<'tcx, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
variant: Option<VariantIdx>,
field: mir::Field,
value: &'tcx ty::Const<'tcx>,
) -> &'tcx ty::Const<'tcx> {
trace!("const_field: {:?}, {:?}", field, value);
let ecx = mk_eval_cx(tcx, DUMMY_SP, param_env);
// get the operand again
let op = ecx.eval_const_to_op(value, None).unwrap();
// downcast
let down = match variant {
None => op,
Some(variant) => ecx.operand_downcast(op, variant).unwrap(),
};
// then project
let field = ecx.operand_field(down, field.index() as u64).unwrap();
// and finally move back to the const world, always normalizing because
// this is not called for statics.
op_to_const(&ecx, field)
}
// this function uses `unwrap` copiously, because an already validated constant must have valid
// fields and can thus never fail outside of compiler bugs
pub fn const_variant_index<'tcx>(
tcx: TyCtxt<'tcx, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
val: &'tcx ty::Const<'tcx>,
) -> VariantIdx {
trace!("const_variant_index: {:?}", val);
let ecx = mk_eval_cx(tcx, DUMMY_SP, param_env);
let op = ecx.eval_const_to_op(val, None).unwrap();
ecx.read_discriminant(op).unwrap().1
}
pub fn error_to_const_error<'mir, 'tcx>(
ecx: &InterpretCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>>,
mut error: InterpErrorInfo<'tcx>,
) -> ConstEvalErr<'tcx> {
error.print_backtrace();
let stacktrace = ecx.generate_stacktrace(None);
ConstEvalErr { error: error.kind, stacktrace, span: ecx.tcx.span }
}
fn validate_and_turn_into_const<'tcx>(
tcx: TyCtxt<'tcx, 'tcx>,
constant: RawConst<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc::mir::interpret::ConstEvalResult<'tcx> {
let cid = key.value;
let ecx = mk_eval_cx(tcx, tcx.def_span(key.value.instance.def_id()), key.param_env);
let val = (|| {
let mplace = ecx.raw_const_to_mplace(constant)?;
let mut ref_tracking = RefTracking::new(mplace);
while let Some((mplace, path)) = ref_tracking.todo.pop() {
ecx.validate_operand(
mplace.into(),
path,
Some(&mut ref_tracking),
true, // const mode
)?;
}
// Now that we validated, turn this into a proper constant.
let def_id = cid.instance.def.def_id();
if tcx.is_static(def_id) || cid.promoted.is_some() {
Ok(mplace_to_const(&ecx, mplace))
} else {
Ok(op_to_const(&ecx, mplace.into()))
}
})();
val.map_err(|error| {
let err = error_to_const_error(&ecx, error);
match err.struct_error(ecx.tcx, "it is undefined behavior to use this value") {
Ok(mut diag) => {
diag.note("The rules on what exactly is undefined behavior aren't clear, \
so this check might be overzealous. Please open an issue on the rust compiler \
repository if you believe it should not be considered undefined behavior",
);
diag.emit();
ErrorHandled::Reported
}
Err(err) => err,
}
})
}
pub fn const_eval_provider<'tcx>(
tcx: TyCtxt<'tcx, 'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc::mir::interpret::ConstEvalResult<'tcx> {
// see comment in const_eval_provider for what we're doing here
if key.param_env.reveal == Reveal::All {
let mut key = key.clone();
key.param_env.reveal = Reveal::UserFacing;
match tcx.const_eval(key) {
// try again with reveal all as requested
Err(ErrorHandled::TooGeneric) => {
// Promoteds should never be "too generic" when getting evaluated.
// They either don't get evaluated, or we are in a monomorphic context
assert!(key.value.promoted.is_none());
},
// dedupliate calls
other => return other,
}
}
tcx.const_eval_raw(key).and_then(|val| {
validate_and_turn_into_const(tcx, val, key)
})
}
pub fn const_eval_raw_provider<'tcx>(
tcx: TyCtxt<'tcx, 'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc::mir::interpret::ConstEvalRawResult<'tcx> {
// Because the constant is computed twice (once per value of `Reveal`), we are at risk of
// reporting the same error twice here. To resolve this, we check whether we can evaluate the
// constant in the more restrictive `Reveal::UserFacing`, which most likely already was
// computed. For a large percentage of constants that will already have succeeded. Only
// associated constants of generic functions will fail due to not enough monomorphization
// information being available.
// In case we fail in the `UserFacing` variant, we just do the real computation.
if key.param_env.reveal == Reveal::All {
let mut key = key.clone();
key.param_env.reveal = Reveal::UserFacing;
match tcx.const_eval_raw(key) {
// try again with reveal all as requested
Err(ErrorHandled::TooGeneric) => {},
// dedupliate calls
other => return other,
}
}
if cfg!(debug_assertions) {
// Make sure we format the instance even if we do not print it.
// This serves as a regression test against an ICE on printing.
// The next two lines concatenated contain some discussion:
// https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/
// subject/anon_const_instance_printing/near/135980032
let instance = key.value.instance.to_string();
trace!("const eval: {:?} ({})", key, instance);
}
let cid = key.value;
let def_id = cid.instance.def.def_id();
if def_id.is_local() && tcx.typeck_tables_of(def_id).tainted_by_errors {
return Err(ErrorHandled::Reported);
}
let span = tcx.def_span(cid.instance.def_id());
let mut ecx = InterpretCx::new(tcx.at(span), key.param_env, CompileTimeInterpreter::new());
let res = ecx.load_mir(cid.instance.def);
res.map(|body| {
if let Some(index) = cid.promoted {
&body.promoted[index]
} else {
body
}
}).and_then(
|body| eval_body_using_ecx(&mut ecx, cid, body, key.param_env)
).and_then(|place| {
Ok(RawConst {
alloc_id: place.to_ptr().expect("we allocated this ptr!").alloc_id,
ty: place.layout.ty
})
}).map_err(|error| {
let err = error_to_const_error(&ecx, error);
// errors in statics are always emitted as fatal errors
if tcx.is_static(def_id) {
// Ensure that if the above error was either `TooGeneric` or `Reported`
// an error must be reported.
let reported_err = tcx.sess.track_errors(|| {
err.report_as_error(ecx.tcx,
"could not evaluate static initializer")
});
match reported_err {
Ok(v) => {
tcx.sess.delay_span_bug(err.span,
&format!("static eval failure did not emit an error: {:#?}",
v));
v
},
Err(ErrorReported) => ErrorHandled::Reported,
}
} else if def_id.is_local() {
// constant defined in this crate, we can figure out a lint level!
match tcx.def_kind(def_id) {
// constants never produce a hard error at the definition site. Anything else is
// a backwards compatibility hazard (and will break old versions of winapi for sure)
//
// note that validation may still cause a hard error on this very same constant,
// because any code that existed before validation could not have failed validation
// thus preventing such a hard error from being a backwards compatibility hazard
Some(DefKind::Const) | Some(DefKind::AssocConst) => {
let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
err.report_as_lint(
tcx.at(tcx.def_span(def_id)),
"any use of this value will cause an error",
hir_id,
Some(err.span),
)
},
// promoting runtime code is only allowed to error if it references broken constants
// any other kind of error will be reported to the user as a deny-by-default lint
_ => if let Some(p) = cid.promoted {
let span = tcx.optimized_mir(def_id).promoted[p].span;
if let InterpError::ReferencedConstant = err.error {
err.report_as_error(
tcx.at(span),
"evaluation of constant expression failed",
)
} else {
err.report_as_lint(
tcx.at(span),
"reaching this expression at runtime will panic or abort",
tcx.hir().as_local_hir_id(def_id).unwrap(),
Some(err.span),
)
}
// anything else (array lengths, enum initializers, constant patterns) are reported
// as hard errors
} else {
err.report_as_error(
ecx.tcx,
"evaluation of constant value failed",
)
},
}
} else {
// use of broken constant from other crate
err.report_as_error(ecx.tcx, "could not evaluate constant")
}
})
}