rust/src/memory.rs

1129 lines
43 KiB
Rust

use byteorder::{ReadBytesExt, WriteBytesExt, LittleEndian, BigEndian};
use std::collections::{btree_map, BTreeMap, HashMap, HashSet, VecDeque, BTreeSet};
use std::{fmt, iter, ptr, mem, io};
use rustc::ty;
use rustc::ty::layout::{self, TargetDataLayout};
use error::{EvalError, EvalResult};
use value::{PrimVal, self};
////////////////////////////////////////////////////////////////////////////////
// Allocations and pointers
////////////////////////////////////////////////////////////////////////////////
#[derive(Copy, Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct AllocId(pub u64);
impl fmt::Display for AllocId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
#[derive(Debug)]
pub struct Allocation {
/// The actual bytes of the allocation.
/// Note that the bytes of a pointer represent the offset of the pointer
pub bytes: Vec<u8>,
/// Maps from byte addresses to allocations.
/// Only the first byte of a pointer is inserted into the map.
pub relocations: BTreeMap<u64, AllocId>,
/// Denotes undefined memory. Reading from undefined memory is forbidden in miri
pub undef_mask: UndefMask,
/// The alignment of the allocation to detect unaligned reads.
pub align: u64,
/// Whether the allocation may be modified.
/// Use the `mark_static_initalized` method of `Memory` to ensure that an error occurs, if the memory of this
/// allocation is modified or deallocated in the future.
pub static_kind: StaticKind,
}
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum StaticKind {
/// may be deallocated without breaking miri's invariants
NotStatic,
/// may be modified, but never deallocated
Mutable,
/// may neither be modified nor deallocated
Immutable,
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct Pointer {
pub alloc_id: AllocId,
pub offset: u64,
}
impl Pointer {
pub fn new(alloc_id: AllocId, offset: u64) -> Self {
Pointer { alloc_id, offset }
}
pub fn wrapping_signed_offset<'tcx>(self, i: i64, layout: &TargetDataLayout) -> Self {
Pointer::new(self.alloc_id, value::wrapping_signed_offset(self.offset, i, layout))
}
pub fn overflowing_signed_offset<'tcx>(self, i: i128, layout: &TargetDataLayout) -> (Self, bool) {
let (res, over) = value::overflowing_signed_offset(self.offset, i, layout);
(Pointer::new(self.alloc_id, res), over)
}
pub fn signed_offset<'tcx>(self, i: i64, layout: &TargetDataLayout) -> EvalResult<'tcx, Self> {
Ok(Pointer::new(self.alloc_id, value::signed_offset(self.offset, i, layout)?))
}
pub fn overflowing_offset<'tcx>(self, i: u64, layout: &TargetDataLayout) -> (Self, bool) {
let (res, over) = value::overflowing_offset(self.offset, i, layout);
(Pointer::new(self.alloc_id, res), over)
}
pub fn offset<'tcx>(self, i: u64, layout: &TargetDataLayout) -> EvalResult<'tcx, Self> {
Ok(Pointer::new(self.alloc_id, value::offset(self.offset, i, layout)?))
}
}
pub type TlsKey = usize;
#[derive(Copy, Clone, Debug)]
pub struct TlsEntry<'tcx> {
data: PrimVal, // Will eventually become a map from thread IDs to `PrimVal`s, if we ever support more than one thread.
dtor: Option<ty::Instance<'tcx>>,
}
////////////////////////////////////////////////////////////////////////////////
// Top-level interpreter memory
////////////////////////////////////////////////////////////////////////////////
pub struct Memory<'a, 'tcx> {
/// Actual memory allocations (arbitrary bytes, may contain pointers into other allocations).
alloc_map: HashMap<AllocId, Allocation>,
/// The AllocId to assign to the next new allocation. Always incremented, never gets smaller.
next_id: AllocId,
/// Set of statics, constants, promoteds, vtables, ... to prevent `mark_static_initalized` from
/// stepping out of its own allocations. This set only contains statics backed by an
/// allocation. If they are ByVal or ByValPair they are not here, but will be inserted once
/// they become ByRef.
static_alloc: HashSet<AllocId>,
/// Number of virtual bytes allocated.
memory_usage: u64,
/// Maximum number of virtual bytes that may be allocated.
memory_size: u64,
/// Function "allocations". They exist solely so pointers have something to point to, and
/// we can figure out what they point to.
functions: HashMap<AllocId, ty::Instance<'tcx>>,
/// Inverse map of `functions` so we don't allocate a new pointer every time we need one
function_alloc_cache: HashMap<ty::Instance<'tcx>, AllocId>,
/// Target machine data layout to emulate.
pub layout: &'a TargetDataLayout,
/// List of memory regions containing packed structures.
///
/// We mark memory as "packed" or "unaligned" for a single statement, and clear the marking
/// afterwards. In the case where no packed structs are present, it's just a single emptyness
/// check of a set instead of heavily influencing all memory access code as other solutions
/// would. This is simpler than the alternative of passing a "packed" parameter to every
/// load/store method.
///
/// One disadvantage of this solution is the fact that you can cast a pointer to a packed
/// struct to a pointer to a normal struct and if you access a field of both in the same MIR
/// statement, the normal struct access will succeed even though it shouldn't. But even with
/// mir optimizations, that situation is hard/impossible to produce.
packed: BTreeSet<Entry>,
/// A cache for basic byte allocations keyed by their contents. This is used to deduplicate
/// allocations for string and bytestring literals.
literal_alloc_cache: HashMap<Vec<u8>, AllocId>,
/// pthreads-style thread-local storage.
thread_local: BTreeMap<TlsKey, TlsEntry<'tcx>>,
/// The Key to use for the next thread-local allocation.
next_thread_local: TlsKey,
}
impl<'a, 'tcx> Memory<'a, 'tcx> {
pub fn new(layout: &'a TargetDataLayout, max_memory: u64) -> Self {
Memory {
alloc_map: HashMap::new(),
functions: HashMap::new(),
function_alloc_cache: HashMap::new(),
next_id: AllocId(0),
layout,
memory_size: max_memory,
memory_usage: 0,
packed: BTreeSet::new(),
static_alloc: HashSet::new(),
literal_alloc_cache: HashMap::new(),
thread_local: BTreeMap::new(),
next_thread_local: 0,
}
}
pub fn allocations(&self) -> ::std::collections::hash_map::Iter<AllocId, Allocation> {
self.alloc_map.iter()
}
pub fn create_fn_alloc(&mut self, instance: ty::Instance<'tcx>) -> Pointer {
if let Some(&alloc_id) = self.function_alloc_cache.get(&instance) {
return Pointer::new(alloc_id, 0);
}
let id = self.next_id;
debug!("creating fn ptr: {}", id);
self.next_id.0 += 1;
self.functions.insert(id, instance);
self.function_alloc_cache.insert(instance, id);
Pointer::new(id, 0)
}
pub fn allocate_cached(&mut self, bytes: &[u8]) -> EvalResult<'tcx, Pointer> {
if let Some(&alloc_id) = self.literal_alloc_cache.get(bytes) {
return Ok(Pointer::new(alloc_id, 0));
}
let ptr = self.allocate(bytes.len() as u64, 1)?;
self.write_bytes(ptr, bytes)?;
self.mark_static_initalized(ptr.alloc_id, false)?;
self.literal_alloc_cache.insert(bytes.to_vec(), ptr.alloc_id);
Ok(ptr)
}
pub fn allocate(&mut self, size: u64, align: u64) -> EvalResult<'tcx, Pointer> {
assert_ne!(align, 0);
assert!(align.is_power_of_two());
if self.memory_size - self.memory_usage < size {
return Err(EvalError::OutOfMemory {
allocation_size: size,
memory_size: self.memory_size,
memory_usage: self.memory_usage,
});
}
self.memory_usage += size;
assert_eq!(size as usize as u64, size);
let alloc = Allocation {
bytes: vec![0; size as usize],
relocations: BTreeMap::new(),
undef_mask: UndefMask::new(size),
align,
static_kind: StaticKind::NotStatic,
};
let id = self.next_id;
self.next_id.0 += 1;
self.alloc_map.insert(id, alloc);
Ok(Pointer::new(id, 0))
}
// TODO(solson): Track which allocations were returned from __rust_allocate and report an error
// when reallocating/deallocating any others.
pub fn reallocate(&mut self, ptr: Pointer, new_size: u64, align: u64) -> EvalResult<'tcx, Pointer> {
assert!(align.is_power_of_two());
// TODO(solson): Report error about non-__rust_allocate'd pointer.
if ptr.offset != 0 {
return Err(EvalError::Unimplemented(format!("bad pointer offset: {}", ptr.offset)));
}
if self.get(ptr.alloc_id).ok().map_or(false, |alloc| alloc.static_kind != StaticKind::NotStatic) {
return Err(EvalError::ReallocatedStaticMemory);
}
let size = self.get(ptr.alloc_id)?.bytes.len() as u64;
if new_size > size {
let amount = new_size - size;
self.memory_usage += amount;
let alloc = self.get_mut(ptr.alloc_id)?;
// FIXME: check alignment here
assert_eq!(amount as usize as u64, amount);
alloc.bytes.extend(iter::repeat(0).take(amount as usize));
alloc.undef_mask.grow(amount, false);
} else if size > new_size {
self.memory_usage -= size - new_size;
self.clear_relocations(ptr.offset(new_size, self.layout)?, size - new_size)?;
let alloc = self.get_mut(ptr.alloc_id)?;
// FIXME: check alignment here
// `as usize` is fine here, since it is smaller than `size`, which came from a usize
alloc.bytes.truncate(new_size as usize);
alloc.bytes.shrink_to_fit();
alloc.undef_mask.truncate(new_size);
}
Ok(Pointer::new(ptr.alloc_id, 0))
}
// TODO(solson): See comment on `reallocate`.
pub fn deallocate(&mut self, ptr: Pointer) -> EvalResult<'tcx> {
if ptr.offset != 0 {
// TODO(solson): Report error about non-__rust_allocate'd pointer.
return Err(EvalError::Unimplemented(format!("bad pointer offset: {}", ptr.offset)));
}
if self.get(ptr.alloc_id).ok().map_or(false, |alloc| alloc.static_kind != StaticKind::NotStatic) {
return Err(EvalError::DeallocatedStaticMemory);
}
if let Some(alloc) = self.alloc_map.remove(&ptr.alloc_id) {
self.memory_usage -= alloc.bytes.len() as u64;
} else {
debug!("deallocated a pointer twice: {}", ptr.alloc_id);
// TODO(solson): Report error about erroneous free. This is blocked on properly tracking
// already-dropped state since this if-statement is entered even in safe code without
// it.
}
debug!("deallocated : {}", ptr.alloc_id);
Ok(())
}
pub fn pointer_size(&self) -> u64 {
self.layout.pointer_size.bytes()
}
pub fn endianess(&self) -> layout::Endian {
self.layout.endian
}
pub fn check_align(&self, ptr: Pointer, align: u64, len: u64) -> EvalResult<'tcx> {
let alloc = self.get(ptr.alloc_id)?;
// check whether the memory was marked as packed
// we select all elements that have the correct alloc_id and are within
// the range given by the offset into the allocation and the length
let start = Entry {
alloc_id: ptr.alloc_id,
packed_start: 0,
packed_end: ptr.offset + len,
};
let end = Entry {
alloc_id: ptr.alloc_id,
packed_start: ptr.offset + len,
packed_end: 0,
};
for &Entry { packed_start, packed_end, .. } in self.packed.range(start..end) {
// if the region we are checking is covered by a region in `packed`
// ignore the actual alignment
if packed_start <= ptr.offset && (ptr.offset + len) <= packed_end {
return Ok(());
}
}
if alloc.align < align {
return Err(EvalError::AlignmentCheckFailed {
has: alloc.align,
required: align,
});
}
if ptr.offset % align == 0 {
Ok(())
} else {
Err(EvalError::AlignmentCheckFailed {
has: ptr.offset % align,
required: align,
})
}
}
pub(crate) fn check_bounds(&self, ptr: Pointer, access: bool) -> EvalResult<'tcx> {
let alloc = self.get(ptr.alloc_id)?;
let allocation_size = alloc.bytes.len() as u64;
if ptr.offset > allocation_size {
return Err(EvalError::PointerOutOfBounds { ptr, access, allocation_size });
}
Ok(())
}
pub(crate) fn mark_packed(&mut self, ptr: Pointer, len: u64) {
self.packed.insert(Entry {
alloc_id: ptr.alloc_id,
packed_start: ptr.offset,
packed_end: ptr.offset + len,
});
}
pub(crate) fn clear_packed(&mut self) {
self.packed.clear();
}
pub(crate) fn create_tls_key(&mut self, dtor: Option<ty::Instance<'tcx>>) -> TlsKey {
let new_key = self.next_thread_local;
self.next_thread_local += 1;
self.thread_local.insert(new_key, TlsEntry { data: PrimVal::Bytes(0), dtor });
trace!("New TLS key allocated: {} with dtor {:?}", new_key, dtor);
return new_key;
}
pub(crate) fn delete_tls_key(&mut self, key: TlsKey) -> EvalResult<'tcx> {
return match self.thread_local.remove(&key) {
Some(_) => {
trace!("TLS key {} removed", key);
Ok(())
},
None => Err(EvalError::TlsOutOfBounds)
}
}
pub(crate) fn load_tls(&mut self, key: TlsKey) -> EvalResult<'tcx, PrimVal> {
return match self.thread_local.get(&key) {
Some(&TlsEntry { data, .. }) => {
trace!("TLS key {} loaded: {:?}", key, data);
Ok(data)
},
None => Err(EvalError::TlsOutOfBounds)
}
}
pub(crate) fn store_tls(&mut self, key: TlsKey, new_data: PrimVal) -> EvalResult<'tcx> {
return match self.thread_local.get_mut(&key) {
Some(&mut TlsEntry { ref mut data, .. }) => {
trace!("TLS key {} stored: {:?}", key, new_data);
*data = new_data;
Ok(())
},
None => Err(EvalError::TlsOutOfBounds)
}
}
/// Returns a dtor, its argument and its index, if one is supposed to run
///
/// An optional destructor function may be associated with each key value.
/// At thread exit, if a key value has a non-NULL destructor pointer,
/// and the thread has a non-NULL value associated with that key,
/// the value of the key is set to NULL, and then the function pointed
/// to is called with the previously associated value as its sole argument.
/// The order of destructor calls is unspecified if more than one destructor
/// exists for a thread when it exits.
///
/// If, after all the destructors have been called for all non-NULL values
/// with associated destructors, there are still some non-NULL values with
/// associated destructors, then the process is repeated.
/// If, after at least {PTHREAD_DESTRUCTOR_ITERATIONS} iterations of destructor
/// calls for outstanding non-NULL values, there are still some non-NULL values
/// with associated destructors, implementations may stop calling destructors,
/// or they may continue calling destructors until no non-NULL values with
/// associated destructors exist, even though this might result in an infinite loop.
pub(crate) fn fetch_tls_dtor(&mut self, key: Option<TlsKey>) -> EvalResult<'tcx, Option<(ty::Instance<'tcx>, PrimVal, TlsKey)>> {
use std::collections::Bound::*;
let start = match key {
Some(key) => Excluded(key),
None => Unbounded,
};
for (&key, &mut TlsEntry { ref mut data, dtor }) in self.thread_local.range_mut((start, Unbounded)) {
if !data.is_null()? {
if let Some(dtor) = dtor {
let ret = Some((dtor, *data, key));
*data = PrimVal::Bytes(0);
return Ok(ret);
}
}
}
return Ok(None);
}
}
// The derived `Ord` impl sorts first by the first field, then, if the fields are the same
// by the second field, and if those are the same, too, then by the third field.
// This is exactly what we need for our purposes, since a range within an allocation
// will give us all `Entry`s that have that `AllocId`, and whose `packed_start` is <= than
// the one we're looking for, but not > the end of the range we're checking.
// At the same time the `packed_end` is irrelevant for the sorting and range searching, but used for the check.
// This kind of search breaks, if `packed_end < packed_start`, so don't do that!
#[derive(Eq, PartialEq, Ord, PartialOrd)]
struct Entry {
alloc_id: AllocId,
packed_start: u64,
packed_end: u64,
}
/// Allocation accessors
impl<'a, 'tcx> Memory<'a, 'tcx> {
pub fn get(&self, id: AllocId) -> EvalResult<'tcx, &Allocation> {
match self.alloc_map.get(&id) {
Some(alloc) => Ok(alloc),
None => match self.functions.get(&id) {
Some(_) => Err(EvalError::DerefFunctionPointer),
None => Err(EvalError::DanglingPointerDeref),
}
}
}
pub fn get_mut(&mut self, id: AllocId) -> EvalResult<'tcx, &mut Allocation> {
match self.alloc_map.get_mut(&id) {
Some(alloc) => match alloc.static_kind {
StaticKind::Mutable |
StaticKind::NotStatic => Ok(alloc),
StaticKind::Immutable => Err(EvalError::ModifiedConstantMemory),
},
None => match self.functions.get(&id) {
Some(_) => Err(EvalError::DerefFunctionPointer),
None => Err(EvalError::DanglingPointerDeref),
}
}
}
pub fn get_fn(&self, ptr: Pointer) -> EvalResult<'tcx, ty::Instance<'tcx>> {
if ptr.offset != 0 {
return Err(EvalError::InvalidFunctionPointer);
}
debug!("reading fn ptr: {}", ptr.alloc_id);
match self.functions.get(&ptr.alloc_id) {
Some(&fndef) => Ok(fndef),
None => match self.alloc_map.get(&ptr.alloc_id) {
Some(_) => Err(EvalError::ExecuteMemory),
None => Err(EvalError::InvalidFunctionPointer),
}
}
}
/// For debugging, print an allocation and all allocations it points to, recursively.
pub fn dump_alloc(&self, id: AllocId) {
self.dump_allocs(vec![id]);
}
/// For debugging, print a list of allocations and all allocations they point to, recursively.
pub fn dump_allocs(&self, mut allocs: Vec<AllocId>) {
use std::fmt::Write;
allocs.sort();
allocs.dedup();
let mut allocs_to_print = VecDeque::from(allocs);
let mut allocs_seen = HashSet::new();
while let Some(id) = allocs_to_print.pop_front() {
let mut msg = format!("Alloc {:<5} ", format!("{}:", id));
let prefix_len = msg.len();
let mut relocations = vec![];
let alloc = match (self.alloc_map.get(&id), self.functions.get(&id)) {
(Some(a), None) => a,
(None, Some(instance)) => {
trace!("{} {}", msg, instance);
continue;
},
(None, None) => {
trace!("{} (deallocated)", msg);
continue;
},
(Some(_), Some(_)) => bug!("miri invariant broken: an allocation id exists that points to both a function and a memory location"),
};
for i in 0..(alloc.bytes.len() as u64) {
if let Some(&target_id) = alloc.relocations.get(&i) {
if allocs_seen.insert(target_id) {
allocs_to_print.push_back(target_id);
}
relocations.push((i, target_id));
}
if alloc.undef_mask.is_range_defined(i, i + 1) {
// this `as usize` is fine, since `i` came from a `usize`
write!(msg, "{:02x} ", alloc.bytes[i as usize]).unwrap();
} else {
msg.push_str("__ ");
}
}
let immutable = match alloc.static_kind {
StaticKind::Mutable => " (static mut)",
StaticKind::Immutable => " (immutable)",
StaticKind::NotStatic => "",
};
trace!("{}({} bytes, alignment {}){}", msg, alloc.bytes.len(), alloc.align, immutable);
if !relocations.is_empty() {
msg.clear();
write!(msg, "{:1$}", "", prefix_len).unwrap(); // Print spaces.
let mut pos = 0;
let relocation_width = (self.pointer_size() - 1) * 3;
for (i, target_id) in relocations {
// this `as usize` is fine, since we can't print more chars than `usize::MAX`
write!(msg, "{:1$}", "", ((i - pos) * 3) as usize).unwrap();
let target = format!("({})", target_id);
// this `as usize` is fine, since we can't print more chars than `usize::MAX`
write!(msg, "└{0:─^1$}┘ ", target, relocation_width as usize).unwrap();
pos = i + self.pointer_size();
}
trace!("{}", msg);
}
}
}
pub fn leak_report(&self) -> usize {
trace!("### LEAK REPORT ###");
let leaks: Vec<_> = self.alloc_map
.iter()
.filter_map(|(&key, val)| {
if val.static_kind == StaticKind::NotStatic {
Some(key)
} else {
None
}
})
.collect();
let n = leaks.len();
self.dump_allocs(leaks);
n
}
}
/// Byte accessors
impl<'a, 'tcx> Memory<'a, 'tcx> {
fn get_bytes_unchecked(&self, ptr: Pointer, size: u64, align: u64) -> EvalResult<'tcx, &[u8]> {
if size == 0 {
return Ok(&[]);
}
self.check_align(ptr, align, size)?;
self.check_bounds(ptr.offset(size, self.layout)?, true)?; // if ptr.offset is in bounds, then so is ptr (because offset checks for overflow)
let alloc = self.get(ptr.alloc_id)?;
assert_eq!(ptr.offset as usize as u64, ptr.offset);
assert_eq!(size as usize as u64, size);
let offset = ptr.offset as usize;
Ok(&alloc.bytes[offset..offset + size as usize])
}
fn get_bytes_unchecked_mut(&mut self, ptr: Pointer, size: u64, align: u64) -> EvalResult<'tcx, &mut [u8]> {
if size == 0 {
return Ok(&mut []);
}
self.check_align(ptr, align, size)?;
self.check_bounds(ptr.offset(size, self.layout)?, true)?; // if ptr.offset is in bounds, then so is ptr (because offset checks for overflow)
let alloc = self.get_mut(ptr.alloc_id)?;
assert_eq!(ptr.offset as usize as u64, ptr.offset);
assert_eq!(size as usize as u64, size);
let offset = ptr.offset as usize;
Ok(&mut alloc.bytes[offset..offset + size as usize])
}
fn get_bytes(&self, ptr: Pointer, size: u64, align: u64) -> EvalResult<'tcx, &[u8]> {
assert_ne!(size, 0);
if self.relocations(ptr, size)?.count() != 0 {
return Err(EvalError::ReadPointerAsBytes);
}
self.check_defined(ptr, size)?;
self.get_bytes_unchecked(ptr, size, align)
}
fn get_bytes_mut(&mut self, ptr: Pointer, size: u64, align: u64) -> EvalResult<'tcx, &mut [u8]> {
assert_ne!(size, 0);
self.clear_relocations(ptr, size)?;
self.mark_definedness(PrimVal::Ptr(ptr), size, true)?;
self.get_bytes_unchecked_mut(ptr, size, align)
}
}
/// Reading and writing
impl<'a, 'tcx> Memory<'a, 'tcx> {
/// mark an allocation as being the entry point to a static (see `static_alloc` field)
pub fn mark_static(&mut self, alloc_id: AllocId) {
trace!("mark_static: {:?}", alloc_id);
if !self.static_alloc.insert(alloc_id) {
bug!("tried to mark an allocation ({:?}) as static twice", alloc_id);
}
}
/// mark an allocation pointed to by a static as static and initialized
pub fn mark_inner_allocation(&mut self, alloc: AllocId, mutable: bool) -> EvalResult<'tcx> {
// relocations into other statics are not "inner allocations"
if !self.static_alloc.contains(&alloc) {
self.mark_static_initalized(alloc, mutable)?;
}
Ok(())
}
/// mark an allocation as static and initialized, either mutable or not
pub fn mark_static_initalized(&mut self, alloc_id: AllocId, mutable: bool) -> EvalResult<'tcx> {
trace!("mark_static_initialized {:?}, mutable: {:?}", alloc_id, mutable);
// do not use `self.get_mut(alloc_id)` here, because we might have already marked a
// sub-element or have circular pointers (e.g. `Rc`-cycles)
let relocations = match self.alloc_map.get_mut(&alloc_id) {
Some(&mut Allocation { ref mut relocations, static_kind: ref mut kind @ StaticKind::NotStatic, .. }) => {
*kind = if mutable {
StaticKind::Mutable
} else {
StaticKind::Immutable
};
// take out the relocations vector to free the borrow on self, so we can call
// mark recursively
mem::replace(relocations, Default::default())
},
None if !self.functions.contains_key(&alloc_id) => return Err(EvalError::DanglingPointerDeref),
_ => return Ok(()),
};
// recurse into inner allocations
for &alloc in relocations.values() {
self.mark_inner_allocation(alloc, mutable)?;
}
// put back the relocations
self.alloc_map.get_mut(&alloc_id).expect("checked above").relocations = relocations;
Ok(())
}
pub fn copy(&mut self, src: PrimVal, dest: PrimVal, size: u64, align: u64, nonoverlapping: bool) -> EvalResult<'tcx> {
if size == 0 {
return Ok(());
}
let src = src.to_ptr()?;
let dest = dest.to_ptr()?;
self.check_relocation_edges(src, size)?;
let src_bytes = self.get_bytes_unchecked(src, size, align)?.as_ptr();
let dest_bytes = self.get_bytes_mut(dest, size, align)?.as_mut_ptr();
// SAFE: The above indexing would have panicked if there weren't at least `size` bytes
// behind `src` and `dest`. Also, we use the overlapping-safe `ptr::copy` if `src` and
// `dest` could possibly overlap.
unsafe {
assert_eq!(size as usize as u64, size);
if src.alloc_id == dest.alloc_id {
if nonoverlapping {
if (src.offset <= dest.offset && src.offset + size > dest.offset) ||
(dest.offset <= src.offset && dest.offset + size > src.offset) {
return Err(EvalError::Intrinsic(format!("copy_nonoverlapping called on overlapping ranges")));
}
}
ptr::copy(src_bytes, dest_bytes, size as usize);
} else {
ptr::copy_nonoverlapping(src_bytes, dest_bytes, size as usize);
}
}
self.copy_undef_mask(src, dest, size)?;
self.copy_relocations(src, dest, size)?;
Ok(())
}
pub fn read_c_str(&self, ptr: Pointer) -> EvalResult<'tcx, &[u8]> {
let alloc = self.get(ptr.alloc_id)?;
assert_eq!(ptr.offset as usize as u64, ptr.offset);
let offset = ptr.offset as usize;
match alloc.bytes[offset..].iter().position(|&c| c == 0) {
Some(size) => {
if self.relocations(ptr, (size + 1) as u64)?.count() != 0 {
return Err(EvalError::ReadPointerAsBytes);
}
self.check_defined(ptr, (size + 1) as u64)?;
Ok(&alloc.bytes[offset..offset + size])
},
None => Err(EvalError::UnterminatedCString(ptr)),
}
}
pub fn read_bytes(&self, ptr: PrimVal, size: u64) -> EvalResult<'tcx, &[u8]> {
if size == 0 {
return Ok(&[]);
}
self.get_bytes(ptr.to_ptr()?, size, 1)
}
pub fn write_bytes(&mut self, ptr: Pointer, src: &[u8]) -> EvalResult<'tcx> {
if src.is_empty() {
return Ok(());
}
let bytes = self.get_bytes_mut(ptr, src.len() as u64, 1)?;
bytes.clone_from_slice(src);
Ok(())
}
pub fn write_repeat(&mut self, ptr: Pointer, val: u8, count: u64) -> EvalResult<'tcx> {
if count == 0 {
return Ok(());
}
let bytes = self.get_bytes_mut(ptr, count, 1)?;
for b in bytes { *b = val; }
Ok(())
}
pub fn read_ptr(&self, ptr: Pointer) -> EvalResult<'tcx, PrimVal> {
let size = self.pointer_size();
if self.check_defined(ptr, size).is_err() {
return Ok(PrimVal::Undef);
}
let endianess = self.endianess();
let bytes = self.get_bytes_unchecked(ptr, size, size)?;
let offset = read_target_uint(endianess, bytes).unwrap();
assert_eq!(offset as u64 as u128, offset);
let offset = offset as u64;
let alloc = self.get(ptr.alloc_id)?;
match alloc.relocations.get(&ptr.offset) {
Some(&alloc_id) => Ok(PrimVal::Ptr(Pointer::new(alloc_id, offset))),
None => Ok(PrimVal::Bytes(offset as u128)),
}
}
pub fn write_ptr(&mut self, dest: Pointer, ptr: Pointer) -> EvalResult<'tcx> {
self.write_usize(dest, ptr.offset as u64)?;
self.get_mut(dest.alloc_id)?.relocations.insert(dest.offset, ptr.alloc_id);
Ok(())
}
pub fn write_primval(
&mut self,
dest: PrimVal,
val: PrimVal,
size: u64,
) -> EvalResult<'tcx> {
match val {
PrimVal::Ptr(ptr) => {
assert_eq!(size, self.pointer_size());
self.write_ptr(dest.to_ptr()?, ptr)
}
PrimVal::Bytes(bytes) => {
// We need to mask here, or the byteorder crate can die when given a u64 larger
// than fits in an integer of the requested size.
let mask = match size {
1 => !0u8 as u128,
2 => !0u16 as u128,
4 => !0u32 as u128,
8 => !0u64 as u128,
16 => !0,
n => bug!("unexpected PrimVal::Bytes size: {}", n),
};
self.write_uint(dest.to_ptr()?, bytes & mask, size)
}
PrimVal::Undef => self.mark_definedness(dest, size, false),
}
}
pub fn read_bool(&self, ptr: Pointer) -> EvalResult<'tcx, bool> {
let bytes = self.get_bytes(ptr, 1, self.layout.i1_align.abi())?;
match bytes[0] {
0 => Ok(false),
1 => Ok(true),
_ => Err(EvalError::InvalidBool),
}
}
pub fn write_bool(&mut self, ptr: Pointer, b: bool) -> EvalResult<'tcx> {
let align = self.layout.i1_align.abi();
self.get_bytes_mut(ptr, 1, align)
.map(|bytes| bytes[0] = b as u8)
}
fn int_align(&self, size: u64) -> EvalResult<'tcx, u64> {
match size {
1 => Ok(self.layout.i8_align.abi()),
2 => Ok(self.layout.i16_align.abi()),
4 => Ok(self.layout.i32_align.abi()),
8 => Ok(self.layout.i64_align.abi()),
16 => Ok(self.layout.i128_align.abi()),
_ => bug!("bad integer size: {}", size),
}
}
pub fn read_int(&self, ptr: Pointer, size: u64) -> EvalResult<'tcx, i128> {
let align = self.int_align(size)?;
self.get_bytes(ptr, size, align).map(|b| read_target_int(self.endianess(), b).unwrap())
}
pub fn write_int(&mut self, ptr: Pointer, n: i128, size: u64) -> EvalResult<'tcx> {
let align = self.int_align(size)?;
let endianess = self.endianess();
let b = self.get_bytes_mut(ptr, size, align)?;
write_target_int(endianess, b, n).unwrap();
Ok(())
}
pub fn read_uint(&self, ptr: Pointer, size: u64) -> EvalResult<'tcx, u128> {
let align = self.int_align(size)?;
self.get_bytes(ptr, size, align).map(|b| read_target_uint(self.endianess(), b).unwrap())
}
pub fn write_uint(&mut self, ptr: Pointer, n: u128, size: u64) -> EvalResult<'tcx> {
let align = self.int_align(size)?;
let endianess = self.endianess();
let b = self.get_bytes_mut(ptr, size, align)?;
write_target_uint(endianess, b, n).unwrap();
Ok(())
}
pub fn read_isize(&self, ptr: Pointer) -> EvalResult<'tcx, i64> {
self.read_int(ptr, self.pointer_size()).map(|i| i as i64)
}
pub fn write_isize(&mut self, ptr: Pointer, n: i64) -> EvalResult<'tcx> {
let size = self.pointer_size();
self.write_int(ptr, n as i128, size)
}
pub fn read_usize(&self, ptr: Pointer) -> EvalResult<'tcx, u64> {
self.read_uint(ptr, self.pointer_size()).map(|i| i as u64)
}
pub fn write_usize(&mut self, ptr: Pointer, n: u64) -> EvalResult<'tcx> {
let size = self.pointer_size();
self.write_uint(ptr, n as u128, size)
}
pub fn write_f32(&mut self, ptr: Pointer, f: f32) -> EvalResult<'tcx> {
let endianess = self.endianess();
let align = self.layout.f32_align.abi();
let b = self.get_bytes_mut(ptr, 4, align)?;
write_target_f32(endianess, b, f).unwrap();
Ok(())
}
pub fn write_f64(&mut self, ptr: Pointer, f: f64) -> EvalResult<'tcx> {
let endianess = self.endianess();
let align = self.layout.f64_align.abi();
let b = self.get_bytes_mut(ptr, 8, align)?;
write_target_f64(endianess, b, f).unwrap();
Ok(())
}
pub fn read_f32(&self, ptr: Pointer) -> EvalResult<'tcx, f32> {
self.get_bytes(ptr, 4, self.layout.f32_align.abi())
.map(|b| read_target_f32(self.endianess(), b).unwrap())
}
pub fn read_f64(&self, ptr: Pointer) -> EvalResult<'tcx, f64> {
self.get_bytes(ptr, 8, self.layout.f64_align.abi())
.map(|b| read_target_f64(self.endianess(), b).unwrap())
}
}
/// Relocations
impl<'a, 'tcx> Memory<'a, 'tcx> {
fn relocations(&self, ptr: Pointer, size: u64)
-> EvalResult<'tcx, btree_map::Range<u64, AllocId>>
{
let start = ptr.offset.saturating_sub(self.pointer_size() - 1);
let end = ptr.offset + size;
Ok(self.get(ptr.alloc_id)?.relocations.range(start..end))
}
fn clear_relocations(&mut self, ptr: Pointer, size: u64) -> EvalResult<'tcx> {
// Find all relocations overlapping the given range.
let keys: Vec<_> = self.relocations(ptr, size)?.map(|(&k, _)| k).collect();
if keys.is_empty() { return Ok(()); }
// Find the start and end of the given range and its outermost relocations.
let start = ptr.offset;
let end = start + size;
let first = *keys.first().unwrap();
let last = *keys.last().unwrap() + self.pointer_size();
let alloc = self.get_mut(ptr.alloc_id)?;
// Mark parts of the outermost relocations as undefined if they partially fall outside the
// given range.
if first < start { alloc.undef_mask.set_range(first, start, false); }
if last > end { alloc.undef_mask.set_range(end, last, false); }
// Forget all the relocations.
for k in keys { alloc.relocations.remove(&k); }
Ok(())
}
fn check_relocation_edges(&self, ptr: Pointer, size: u64) -> EvalResult<'tcx> {
let overlapping_start = self.relocations(ptr, 0)?.count();
let overlapping_end = self.relocations(ptr.offset(size, self.layout)?, 0)?.count();
if overlapping_start + overlapping_end != 0 {
return Err(EvalError::ReadPointerAsBytes);
}
Ok(())
}
fn copy_relocations(&mut self, src: Pointer, dest: Pointer, size: u64) -> EvalResult<'tcx> {
let relocations: Vec<_> = self.relocations(src, size)?
.map(|(&offset, &alloc_id)| {
// Update relocation offsets for the new positions in the destination allocation.
(offset + dest.offset - src.offset, alloc_id)
})
.collect();
self.get_mut(dest.alloc_id)?.relocations.extend(relocations);
Ok(())
}
}
/// Undefined bytes
impl<'a, 'tcx> Memory<'a, 'tcx> {
// FIXME(solson): This is a very naive, slow version.
fn copy_undef_mask(&mut self, src: Pointer, dest: Pointer, size: u64) -> EvalResult<'tcx> {
// The bits have to be saved locally before writing to dest in case src and dest overlap.
assert_eq!(size as usize as u64, size);
let mut v = Vec::with_capacity(size as usize);
for i in 0..size {
let defined = self.get(src.alloc_id)?.undef_mask.get(src.offset + i);
v.push(defined);
}
for (i, defined) in v.into_iter().enumerate() {
self.get_mut(dest.alloc_id)?.undef_mask.set(dest.offset + i as u64, defined);
}
Ok(())
}
fn check_defined(&self, ptr: Pointer, size: u64) -> EvalResult<'tcx> {
let alloc = self.get(ptr.alloc_id)?;
if !alloc.undef_mask.is_range_defined(ptr.offset, ptr.offset + size) {
return Err(EvalError::ReadUndefBytes);
}
Ok(())
}
pub fn mark_definedness(
&mut self,
ptr: PrimVal,
size: u64,
new_state: bool
) -> EvalResult<'tcx> {
if size == 0 {
return Ok(())
}
let ptr = ptr.to_ptr()?;
let mut alloc = self.get_mut(ptr.alloc_id)?;
alloc.undef_mask.set_range(ptr.offset, ptr.offset + size, new_state);
Ok(())
}
}
////////////////////////////////////////////////////////////////////////////////
// Methods to access integers in the target endianess
////////////////////////////////////////////////////////////////////////////////
fn write_target_uint(endianess: layout::Endian, mut target: &mut [u8], data: u128) -> Result<(), io::Error> {
let len = target.len();
match endianess {
layout::Endian::Little => target.write_uint128::<LittleEndian>(data, len),
layout::Endian::Big => target.write_uint128::<BigEndian>(data, len),
}
}
fn write_target_int(endianess: layout::Endian, mut target: &mut [u8], data: i128) -> Result<(), io::Error> {
let len = target.len();
match endianess {
layout::Endian::Little => target.write_int128::<LittleEndian>(data, len),
layout::Endian::Big => target.write_int128::<BigEndian>(data, len),
}
}
fn read_target_uint(endianess: layout::Endian, mut source: &[u8]) -> Result<u128, io::Error> {
match endianess {
layout::Endian::Little => source.read_uint128::<LittleEndian>(source.len()),
layout::Endian::Big => source.read_uint128::<BigEndian>(source.len()),
}
}
fn read_target_int(endianess: layout::Endian, mut source: &[u8]) -> Result<i128, io::Error> {
match endianess {
layout::Endian::Little => source.read_int128::<LittleEndian>(source.len()),
layout::Endian::Big => source.read_int128::<BigEndian>(source.len()),
}
}
////////////////////////////////////////////////////////////////////////////////
// Methods to access floats in the target endianess
////////////////////////////////////////////////////////////////////////////////
fn write_target_f32(endianess: layout::Endian, mut target: &mut [u8], data: f32) -> Result<(), io::Error> {
match endianess {
layout::Endian::Little => target.write_f32::<LittleEndian>(data),
layout::Endian::Big => target.write_f32::<BigEndian>(data),
}
}
fn write_target_f64(endianess: layout::Endian, mut target: &mut [u8], data: f64) -> Result<(), io::Error> {
match endianess {
layout::Endian::Little => target.write_f64::<LittleEndian>(data),
layout::Endian::Big => target.write_f64::<BigEndian>(data),
}
}
fn read_target_f32(endianess: layout::Endian, mut source: &[u8]) -> Result<f32, io::Error> {
match endianess {
layout::Endian::Little => source.read_f32::<LittleEndian>(),
layout::Endian::Big => source.read_f32::<BigEndian>(),
}
}
fn read_target_f64(endianess: layout::Endian, mut source: &[u8]) -> Result<f64, io::Error> {
match endianess {
layout::Endian::Little => source.read_f64::<LittleEndian>(),
layout::Endian::Big => source.read_f64::<BigEndian>(),
}
}
////////////////////////////////////////////////////////////////////////////////
// Undefined byte tracking
////////////////////////////////////////////////////////////////////////////////
type Block = u64;
const BLOCK_SIZE: u64 = 64;
#[derive(Clone, Debug)]
pub struct UndefMask {
blocks: Vec<Block>,
len: u64,
}
impl UndefMask {
fn new(size: u64) -> Self {
let mut m = UndefMask {
blocks: vec![],
len: 0,
};
m.grow(size, false);
m
}
/// Check whether the range `start..end` (end-exclusive) is entirely defined.
pub fn is_range_defined(&self, start: u64, end: u64) -> bool {
if end > self.len { return false; }
for i in start..end {
if !self.get(i) { return false; }
}
true
}
fn set_range(&mut self, start: u64, end: u64, new_state: bool) {
let len = self.len;
if end > len { self.grow(end - len, new_state); }
self.set_range_inbounds(start, end, new_state);
}
fn set_range_inbounds(&mut self, start: u64, end: u64, new_state: bool) {
for i in start..end { self.set(i, new_state); }
}
fn get(&self, i: u64) -> bool {
let (block, bit) = bit_index(i);
(self.blocks[block] & 1 << bit) != 0
}
fn set(&mut self, i: u64, new_state: bool) {
let (block, bit) = bit_index(i);
if new_state {
self.blocks[block] |= 1 << bit;
} else {
self.blocks[block] &= !(1 << bit);
}
}
fn grow(&mut self, amount: u64, new_state: bool) {
let unused_trailing_bits = self.blocks.len() as u64 * BLOCK_SIZE - self.len;
if amount > unused_trailing_bits {
let additional_blocks = amount / BLOCK_SIZE + 1;
assert_eq!(additional_blocks as usize as u64, additional_blocks);
self.blocks.extend(iter::repeat(0).take(additional_blocks as usize));
}
let start = self.len;
self.len += amount;
self.set_range_inbounds(start, start + amount, new_state);
}
fn truncate(&mut self, length: u64) {
self.len = length;
let truncate = self.len / BLOCK_SIZE + 1;
assert_eq!(truncate as usize as u64, truncate);
self.blocks.truncate(truncate as usize);
self.blocks.shrink_to_fit();
}
}
fn bit_index(bits: u64) -> (usize, usize) {
let a = bits / BLOCK_SIZE;
let b = bits % BLOCK_SIZE;
assert_eq!(a as usize as u64, a);
assert_eq!(b as usize as u64, b);
(a as usize, b as usize)
}