rust/src/libsyntax/parse/parser.rs

4541 lines
158 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use abi;
use abi::AbiSet;
use ast::{Sigil, BorrowedSigil, ManagedSigil, OwnedSigil};
use ast::{CallSugar, NoSugar, DoSugar, ForSugar};
use ast::{TyBareFn, TyClosure};
use ast::{RegionTyParamBound, TraitTyParamBound};
use ast::{provided, public, purity};
use ast::{_mod, add, arg, arm, attribute, bind_by_ref, bind_infer};
use ast::{bind_by_copy, bitand, bitor, bitxor, blk};
use ast::{blk_check_mode, box};
use ast::{crate, crate_cfg, decl, decl_item};
use ast::{decl_local, default_blk, deref, div, enum_def};
use ast::{expr, expr_, expr_addr_of, expr_match, expr_again};
use ast::{expr_assign, expr_assign_op, expr_binary, expr_block};
use ast::{expr_break, expr_call, expr_cast, expr_copy, expr_do_body};
use ast::{expr_field, expr_fn_block, expr_if, expr_index};
use ast::{expr_lit, expr_log, expr_loop, expr_loop_body, expr_mac};
use ast::{expr_method_call, expr_paren, expr_path, expr_repeat};
use ast::{expr_ret, expr_self, expr_struct, expr_tup, expr_unary};
use ast::{expr_vec, expr_vstore, expr_vstore_mut_box};
use ast::{expr_vstore_slice, expr_vstore_box};
use ast::{expr_vstore_mut_slice, expr_while, extern_fn, field, fn_decl};
use ast::{expr_vstore_uniq, TyClosure, TyBareFn, Onceness, Once, Many};
use ast::{foreign_item, foreign_item_const, foreign_item_fn, foreign_mod};
use ast::{ident, impure_fn, inherited, item, item_, item_const};
use ast::{item_const, item_enum, item_fn, item_foreign_mod, item_impl};
use ast::{item_mac, item_mod, item_struct, item_trait, item_ty, lit, lit_};
use ast::{lit_bool, lit_float, lit_float_unsuffixed, lit_int};
use ast::{lit_int_unsuffixed, lit_nil, lit_str, lit_uint, local, m_const};
use ast::{m_imm, m_mutbl, mac_, mac_invoc_tt, matcher, match_nonterminal};
use ast::{match_seq, match_tok, method, mt, mul, mutability};
use ast::{named_field, neg, node_id, noreturn, not, pat, pat_box, pat_enum};
use ast::{pat_ident, pat_lit, pat_range, pat_region, pat_struct};
use ast::{pat_tup, pat_uniq, pat_wild, private};
use ast::{rem, required};
use ast::{ret_style, return_val, self_ty, shl, shr, stmt, stmt_decl};
use ast::{stmt_expr, stmt_semi, stmt_mac, struct_def, struct_field};
use ast::{struct_variant_kind, subtract};
use ast::{sty_box, sty_region, sty_static, sty_uniq, sty_value};
use ast::{token_tree, trait_method, trait_ref, tt_delim, tt_seq, tt_tok};
use ast::{tt_nonterminal, tuple_variant_kind, Ty, ty_, ty_bot, ty_box};
use ast::{ty_field, ty_fixed_length_vec, ty_closure, ty_bare_fn};
use ast::{ty_infer, ty_method};
use ast::{ty_nil, TyParam, TyParamBound, ty_path, ty_ptr, ty_rptr};
use ast::{ty_tup, ty_u32, ty_uniq, ty_vec, uniq};
use ast::{unnamed_field, unsafe_blk, unsafe_fn, view_item};
use ast::{view_item_, view_item_extern_mod, view_item_use};
use ast::{view_path, view_path_glob, view_path_list, view_path_simple};
use ast::visibility;
use ast;
use ast_util::{as_prec, ident_to_path, operator_prec};
use ast_util;
use codemap::{span, BytePos, spanned, mk_sp};
use codemap;
use parse::attr::parser_attr;
use parse::classify;
use parse::common::{seq_sep_none};
use parse::common::{seq_sep_trailing_disallowed, seq_sep_trailing_allowed};
use parse::lexer::reader;
use parse::lexer::TokenAndSpan;
use parse::obsolete::{ObsoleteClassTraits};
use parse::obsolete::{ObsoleteLet, ObsoleteFieldTerminator};
use parse::obsolete::{ObsoleteMoveInit, ObsoleteBinaryMove, ObsoleteSwap};
use parse::obsolete::{ObsoleteSyntax, ObsoleteLowerCaseKindBounds};
use parse::obsolete::{ObsoleteUnsafeBlock, ObsoleteImplSyntax};
use parse::obsolete::{ObsoleteTraitBoundSeparator, ObsoleteMutOwnedPointer};
use parse::obsolete::{ObsoleteMutVector, ObsoleteTraitImplVisibility};
use parse::obsolete::{ObsoleteRecordType, ObsoleteRecordPattern};
use parse::obsolete::{ObsoletePostFnTySigil};
use parse::obsolete::{ObsoleteBareFnType, ObsoleteNewtypeEnum};
use parse::obsolete::ObsoleteMode;
use parse::obsolete::{ObsoleteLifetimeNotation, ObsoleteConstManagedPointer};
use parse::obsolete::{ObsoletePurity, ObsoleteStaticMethod};
use parse::obsolete::{ObsoleteConstItem, ObsoleteFixedLengthVectorType};
use parse::obsolete::{ObsoleteNamedExternModule};
use parse::token::{can_begin_expr, is_ident, is_ident_or_path};
use parse::token::{is_plain_ident, INTERPOLATED, special_idents, token_to_binop};
use parse::token;
use parse::{new_sub_parser_from_file, next_node_id, ParseSess};
use opt_vec;
use opt_vec::OptVec;
use core::either::Either;
use core::either;
use core::hashmap::HashSet;
use core::vec;
#[deriving(Eq)]
enum restriction {
UNRESTRICTED,
RESTRICT_STMT_EXPR,
RESTRICT_NO_BAR_OP,
RESTRICT_NO_BAR_OR_DOUBLEBAR_OP,
}
type arg_or_capture_item = Either<arg, ()>;
type item_info = (ident, item_, Option<~[attribute]>);
pub enum item_or_view_item {
// indicates a failure to parse any kind of item:
iovi_none,
iovi_item(@item),
iovi_foreign_item(@foreign_item),
iovi_view_item(@view_item)
}
#[deriving(Eq)]
enum view_item_parse_mode {
VIEW_ITEMS_AND_ITEMS_ALLOWED,
FOREIGN_ITEMS_ALLOWED,
IMPORTS_AND_ITEMS_ALLOWED
}
/* The expr situation is not as complex as I thought it would be.
The important thing is to make sure that lookahead doesn't balk
at INTERPOLATED tokens */
macro_rules! maybe_whole_expr (
($p:expr) => (
match *($p).token {
INTERPOLATED(token::nt_expr(copy e)) => {
$p.bump();
return e;
}
INTERPOLATED(token::nt_path(copy pt)) => {
$p.bump();
return $p.mk_expr(
($p).span.lo,
($p).span.hi,
expr_path(pt)
);
}
_ => ()
}
)
)
macro_rules! maybe_whole (
($p:expr, $constructor:ident) => (
match *($p).token {
INTERPOLATED(token::$constructor(copy x)) => {
$p.bump();
return x;
}
_ => ()
}
);
(deref $p:expr, $constructor:ident) => (
match *($p).token {
INTERPOLATED(token::$constructor(copy x)) => {
$p.bump();
return copy *x;
}
_ => ()
}
);
(Some $p:expr, $constructor:ident) => (
match *($p).token {
INTERPOLATED(token::$constructor(copy x)) => {
$p.bump();
return Some(x);
}
_ => ()
}
);
(iovi $p:expr, $constructor:ident) => (
match *($p).token {
INTERPOLATED(token::$constructor(copy x)) => {
$p.bump();
return iovi_item(x);
}
_ => ()
}
);
(pair_empty $p:expr, $constructor:ident) => (
match *($p).token {
INTERPOLATED(token::$constructor(copy x)) => {
$p.bump();
return (~[], x);
}
_ => ()
}
)
)
fn maybe_append(lhs: ~[attribute], rhs: Option<~[attribute]>)
-> ~[attribute] {
match rhs {
None => lhs,
Some(ref attrs) => vec::append(lhs, (*attrs))
}
}
struct ParsedItemsAndViewItems {
attrs_remaining: ~[attribute],
view_items: ~[@view_item],
items: ~[@item],
foreign_items: ~[@foreign_item]
}
/* ident is handled by common.rs */
pub fn Parser(sess: @mut ParseSess,
cfg: ast::crate_cfg,
rdr: @reader)
-> Parser {
let tok0 = copy rdr.next_token();
let interner = rdr.interner();
Parser {
reader: rdr,
interner: interner,
sess: sess,
cfg: cfg,
token: @mut copy tok0.tok,
span: @mut copy tok0.sp,
last_span: @mut copy tok0.sp,
buffer: @mut ([copy tok0, .. 4]),
buffer_start: @mut 0,
buffer_end: @mut 0,
tokens_consumed: @mut 0,
restriction: @mut UNRESTRICTED,
quote_depth: @mut 0,
keywords: token::keyword_table(),
strict_keywords: token::strict_keyword_table(),
reserved_keywords: token::reserved_keyword_table(),
obsolete_set: @mut HashSet::new(),
mod_path_stack: @mut ~[],
}
}
// ooh, nasty mutable fields everywhere....
pub struct Parser {
sess: @mut ParseSess,
cfg: crate_cfg,
// the current token:
token: @mut token::Token,
// the span of the current token:
span: @mut span,
// the span of the prior token:
last_span: @mut span,
buffer: @mut [TokenAndSpan, ..4],
buffer_start: @mut int,
buffer_end: @mut int,
tokens_consumed: @mut uint,
restriction: @mut restriction,
quote_depth: @mut uint, // not (yet) related to the quasiquoter
reader: @reader,
interner: @token::ident_interner,
keywords: HashSet<~str>,
strict_keywords: HashSet<~str>,
reserved_keywords: HashSet<~str>,
/// The set of seen errors about obsolete syntax. Used to suppress
/// extra detail when the same error is seen twice
obsolete_set: @mut HashSet<ObsoleteSyntax>,
/// Used to determine the path to externally loaded source files
mod_path_stack: @mut ~[~str],
}
#[unsafe_destructor]
impl Drop for Parser {
/* do not copy the parser; its state is tied to outside state */
fn finalize(&self) {}
}
pub impl Parser {
// advance the parser by one token
fn bump(&self) {
*self.last_span = copy *self.span;
let next = if *self.buffer_start == *self.buffer_end {
self.reader.next_token()
} else {
let next = copy self.buffer[*self.buffer_start];
*self.buffer_start = (*self.buffer_start + 1) & 3;
next
};
*self.token = copy next.tok;
*self.span = copy next.sp;
*self.tokens_consumed += 1u;
}
// EFFECT: replace the current token and span with the given one
fn replace_token(&self, next: token::Token, lo: BytePos, hi: BytePos) {
*self.token = next;
*self.span = mk_sp(lo, hi);
}
fn buffer_length(&self) -> int {
if *self.buffer_start <= *self.buffer_end {
return *self.buffer_end - *self.buffer_start;
}
return (4 - *self.buffer_start) + *self.buffer_end;
}
fn look_ahead(&self, distance: uint) -> token::Token {
let dist = distance as int;
while self.buffer_length() < dist {
self.buffer[*self.buffer_end] = self.reader.next_token();
*self.buffer_end = (*self.buffer_end + 1) & 3;
}
return copy self.buffer[(*self.buffer_start + dist - 1) & 3].tok;
}
fn fatal(&self, m: &str) -> ! {
self.sess.span_diagnostic.span_fatal(*copy self.span, m)
}
fn span_fatal(&self, sp: span, m: &str) -> ! {
self.sess.span_diagnostic.span_fatal(sp, m)
}
fn span_note(&self, sp: span, m: &str) {
self.sess.span_diagnostic.span_note(sp, m)
}
fn bug(&self, m: &str) -> ! {
self.sess.span_diagnostic.span_bug(*copy self.span, m)
}
fn warn(&self, m: &str) {
self.sess.span_diagnostic.span_warn(*copy self.span, m)
}
fn span_err(&self, sp: span, m: &str) {
self.sess.span_diagnostic.span_err(sp, m)
}
fn abort_if_errors(&self) {
self.sess.span_diagnostic.handler().abort_if_errors();
}
fn get_id(&self) -> node_id { next_node_id(self.sess) }
fn id_to_str(&self, id: ident) -> @~str {
self.sess.interner.get(id)
}
// is this one of the keywords that signals a closure type?
fn token_is_closure_keyword(&self, tok: &token::Token) -> bool {
self.token_is_keyword(&~"pure", tok) ||
self.token_is_keyword(&~"unsafe", tok) ||
self.token_is_keyword(&~"once", tok) ||
self.token_is_keyword(&~"fn", tok)
}
fn token_is_lifetime(&self, tok: &token::Token) -> bool {
match *tok {
token::LIFETIME(*) => true,
_ => false,
}
}
fn get_lifetime(&self, tok: &token::Token) -> ast::ident {
match *tok {
token::LIFETIME(ref ident) => copy *ident,
_ => self.bug(~"not a lifetime"),
}
}
// parse a ty_bare_fun type:
fn parse_ty_bare_fn(&self) -> ty_
{
/*
extern "ABI" [pure|unsafe] fn <'lt> (S) -> T
^~~~^ ^~~~~~~~~~~~^ ^~~~^ ^~^ ^
| | | | |
| | | | Return type
| | | Argument types
| | Lifetimes
| |
| Purity
ABI
*/
let opt_abis = self.parse_opt_abis();
let abis = opt_abis.get_or_default(AbiSet::Rust());
let purity = self.parse_unsafety();
self.expect_keyword(&~"fn");
let (decl, lifetimes) = self.parse_ty_fn_decl();
return ty_bare_fn(@TyBareFn {
abis: abis,
purity: purity,
lifetimes: lifetimes,
decl: decl
});
}
// parse a ty_closure type
fn parse_ty_closure(&self,
sigil: ast::Sigil,
region: Option<@ast::Lifetime>)
-> ty_ {
/*
(&|~|@) ['r] [pure|unsafe] [once] fn <'lt> (S) -> T
^~~~~~^ ^~~^ ^~~~~~~~~~~~^ ^~~~~^ ^~~~^ ^~^ ^
| | | | | | |
| | | | | | Return type
| | | | | Argument types
| | | | Lifetimes
| | | Once-ness (a.k.a., affine)
| | Purity
| Lifetime bound
Allocation type
*/
// At this point, the allocation type and lifetime bound have been
// parsed.
let purity = self.parse_unsafety();
let onceness = parse_onceness(self);
self.expect_keyword(&~"fn");
if self.parse_fn_ty_sigil().is_some() {
self.obsolete(*self.span, ObsoletePostFnTySigil);
}
let (decl, lifetimes) = self.parse_ty_fn_decl();
return ty_closure(@TyClosure {
sigil: sigil,
region: region,
purity: purity,
onceness: onceness,
decl: decl,
lifetimes: lifetimes,
});
fn parse_onceness(this: &Parser) -> Onceness {
if this.eat_keyword(&~"once") {
Once
} else {
Many
}
}
}
// looks like this should be called parse_unsafety
fn parse_unsafety(&self) -> purity {
if self.eat_keyword(&~"pure") {
self.obsolete(*self.last_span, ObsoletePurity);
return impure_fn;
} else if self.eat_keyword(&~"unsafe") {
return unsafe_fn;
} else {
return impure_fn;
}
}
// parse a function type (following the 'fn')
fn parse_ty_fn_decl(&self) -> (fn_decl, OptVec<ast::Lifetime>) {
/*
(fn) <'lt> (S) -> T
^~~~^ ^~^ ^
| | |
| | Return type
| Argument types
Lifetimes
*/
let lifetimes = if self.eat(&token::LT) {
let lifetimes = self.parse_lifetimes();
self.expect_gt();
lifetimes
} else {
opt_vec::Empty
};
let inputs = self.parse_unspanned_seq(
&token::LPAREN,
&token::RPAREN,
seq_sep_trailing_disallowed(token::COMMA),
|p| p.parse_arg_general(false)
);
let (ret_style, ret_ty) = self.parse_ret_ty();
let decl = ast::fn_decl {
inputs: inputs,
output: ret_ty,
cf: ret_style
};
(decl, lifetimes)
}
// parse the methods in a trait declaration
fn parse_trait_methods(&self) -> ~[trait_method] {
do self.parse_unspanned_seq(
&token::LBRACE,
&token::RBRACE,
seq_sep_none()
) |p| {
let attrs = p.parse_outer_attributes();
let lo = p.span.lo;
let vis = p.parse_visibility();
let pur = p.parse_fn_purity();
// NB: at the moment, trait methods are public by default; this
// could change.
let ident = p.parse_ident();
let generics = p.parse_generics();
let (self_ty, d) = do self.parse_fn_decl_with_self() |p| {
// This is somewhat dubious; We don't want to allow argument
// names to be left off if there is a definition...
either::Left(p.parse_arg_general(false))
};
let hi = p.last_span.hi;
debug!("parse_trait_methods(): trait method signature ends in \
`%s`",
self.this_token_to_str());
match *p.token {
token::SEMI => {
p.bump();
debug!("parse_trait_methods(): parsing required method");
// NB: at the moment, visibility annotations on required
// methods are ignored; this could change.
required(ty_method {
ident: ident,
attrs: attrs,
purity: pur,
decl: d,
generics: generics,
self_ty: self_ty,
id: p.get_id(),
span: mk_sp(lo, hi)
})
}
token::LBRACE => {
debug!("parse_trait_methods(): parsing provided method");
let (inner_attrs, body) =
p.parse_inner_attrs_and_block();
let attrs = vec::append(attrs, inner_attrs);
provided(@ast::method {
ident: ident,
attrs: attrs,
generics: generics,
self_ty: self_ty,
purity: pur,
decl: d,
body: body,
id: p.get_id(),
span: mk_sp(lo, hi),
self_id: p.get_id(),
vis: vis,
})
}
_ => {
p.fatal(
fmt!(
"expected `;` or `}` but found `%s`",
self.this_token_to_str()
)
);
}
}
}
}
// parse a possibly mutable type
fn parse_mt(&self) -> mt {
let mutbl = self.parse_mutability();
let t = self.parse_ty(false);
mt { ty: t, mutbl: mutbl }
}
// parse [mut/const/imm] ID : TY
// now used only by obsolete record syntax parser...
fn parse_ty_field(&self) -> ty_field {
let lo = self.span.lo;
let mutbl = self.parse_mutability();
let id = self.parse_ident();
self.expect(&token::COLON);
let ty = self.parse_ty(false);
spanned(
lo,
ty.span.hi,
ast::ty_field_ {
ident: id,
mt: ast::mt { ty: ty, mutbl: mutbl },
}
)
}
// parse optional return type [ -> TY ] in function decl
fn parse_ret_ty(&self) -> (ret_style, @Ty) {
return if self.eat(&token::RARROW) {
let lo = self.span.lo;
if self.eat(&token::NOT) {
(
noreturn,
@Ty {
id: self.get_id(),
node: ty_bot,
span: mk_sp(lo, self.last_span.hi)
}
)
} else {
(return_val, self.parse_ty(false))
}
} else {
let pos = self.span.lo;
(
return_val,
@Ty {
id: self.get_id(),
node: ty_nil,
span: mk_sp(pos, pos),
}
)
}
}
// parse a type.
// Useless second parameter for compatibility with quasiquote macros.
// Bleh!
fn parse_ty(&self, _: bool) -> @Ty {
maybe_whole!(self, nt_ty);
let lo = self.span.lo;
let t = if *self.token == token::LPAREN {
self.bump();
if *self.token == token::RPAREN {
self.bump();
ty_nil
} else {
// (t) is a parenthesized ty
// (t,) is the type of a tuple with only one field,
// of type t
let mut ts = ~[self.parse_ty(false)];
let mut one_tuple = false;
while *self.token == token::COMMA {
self.bump();
if *self.token != token::RPAREN {
ts.push(self.parse_ty(false));
}
else {
one_tuple = true;
}
}
let t = if ts.len() == 1 && !one_tuple {
copy ts[0].node
} else {
ty_tup(ts)
};
self.expect(&token::RPAREN);
t
}
} else if *self.token == token::AT {
// MANAGED POINTER
self.bump();
self.parse_box_or_uniq_pointee(ManagedSigil, ty_box)
} else if *self.token == token::TILDE {
// OWNED POINTER
self.bump();
self.parse_box_or_uniq_pointee(OwnedSigil, ty_uniq)
} else if *self.token == token::BINOP(token::STAR) {
// STAR POINTER (bare pointer?)
self.bump();
ty_ptr(self.parse_mt())
} else if *self.token == token::LBRACE {
// STRUCTURAL RECORD (remove?)
let elems = self.parse_unspanned_seq(
&token::LBRACE,
&token::RBRACE,
seq_sep_trailing_allowed(token::COMMA),
|p| p.parse_ty_field()
);
if elems.len() == 0 {
self.unexpected_last(&token::RBRACE);
}
self.obsolete(*self.last_span, ObsoleteRecordType);
ty_nil
} else if *self.token == token::LBRACKET {
// VECTOR
self.expect(&token::LBRACKET);
let mt = self.parse_mt();
if mt.mutbl == m_mutbl { // `m_const` too after snapshot
self.obsolete(*self.last_span, ObsoleteMutVector);
}
// Parse the `, ..e` in `[ int, ..e ]`
// where `e` is a const expression
let t = match self.maybe_parse_fixed_vstore() {
None => ty_vec(mt),
Some(suffix) => ty_fixed_length_vec(mt, suffix)
};
self.expect(&token::RBRACKET);
t
} else if *self.token == token::BINOP(token::AND) {
// BORROWED POINTER
self.bump();
self.parse_borrowed_pointee()
} else if self.eat_keyword(&~"extern") {
// EXTERN FUNCTION
self.parse_ty_bare_fn()
} else if self.token_is_closure_keyword(&copy *self.token) {
// CLOSURE
let result = self.parse_ty_closure(ast::BorrowedSigil, None);
self.obsolete(*self.last_span, ObsoleteBareFnType);
result
} else if *self.token == token::MOD_SEP
|| is_ident_or_path(self.token) {
// NAMED TYPE
let path = self.parse_path_with_tps(false);
ty_path(path, self.get_id())
} else {
self.fatal(fmt!("expected type, found token %?",
*self.token));
};
let sp = mk_sp(lo, self.last_span.hi);
@Ty {id: self.get_id(), node: t, span: sp}
}
// parse the type following a @ or a ~
fn parse_box_or_uniq_pointee(
&self,
sigil: ast::Sigil,
ctor: &fn(v: mt) -> ty_) -> ty_
{
// @'foo fn() or @foo/fn() or @fn() are parsed directly as fn types:
match *self.token {
token::LIFETIME(*) => {
let lifetime = @self.parse_lifetime();
self.bump();
return self.parse_ty_closure(sigil, Some(lifetime));
}
token::IDENT(*) => {
if self.look_ahead(1u) == token::BINOP(token::SLASH) &&
self.token_is_closure_keyword(&self.look_ahead(2u))
{
let lifetime = @self.parse_lifetime();
self.obsolete(*self.last_span, ObsoleteLifetimeNotation);
return self.parse_ty_closure(sigil, Some(lifetime));
} else if self.token_is_closure_keyword(&copy *self.token) {
return self.parse_ty_closure(sigil, None);
}
}
_ => {}
}
// other things are parsed as @ + a type. Note that constructs like
// @[] and @str will be resolved during typeck to slices and so forth,
// rather than boxed ptrs. But the special casing of str/vec is not
// reflected in the AST type.
let mt = self.parse_mt();
if mt.mutbl != m_imm && sigil == OwnedSigil {
self.obsolete(*self.last_span, ObsoleteMutOwnedPointer);
}
if mt.mutbl == m_const && sigil == ManagedSigil {
self.obsolete(*self.last_span, ObsoleteConstManagedPointer);
}
ctor(mt)
}
fn parse_borrowed_pointee(&self) -> ty_ {
// look for `&'lt` or `&'foo ` and interpret `foo` as the region name:
let opt_lifetime = self.parse_opt_lifetime();
if self.token_is_closure_keyword(&copy *self.token) {
return self.parse_ty_closure(BorrowedSigil, opt_lifetime);
}
let mt = self.parse_mt();
return ty_rptr(opt_lifetime, mt);
}
// parse an optional, obsolete argument mode.
fn parse_arg_mode(&self) {
if self.eat(&token::BINOP(token::MINUS)) {
self.obsolete(*self.span, ObsoleteMode);
} else if self.eat(&token::ANDAND) {
self.obsolete(*self.span, ObsoleteMode);
} else if self.eat(&token::BINOP(token::PLUS)) {
if self.eat(&token::BINOP(token::PLUS)) {
self.obsolete(*self.span, ObsoleteMode);
} else {
self.obsolete(*self.span, ObsoleteMode);
}
} else {
// Ignore.
}
}
fn is_named_argument(&self) -> bool {
let offset = if *self.token == token::BINOP(token::AND) {
1
} else if *self.token == token::BINOP(token::MINUS) {
1
} else if *self.token == token::ANDAND {
1
} else if *self.token == token::BINOP(token::PLUS) {
if self.look_ahead(1) == token::BINOP(token::PLUS) {
2
} else {
1
}
} else { 0 };
if offset == 0 {
is_plain_ident(&*self.token)
&& self.look_ahead(1) == token::COLON
} else {
is_plain_ident(&self.look_ahead(offset))
&& self.look_ahead(offset + 1) == token::COLON
}
}
// This version of parse arg doesn't necessarily require
// identifier names.
fn parse_arg_general(&self, require_name: bool) -> arg {
let mut is_mutbl = false;
let pat = if require_name || self.is_named_argument() {
self.parse_arg_mode();
is_mutbl = self.eat_keyword(&~"mut");
let pat = self.parse_pat(false);
self.expect(&token::COLON);
pat
} else {
ast_util::ident_to_pat(self.get_id(),
*self.last_span,
special_idents::invalid)
};
let t = self.parse_ty(false);
ast::arg {
is_mutbl: is_mutbl,
ty: t,
pat: pat,
id: self.get_id(),
}
}
// parse a single function argument
fn parse_arg(&self) -> arg_or_capture_item {
either::Left(self.parse_arg_general(true))
}
// parse an argument in a lambda header e.g. |arg, arg|
fn parse_fn_block_arg(&self) -> arg_or_capture_item {
self.parse_arg_mode();
let is_mutbl = self.eat_keyword(&~"mut");
let pat = self.parse_pat(false);
let t = if self.eat(&token::COLON) {
self.parse_ty(false)
} else {
@Ty {
id: self.get_id(),
node: ty_infer,
span: mk_sp(self.span.lo, self.span.hi),
}
};
either::Left(ast::arg {
is_mutbl: is_mutbl,
ty: t,
pat: pat,
id: self.get_id()
})
}
fn maybe_parse_fixed_vstore(&self) -> Option<@ast::expr> {
if self.eat(&token::BINOP(token::STAR)) {
self.obsolete(*self.last_span, ObsoleteFixedLengthVectorType);
Some(self.parse_expr())
} else if *self.token == token::COMMA &&
self.look_ahead(1) == token::DOTDOT {
self.bump();
self.bump();
Some(self.parse_expr())
} else {
None
}
}
// matches token_lit = LIT_INT | ...
fn lit_from_token(&self, tok: &token::Token) -> lit_ {
match *tok {
token::LIT_INT(i, it) => lit_int(i, it),
token::LIT_UINT(u, ut) => lit_uint(u, ut),
token::LIT_INT_UNSUFFIXED(i) => lit_int_unsuffixed(i),
token::LIT_FLOAT(s, ft) => lit_float(self.id_to_str(s), ft),
token::LIT_FLOAT_UNSUFFIXED(s) =>
lit_float_unsuffixed(self.id_to_str(s)),
token::LIT_STR(s) => lit_str(self.id_to_str(s)),
token::LPAREN => { self.expect(&token::RPAREN); lit_nil },
_ => { self.unexpected_last(tok); }
}
}
// matches lit = true | false | token_lit
fn parse_lit(&self) -> lit {
let lo = self.span.lo;
let lit = if self.eat_keyword(&~"true") {
lit_bool(true)
} else if self.eat_keyword(&~"false") {
lit_bool(false)
} else {
// XXX: This is a really bad copy!
let tok = copy *self.token;
self.bump();
self.lit_from_token(&tok)
};
codemap::spanned { node: lit, span: mk_sp(lo, self.last_span.hi) }
}
// matches '-' lit | lit
fn parse_literal_maybe_minus(&self) -> @expr {
let minus_lo = self.span.lo;
let minus_present = self.eat(&token::BINOP(token::MINUS));
let lo = self.span.lo;
let literal = @self.parse_lit();
let hi = self.span.hi;
let expr = self.mk_expr(lo, hi, expr_lit(literal));
if minus_present {
let minus_hi = self.span.hi;
self.mk_expr(minus_lo, minus_hi, expr_unary(neg, expr))
} else {
expr
}
}
// parse a path into a vector of idents, whether the path starts
// with ::, and a span.
fn parse_path(&self) -> (~[ast::ident],bool,span) {
let lo = self.span.lo;
let is_global = self.eat(&token::MOD_SEP);
let (ids,span{lo:_,hi,expn_info}) = self.parse_path_non_global();
(ids,is_global,span{lo:lo,hi:hi,expn_info:expn_info})
}
// parse a path beginning with an identifier into a vector of idents and a span
fn parse_path_non_global(&self) -> (~[ast::ident],span) {
let lo = self.span.lo;
let mut ids = ~[];
// must be at least one to begin:
ids.push(self.parse_ident());
loop {
match *self.token {
token::MOD_SEP => {
match self.look_ahead(1) {
token::IDENT(*) => {
self.bump();
ids.push(self.parse_ident());
}
_ => break
}
}
_ => break
}
}
(ids, mk_sp(lo, self.last_span.hi))
}
// parse a path that doesn't have type parameters attached
fn parse_path_without_tps(&self)
-> @ast::Path {
maybe_whole!(self, nt_path);
let (ids,is_global,sp) = self.parse_path();
@ast::Path { span: sp,
global: is_global,
idents: ids,
rp: None,
types: ~[] }
}
// parse a path optionally with type parameters. If 'colons'
// is true, then type parameters must be preceded by colons,
// as in a::t::<t1,t2>
fn parse_path_with_tps(&self, colons: bool) -> @ast::Path {
debug!("parse_path_with_tps(colons=%b)", colons);
maybe_whole!(self, nt_path);
let lo = self.span.lo;
let path = self.parse_path_without_tps();
if colons && !self.eat(&token::MOD_SEP) {
return path;
}
// Parse the (obsolete) trailing region parameter, if any, which will
// be written "foo/&x"
let rp_slash = {
if *self.token == token::BINOP(token::SLASH)
&& self.look_ahead(1u) == token::BINOP(token::AND)
{
self.bump(); self.bump();
self.obsolete(*self.last_span, ObsoleteLifetimeNotation);
match *self.token {
token::IDENT(sid, _) => {
let span = copy self.span;
self.bump();
Some(@ast::Lifetime {
id: self.get_id(),
span: *span,
ident: sid
})
}
_ => {
self.fatal(fmt!("Expected a lifetime name"));
}
}
} else {
None
}
};
// Parse any lifetime or type parameters which may appear:
let (lifetimes, tps) = self.parse_generic_values();
let hi = self.span.lo;
let rp = match (&rp_slash, &lifetimes) {
(&Some(_), _) => rp_slash,
(&None, v) => {
if v.len() == 0 {
None
} else if v.len() == 1 {
Some(@*v.get(0))
} else {
self.fatal(fmt!("Expected at most one \
lifetime name (for now)"));
}
}
};
@ast::Path { span: mk_sp(lo, hi),
rp: rp,
types: tps,
.. copy *path }
}
/// parses 0 or 1 lifetime
fn parse_opt_lifetime(&self) -> Option<@ast::Lifetime> {
match *self.token {
token::LIFETIME(*) => {
Some(@self.parse_lifetime())
}
// Also accept the (obsolete) syntax `foo/`
token::IDENT(*) => {
if self.look_ahead(1u) == token::BINOP(token::SLASH) {
self.obsolete(*self.last_span, ObsoleteLifetimeNotation);
Some(@self.parse_lifetime())
} else {
None
}
}
_ => {
None
}
}
}
fn token_is_lifetime(&self, tok: &token::Token) -> bool {
match *tok {
token::LIFETIME(_) => true,
_ => false
}
}
/// Parses a single lifetime
// matches lifetime = ( LIFETIME ) | ( IDENT / )
fn parse_lifetime(&self) -> ast::Lifetime {
match *self.token {
token::LIFETIME(i) => {
let span = copy self.span;
self.bump();
return ast::Lifetime {
id: self.get_id(),
span: *span,
ident: i
};
}
// Also accept the (obsolete) syntax `foo/`
token::IDENT(i, _) => {
let span = copy self.span;
self.bump();
self.expect(&token::BINOP(token::SLASH));
self.obsolete(*self.last_span, ObsoleteLifetimeNotation);
return ast::Lifetime {
id: self.get_id(),
span: *span,
ident: i
};
}
_ => {
self.fatal(fmt!("Expected a lifetime name"));
}
}
}
// matches lifetimes = ( lifetime ) | ( lifetime , lifetimes )
// actually, it matches the empty one too, but putting that in there
// messes up the grammar....
fn parse_lifetimes(&self) -> OptVec<ast::Lifetime> {
/*!
*
* Parses zero or more comma separated lifetimes.
* Expects each lifetime to be followed by either
* a comma or `>`. Used when parsing type parameter
* lists, where we expect something like `<'a, 'b, T>`.
*/
let mut res = opt_vec::Empty;
loop {
match *self.token {
token::LIFETIME(_) => {
res.push(self.parse_lifetime());
}
_ => {
return res;
}
}
match *self.token {
token::COMMA => { self.bump();}
token::GT => { return res; }
token::BINOP(token::SHR) => { return res; }
_ => {
self.fatal(fmt!("expected `,` or `>` after lifetime name, got: %?",
*self.token));
}
}
}
}
fn token_is_mutability(&self, tok: &token::Token) -> bool {
self.token_is_keyword(&~"mut", tok) ||
self.token_is_keyword(&~"const", tok)
}
// parse mutability declaration (mut/const/imm)
fn parse_mutability(&self) -> mutability {
if self.eat_keyword(&~"mut") {
m_mutbl
} else if self.eat_keyword(&~"const") {
m_const
} else {
m_imm
}
}
// parse ident COLON expr
fn parse_field(&self) -> field {
let lo = self.span.lo;
let m = self.parse_mutability();
let i = self.parse_ident();
self.expect(&token::COLON);
let e = self.parse_expr();
spanned(lo, e.span.hi, ast::field_ { mutbl: m, ident: i, expr: e })
}
fn mk_expr(&self, lo: BytePos, hi: BytePos, node: expr_) -> @expr {
@expr {
id: self.get_id(),
callee_id: self.get_id(),
node: node,
span: mk_sp(lo, hi),
}
}
fn mk_mac_expr(&self, lo: BytePos, hi: BytePos, m: mac_) -> @expr {
@expr {
id: self.get_id(),
callee_id: self.get_id(),
node: expr_mac(codemap::spanned {node: m, span: mk_sp(lo, hi)}),
span: mk_sp(lo, hi),
}
}
fn mk_lit_u32(&self, i: u32) -> @expr {
let span = self.span;
let lv_lit = @codemap::spanned {
node: lit_uint(i as u64, ty_u32),
span: *span
};
@expr {
id: self.get_id(),
callee_id: self.get_id(),
node: expr_lit(lv_lit),
span: *span,
}
}
// at the bottom (top?) of the precedence hierarchy,
// parse things like parenthesized exprs,
// macros, return, etc.
fn parse_bottom_expr(&self) -> @expr {
maybe_whole_expr!(self);
let lo = self.span.lo;
let mut hi = self.span.hi;
let ex: expr_;
if *self.token == token::LPAREN {
self.bump();
// (e) is parenthesized e
// (e,) is a tuple with only one field, e
let mut trailing_comma = false;
if *self.token == token::RPAREN {
hi = self.span.hi;
self.bump();
let lit = @spanned(lo, hi, lit_nil);
return self.mk_expr(lo, hi, expr_lit(lit));
}
let mut es = ~[self.parse_expr()];
while *self.token == token::COMMA {
self.bump();
if *self.token != token::RPAREN {
es.push(self.parse_expr());
}
else {
trailing_comma = true;
}
}
hi = self.span.hi;
self.expect(&token::RPAREN);
return if es.len() == 1 && !trailing_comma {
self.mk_expr(lo, self.span.hi, expr_paren(es[0]))
}
else {
self.mk_expr(lo, hi, expr_tup(es))
}
} else if *self.token == token::LBRACE {
self.bump();
let blk = self.parse_block_tail(lo, default_blk);
return self.mk_expr(blk.span.lo, blk.span.hi,
expr_block(blk));
} else if token::is_bar(&*self.token) {
return self.parse_lambda_expr();
} else if self.eat_keyword(&~"self") {
ex = expr_self;
hi = self.span.hi;
} else if self.eat_keyword(&~"if") {
return self.parse_if_expr();
} else if self.eat_keyword(&~"for") {
return self.parse_sugary_call_expr(~"for", ForSugar,
expr_loop_body);
} else if self.eat_keyword(&~"do") {
return self.parse_sugary_call_expr(~"do", DoSugar,
expr_do_body);
} else if self.eat_keyword(&~"while") {
return self.parse_while_expr();
} else if self.token_is_lifetime(&*self.token) {
let lifetime = self.get_lifetime(&*self.token);
self.bump();
self.expect(&token::COLON);
self.expect_keyword(&~"loop");
return self.parse_loop_expr(Some(lifetime));
} else if self.eat_keyword(&~"loop") {
return self.parse_loop_expr(None);
} else if self.eat_keyword(&~"match") {
return self.parse_match_expr();
} else if self.eat_keyword(&~"unsafe") {
return self.parse_block_expr(lo, unsafe_blk);
} else if *self.token == token::LBRACKET {
self.bump();
let mutbl = self.parse_mutability();
if mutbl == m_mutbl || mutbl == m_const {
self.obsolete(*self.last_span, ObsoleteMutVector);
}
if *self.token == token::RBRACKET {
// Empty vector.
self.bump();
ex = expr_vec(~[], mutbl);
} else {
// Nonempty vector.
let first_expr = self.parse_expr();
if *self.token == token::COMMA &&
self.look_ahead(1) == token::DOTDOT {
// Repeating vector syntax: [ 0, ..512 ]
self.bump();
self.bump();
let count = self.parse_expr();
self.expect(&token::RBRACKET);
ex = expr_repeat(first_expr, count, mutbl);
} else if *self.token == token::COMMA {
// Vector with two or more elements.
self.bump();
let remaining_exprs = self.parse_seq_to_end(
&token::RBRACKET,
seq_sep_trailing_allowed(token::COMMA),
|p| p.parse_expr()
);
ex = expr_vec(~[first_expr] + remaining_exprs, mutbl);
} else {
// Vector with one element.
self.expect(&token::RBRACKET);
ex = expr_vec(~[first_expr], mutbl);
}
}
hi = self.span.hi;
} else if self.eat_keyword(&~"__log") {
// LOG expression
self.expect(&token::LPAREN);
let lvl = self.parse_expr();
self.expect(&token::COMMA);
let e = self.parse_expr();
ex = expr_log(lvl, e);
hi = self.span.hi;
self.expect(&token::RPAREN);
} else if self.eat_keyword(&~"return") {
// RETURN expression
if can_begin_expr(&*self.token) {
let e = self.parse_expr();
hi = e.span.hi;
ex = expr_ret(Some(e));
} else { ex = expr_ret(None); }
} else if self.eat_keyword(&~"break") {
// BREAK expression
if self.token_is_lifetime(&*self.token) {
let lifetime = self.get_lifetime(&*self.token);
self.bump();
ex = expr_break(Some(lifetime));
} else {
ex = expr_break(None);
}
hi = self.span.hi;
} else if self.eat_keyword(&~"copy") {
// COPY expression
let e = self.parse_expr();
ex = expr_copy(e);
hi = e.span.hi;
} else if *self.token == token::MOD_SEP ||
is_ident(&*self.token) && !self.is_keyword(&~"true") &&
!self.is_keyword(&~"false") {
let pth = self.parse_path_with_tps(true);
// `!`, as an operator, is prefix, so we know this isn't that
if *self.token == token::NOT {
// MACRO INVOCATION expression
self.bump();
match *self.token {
token::LPAREN | token::LBRACE => {}
_ => self.fatal(~"expected open delimiter")
};
let ket = token::flip_delimiter(&*self.token);
let tts = self.parse_unspanned_seq(
&copy *self.token,
&ket,
seq_sep_none(),
|p| p.parse_token_tree()
);
let hi = self.span.hi;
return self.mk_mac_expr(lo, hi, mac_invoc_tt(pth, tts));
} else if *self.token == token::LBRACE {
// This might be a struct literal.
if self.looking_at_record_literal() {
// It's a struct literal.
self.bump();
let mut fields = ~[];
let mut base = None;
fields.push(self.parse_field());
while *self.token != token::RBRACE {
if self.try_parse_obsolete_with() {
break;
}
self.expect(&token::COMMA);
if self.eat(&token::DOTDOT) {
base = Some(self.parse_expr());
break;
}
if *self.token == token::RBRACE {
// Accept an optional trailing comma.
break;
}
fields.push(self.parse_field());
}
hi = pth.span.hi;
self.expect(&token::RBRACE);
ex = expr_struct(pth, fields, base);
return self.mk_expr(lo, hi, ex);
}
}
hi = pth.span.hi;
ex = expr_path(pth);
} else {
// other literal expression
let lit = self.parse_lit();
hi = lit.span.hi;
ex = expr_lit(@lit);
}
return self.mk_expr(lo, hi, ex);
}
// parse a block or unsafe block
fn parse_block_expr(
&self,
lo: BytePos,
blk_mode: blk_check_mode
) -> @expr {
self.expect(&token::LBRACE);
let blk = self.parse_block_tail(lo, blk_mode);
return self.mk_expr(blk.span.lo, blk.span.hi, expr_block(blk));
}
// parse a.b or a(13) or a[4] or just a
fn parse_dot_or_call_expr(&self) -> @expr {
let b = self.parse_bottom_expr();
self.parse_dot_or_call_expr_with(b)
}
fn parse_dot_or_call_expr_with(&self, e0: @expr) -> @expr {
let mut e = e0;
let lo = e.span.lo;
let mut hi;
loop {
// expr.f
if self.eat(&token::DOT) {
match *self.token {
token::IDENT(i, _) => {
hi = self.span.hi;
self.bump();
let (_, tys) = if self.eat(&token::MOD_SEP) {
self.expect(&token::LT);
self.parse_generic_values_after_lt()
} else {
(opt_vec::Empty, ~[])
};
// expr.f() method call
match *self.token {
token::LPAREN => {
let es = self.parse_unspanned_seq(
&token::LPAREN,
&token::RPAREN,
seq_sep_trailing_disallowed(token::COMMA),
|p| p.parse_expr()
);
hi = self.span.hi;
let nd = expr_method_call(e, i, tys, es, NoSugar);
e = self.mk_expr(lo, hi, nd);
}
_ => {
e = self.mk_expr(lo, hi, expr_field(e, i, tys));
}
}
}
_ => self.unexpected()
}
loop;
}
if self.expr_is_complete(e) { break; }
match *self.token {
// expr(...)
token::LPAREN => {
let es = self.parse_unspanned_seq(
&token::LPAREN,
&token::RPAREN,
seq_sep_trailing_disallowed(token::COMMA),
|p| p.parse_expr()
);
hi = self.span.hi;
let nd = expr_call(e, es, NoSugar);
e = self.mk_expr(lo, hi, nd);
}
// expr[...]
token::LBRACKET => {
self.bump();
let ix = self.parse_expr();
hi = ix.span.hi;
self.expect(&token::RBRACKET);
e = self.mk_expr(lo, hi, expr_index(e, ix));
}
_ => return e
}
}
return e;
}
// parse an optional separator followed by a kleene-style
// repetition token (+ or *).
fn parse_sep_and_zerok(&self) -> (Option<token::Token>, bool) {
if *self.token == token::BINOP(token::STAR)
|| *self.token == token::BINOP(token::PLUS) {
let zerok = *self.token == token::BINOP(token::STAR);
self.bump();
(None, zerok)
} else {
let sep = copy *self.token;
self.bump();
if *self.token == token::BINOP(token::STAR)
|| *self.token == token::BINOP(token::PLUS) {
let zerok = *self.token == token::BINOP(token::STAR);
self.bump();
(Some(sep), zerok)
} else {
self.fatal(~"expected `*` or `+`");
}
}
}
// parse a single token tree from the input.
fn parse_token_tree(&self) -> token_tree {
maybe_whole!(deref self, nt_tt);
// this is the fall-through for the 'match' below.
// invariants: the current token is not a left-delimiter,
// not an EOF, and not the desired right-delimiter (if
// it were, parse_seq_to_before_end would have prevented
// reaching this point.
fn parse_non_delim_tt_tok(p: &Parser) -> token_tree {
maybe_whole!(deref p, nt_tt);
match *p.token {
token::RPAREN | token::RBRACE | token::RBRACKET
=> {
p.fatal(
fmt!(
"incorrect close delimiter: `%s`",
p.this_token_to_str()
)
);
}
/* we ought to allow different depths of unquotation */
token::DOLLAR if *p.quote_depth > 0u => {
p.bump();
let sp = *p.span;
if *p.token == token::LPAREN {
let seq = p.parse_seq(
&token::LPAREN,
&token::RPAREN,
seq_sep_none(),
|p| p.parse_token_tree()
);
let (s, z) = p.parse_sep_and_zerok();
let seq = match seq {
spanned { node, _ } => node,
};
tt_seq(
mk_sp(sp.lo, p.span.hi),
seq,
s,
z
)
} else {
tt_nonterminal(sp, p.parse_ident())
}
}
_ => {
parse_any_tt_tok(p)
}
}
}
// turn the next token into a tt_tok:
fn parse_any_tt_tok(p: &Parser) -> token_tree{
let res = tt_tok(*p.span, copy *p.token);
p.bump();
res
}
match *self.token {
token::EOF => {
self.fatal(~"file ended with unbalanced delimiters");
}
token::LPAREN | token::LBRACE | token::LBRACKET => {
let close_delim = token::flip_delimiter(&*self.token);
tt_delim(
vec::append(
// the open delimiter:
~[parse_any_tt_tok(self)],
vec::append(
self.parse_seq_to_before_end(
&close_delim,
seq_sep_none(),
|p| p.parse_token_tree()
),
// the close delimiter:
~[parse_any_tt_tok(self)]
)
)
)
}
_ => parse_non_delim_tt_tok(self)
}
}
// parse a stream of tokens into a list of token_trees,
// up to EOF.
fn parse_all_token_trees(&self) -> ~[token_tree] {
let mut tts = ~[];
while *self.token != token::EOF {
tts.push(self.parse_token_tree());
}
tts
}
fn parse_matchers(&self) -> ~[matcher] {
// unification of matchers and token_trees would vastly improve
// the interpolation of matchers
maybe_whole!(self, nt_matchers);
let name_idx = @mut 0u;
match *self.token {
token::LBRACE | token::LPAREN | token::LBRACKET => {
self.parse_matcher_subseq(
name_idx,
copy *self.token,
// tjc: not sure why we need a copy
token::flip_delimiter(self.token)
)
}
_ => self.fatal(~"expected open delimiter")
}
}
// This goofy function is necessary to correctly match parens in matchers.
// Otherwise, `$( ( )` would be a valid matcher, and `$( () )` would be
// invalid. It's similar to common::parse_seq.
fn parse_matcher_subseq(
&self,
name_idx: @mut uint,
bra: token::Token,
ket: token::Token
) -> ~[matcher] {
let mut ret_val = ~[];
let mut lparens = 0u;
self.expect(&bra);
while *self.token != ket || lparens > 0u {
if *self.token == token::LPAREN { lparens += 1u; }
if *self.token == token::RPAREN { lparens -= 1u; }
ret_val.push(self.parse_matcher(name_idx));
}
self.bump();
return ret_val;
}
fn parse_matcher(&self, name_idx: @mut uint) -> matcher {
let lo = self.span.lo;
let m = if *self.token == token::DOLLAR {
self.bump();
if *self.token == token::LPAREN {
let name_idx_lo = *name_idx;
let ms = self.parse_matcher_subseq(
name_idx,
token::LPAREN,
token::RPAREN
);
if ms.len() == 0u {
self.fatal(~"repetition body must be nonempty");
}
let (sep, zerok) = self.parse_sep_and_zerok();
match_seq(ms, sep, zerok, name_idx_lo, *name_idx)
} else {
let bound_to = self.parse_ident();
self.expect(&token::COLON);
let nt_name = self.parse_ident();
let m = match_nonterminal(bound_to, nt_name, *name_idx);
*name_idx += 1u;
m
}
} else {
let m = match_tok(copy *self.token);
self.bump();
m
};
return spanned(lo, self.span.hi, m);
}
// parse a prefix-operator expr
fn parse_prefix_expr(&self) -> @expr {
let lo = self.span.lo;
let hi;
let ex;
match *self.token {
token::NOT => {
self.bump();
let e = self.parse_prefix_expr();
hi = e.span.hi;
ex = expr_unary(not, e);
}
token::BINOP(b) => {
match b {
token::MINUS => {
self.bump();
let e = self.parse_prefix_expr();
hi = e.span.hi;
ex = expr_unary(neg, e);
}
token::STAR => {
self.bump();
let e = self.parse_prefix_expr();
hi = e.span.hi;
ex = expr_unary(deref, e);
}
token::AND => {
self.bump();
let _lt = self.parse_opt_lifetime();
let m = self.parse_mutability();
let e = self.parse_prefix_expr();
hi = e.span.hi;
// HACK: turn &[...] into a &-evec
ex = match e.node {
expr_vec(*) | expr_lit(@codemap::spanned {
node: lit_str(_), span: _
})
if m == m_imm => {
expr_vstore(e, expr_vstore_slice)
}
expr_vec(*) if m == m_mutbl => {
expr_vstore(e, expr_vstore_mut_slice)
}
_ => expr_addr_of(m, e)
};
}
_ => return self.parse_dot_or_call_expr()
}
}
token::AT => {
self.bump();
let m = self.parse_mutability();
if m == m_const {
self.obsolete(*self.last_span, ObsoleteConstManagedPointer);
}
let e = self.parse_prefix_expr();
hi = e.span.hi;
// HACK: turn @[...] into a @-evec
ex = match e.node {
expr_vec(*) | expr_repeat(*) if m == m_mutbl =>
expr_vstore(e, expr_vstore_mut_box),
expr_vec(*) |
expr_lit(@codemap::spanned { node: lit_str(_), span: _}) |
expr_repeat(*) if m == m_imm => expr_vstore(e, expr_vstore_box),
_ => expr_unary(box(m), e)
};
}
token::TILDE => {
self.bump();
let m = self.parse_mutability();
if m != m_imm {
self.obsolete(*self.last_span, ObsoleteMutOwnedPointer);
}
let e = self.parse_prefix_expr();
hi = e.span.hi;
// HACK: turn ~[...] into a ~-evec
ex = match e.node {
expr_vec(*) |
expr_lit(@codemap::spanned { node: lit_str(_), span: _}) |
expr_repeat(*)
if m == m_imm => expr_vstore(e, expr_vstore_uniq),
_ => expr_unary(uniq(m), e)
};
}
_ => return self.parse_dot_or_call_expr()
}
return self.mk_expr(lo, hi, ex);
}
// parse an expression of binops
fn parse_binops(&self) -> @expr {
self.parse_more_binops(self.parse_prefix_expr(), 0)
}
// parse an expression of binops of at least min_prec precedence
fn parse_more_binops(&self, lhs: @expr, min_prec: uint) ->
@expr {
if self.expr_is_complete(lhs) { return lhs; }
let peeked = copy *self.token;
if peeked == token::BINOP(token::OR) &&
(*self.restriction == RESTRICT_NO_BAR_OP ||
*self.restriction == RESTRICT_NO_BAR_OR_DOUBLEBAR_OP) {
lhs
} else if peeked == token::OROR &&
*self.restriction == RESTRICT_NO_BAR_OR_DOUBLEBAR_OP {
lhs
} else {
let cur_opt = token_to_binop(peeked);
match cur_opt {
Some(cur_op) => {
let cur_prec = operator_prec(cur_op);
if cur_prec > min_prec {
self.bump();
let expr = self.parse_prefix_expr();
let rhs = self.parse_more_binops(expr, cur_prec);
let bin = self.mk_expr(lhs.span.lo, rhs.span.hi,
expr_binary(cur_op, lhs, rhs));
self.parse_more_binops(bin, min_prec)
} else {
lhs
}
}
None => {
if as_prec > min_prec && self.eat_keyword(&~"as") {
let rhs = self.parse_ty(true);
let _as = self.mk_expr(lhs.span.lo,
rhs.span.hi,
expr_cast(lhs, rhs));
self.parse_more_binops(_as, min_prec)
} else {
lhs
}
}
}
}
}
// parse an assignment expression....
// actually, this seems to be the main entry point for
// parsing an arbitrary expression.
fn parse_assign_expr(&self) -> @expr {
let lo = self.span.lo;
let lhs = self.parse_binops();
match *self.token {
token::EQ => {
self.bump();
let rhs = self.parse_expr();
self.mk_expr(lo, rhs.span.hi, expr_assign(lhs, rhs))
}
token::BINOPEQ(op) => {
self.bump();
let rhs = self.parse_expr();
let aop;
match op {
token::PLUS => aop = add,
token::MINUS => aop = subtract,
token::STAR => aop = mul,
token::SLASH => aop = div,
token::PERCENT => aop = rem,
token::CARET => aop = bitxor,
token::AND => aop = bitand,
token::OR => aop = bitor,
token::SHL => aop = shl,
token::SHR => aop = shr
}
self.mk_expr(lo, rhs.span.hi,
expr_assign_op(aop, lhs, rhs))
}
token::LARROW => {
self.obsolete(*self.span, ObsoleteBinaryMove);
// Bogus value (but it's an error)
self.bump(); // <-
self.bump(); // rhs
self.bump(); // ;
self.mk_expr(lo, self.span.hi,
expr_break(None))
}
token::DARROW => {
self.obsolete(*self.span, ObsoleteSwap);
self.bump();
// Ignore what we get, this is an error anyway
self.parse_expr();
self.mk_expr(lo, self.span.hi, expr_break(None))
}
_ => {
lhs
}
}
}
// parse an 'if' expression ('if' token already eaten)
fn parse_if_expr(&self) -> @expr {
let lo = self.last_span.lo;
let cond = self.parse_expr();
let thn = self.parse_block();
let mut els: Option<@expr> = None;
let mut hi = thn.span.hi;
if self.eat_keyword(&~"else") {
let elexpr = self.parse_else_expr();
els = Some(elexpr);
hi = elexpr.span.hi;
}
self.mk_expr(lo, hi, expr_if(cond, thn, els))
}
// `|args| { ... }` or `{ ...}` like in `do` expressions
fn parse_lambda_block_expr(&self) -> @expr {
self.parse_lambda_expr_(
|| {
match *self.token {
token::BINOP(token::OR) | token::OROR => {
self.parse_fn_block_decl()
}
_ => {
// No argument list - `do foo {`
ast::fn_decl {
inputs: ~[],
output: @Ty {
id: self.get_id(),
node: ty_infer,
span: *self.span
},
cf: return_val
}
}
}
},
|| {
let blk = self.parse_block();
self.mk_expr(blk.span.lo, blk.span.hi, expr_block(blk))
})
}
// `|args| expr`
fn parse_lambda_expr(&self) -> @expr {
self.parse_lambda_expr_(|| self.parse_fn_block_decl(),
|| self.parse_expr())
}
// parse something of the form |args| expr
// this is used both in parsing a lambda expr
// and in parsing a block expr as e.g. in for...
fn parse_lambda_expr_(
&self,
parse_decl: &fn() -> fn_decl,
parse_body: &fn() -> @expr
) -> @expr {
let lo = self.last_span.lo;
let decl = parse_decl();
let body = parse_body();
let fakeblock = ast::blk_ {
view_items: ~[],
stmts: ~[],
expr: Some(body),
id: self.get_id(),
rules: default_blk,
};
let fakeblock = spanned(body.span.lo, body.span.hi,
fakeblock);
return self.mk_expr(lo, body.span.hi,
expr_fn_block(decl, fakeblock));
}
fn parse_else_expr(&self) -> @expr {
if self.eat_keyword(&~"if") {
return self.parse_if_expr();
} else {
let blk = self.parse_block();
return self.mk_expr(blk.span.lo, blk.span.hi, expr_block(blk));
}
}
// parse a 'for' or 'do'.
// the 'for' and 'do' expressions parse as calls, but look like
// function calls followed by a closure expression.
fn parse_sugary_call_expr(&self, keyword: ~str,
sugar: CallSugar,
ctor: &fn(v: @expr) -> expr_) -> @expr {
let lo = self.last_span;
// Parse the callee `foo` in
// for foo || {
// for foo.bar || {
// etc, or the portion of the call expression before the lambda in
// for foo() || {
// or
// for foo.bar(a) || {
// Turn on the restriction to stop at | or || so we can parse
// them as the lambda arguments
let e = self.parse_expr_res(RESTRICT_NO_BAR_OR_DOUBLEBAR_OP);
match e.node {
expr_call(f, /*bad*/ copy args, NoSugar) => {
let block = self.parse_lambda_block_expr();
let last_arg = self.mk_expr(block.span.lo, block.span.hi,
ctor(block));
let args = vec::append(args, ~[last_arg]);
self.mk_expr(lo.lo, block.span.hi, expr_call(f, args, sugar))
}
expr_method_call(f, i, /*bad*/ copy tps,
/*bad*/ copy args, NoSugar) => {
let block = self.parse_lambda_block_expr();
let last_arg = self.mk_expr(block.span.lo, block.span.hi,
ctor(block));
let args = vec::append(args, ~[last_arg]);
self.mk_expr(lo.lo, block.span.hi,
expr_method_call(f, i, tps, args, sugar))
}
expr_field(f, i, /*bad*/ copy tps) => {
let block = self.parse_lambda_block_expr();
let last_arg = self.mk_expr(block.span.lo, block.span.hi,
ctor(block));
self.mk_expr(lo.lo, block.span.hi,
expr_method_call(f, i, tps, ~[last_arg], sugar))
}
expr_path(*) | expr_call(*) | expr_method_call(*) |
expr_paren(*) => {
let block = self.parse_lambda_block_expr();
let last_arg = self.mk_expr(block.span.lo, block.span.hi,
ctor(block));
self.mk_expr(lo.lo, last_arg.span.hi,
expr_call(e, ~[last_arg], sugar))
}
_ => {
// There may be other types of expressions that can
// represent the callee in `for` and `do` expressions
// but they aren't represented by tests
debug!("sugary call on %?", e.node);
self.span_fatal(
*lo,
fmt!("`%s` must be followed by a block call", keyword));
}
}
}
fn parse_while_expr(&self) -> @expr {
let lo = self.last_span.lo;
let cond = self.parse_expr();
let body = self.parse_block();
let hi = body.span.hi;
return self.mk_expr(lo, hi, expr_while(cond, body));
}
fn parse_loop_expr(&self, opt_ident: Option<ast::ident>) -> @expr {
// loop headers look like 'loop {' or 'loop unsafe {'
let is_loop_header =
*self.token == token::LBRACE
|| (is_ident(&*self.token)
&& self.look_ahead(1) == token::LBRACE);
if is_loop_header {
// This is a loop body
let lo = self.last_span.lo;
let body = self.parse_block();
let hi = body.span.hi;
return self.mk_expr(lo, hi, expr_loop(body, opt_ident));
} else {
// This is a 'continue' expression
if opt_ident.is_some() {
self.span_err(*self.last_span,
"a label may not be used with a `loop` expression");
}
let lo = self.span.lo;
let ex = if self.token_is_lifetime(&*self.token) {
let lifetime = self.get_lifetime(&*self.token);
self.bump();
expr_again(Some(lifetime))
} else {
expr_again(None)
};
let hi = self.span.hi;
return self.mk_expr(lo, hi, ex);
}
}
// For distingishing between record literals and blocks
fn looking_at_record_literal(&self) -> bool {
let lookahead = self.look_ahead(1);
*self.token == token::LBRACE &&
(self.token_is_keyword(&~"mut", &lookahead) ||
(is_plain_ident(&lookahead) &&
self.look_ahead(2) == token::COLON))
}
fn parse_match_expr(&self) -> @expr {
let lo = self.last_span.lo;
let discriminant = self.parse_expr();
self.expect(&token::LBRACE);
let mut arms: ~[arm] = ~[];
while *self.token != token::RBRACE {
let pats = self.parse_pats();
let mut guard = None;
if self.eat_keyword(&~"if") { guard = Some(self.parse_expr()); }
self.expect(&token::FAT_ARROW);
let expr = self.parse_expr_res(RESTRICT_STMT_EXPR);
let require_comma =
!classify::expr_is_simple_block(expr)
&& *self.token != token::RBRACE;
if require_comma {
self.expect(&token::COMMA);
} else {
self.eat(&token::COMMA);
}
let blk = codemap::spanned {
node: ast::blk_ {
view_items: ~[],
stmts: ~[],
expr: Some(expr),
id: self.get_id(),
rules: default_blk,
},
span: expr.span,
};
arms.push(ast::arm { pats: pats, guard: guard, body: blk });
}
let hi = self.span.hi;
self.bump();
return self.mk_expr(lo, hi, expr_match(discriminant, arms));
}
// parse an expression
fn parse_expr(&self) -> @expr {
return self.parse_expr_res(UNRESTRICTED);
}
// parse an expression, subject to the given restriction
fn parse_expr_res(&self, r: restriction) -> @expr {
let old = *self.restriction;
*self.restriction = r;
let e = self.parse_assign_expr();
*self.restriction = old;
return e;
}
// parse the RHS of a local variable declaration (e.g. '= 14;')
fn parse_initializer(&self) -> Option<@expr> {
match *self.token {
token::EQ => {
self.bump();
return Some(self.parse_expr());
}
token::LARROW => {
self.obsolete(*self.span, ObsoleteMoveInit);
self.bump();
self.bump();
return None;
}
_ => {
return None;
}
}
}
// parse patterns, separated by '|' s
fn parse_pats(&self) -> ~[@pat] {
let mut pats = ~[];
loop {
pats.push(self.parse_pat(true));
if *self.token == token::BINOP(token::OR) { self.bump(); }
else { return pats; }
};
}
fn parse_pat_vec_elements(
&self,
refutable: bool
) -> (~[@pat], Option<@pat>, ~[@pat]) {
let mut before = ~[];
let mut slice = None;
let mut after = ~[];
let mut first = true;
let mut before_slice = true;
while *self.token != token::RBRACKET {
if first { first = false; }
else { self.expect(&token::COMMA); }
let mut is_slice = false;
if before_slice {
if *self.token == token::DOTDOT {
self.bump();
is_slice = true;
before_slice = false;
}
}
let subpat = self.parse_pat(refutable);
if is_slice {
match subpat {
@ast::pat { node: pat_wild, _ } => (),
@ast::pat { node: pat_ident(_, _, _), _ } => (),
@ast::pat { span, _ } => self.span_fatal(
span, "expected an identifier or `_`"
)
}
slice = Some(subpat);
} else {
if before_slice {
before.push(subpat);
} else {
after.push(subpat);
}
}
}
(before, slice, after)
}
// parse the fields of a struct-like pattern
fn parse_pat_fields(&self, refutable: bool) -> (~[ast::field_pat], bool) {
let mut fields = ~[];
let mut etc = false;
let mut first = true;
while *self.token != token::RBRACE {
if first { first = false; }
else { self.expect(&token::COMMA); }
if *self.token == token::UNDERSCORE {
self.bump();
if *self.token != token::RBRACE {
self.fatal(
fmt!(
"expected `}`, found `%s`",
self.this_token_to_str()
)
);
}
etc = true;
break;
}
let lo1 = self.last_span.lo;
let fieldname = self.parse_ident();
let hi1 = self.last_span.lo;
let fieldpath = ast_util::ident_to_path(mk_sp(lo1, hi1),
fieldname);
let subpat;
if *self.token == token::COLON {
self.bump();
subpat = self.parse_pat(refutable);
} else {
subpat = @ast::pat {
id: self.get_id(),
node: pat_ident(bind_infer, fieldpath, None),
span: *self.last_span
};
}
fields.push(ast::field_pat { ident: fieldname, pat: subpat });
}
return (fields, etc);
}
// parse a pattern. The 'refutable' argument
// appears to control whether the binding_mode
// 'bind_infer' or 'bind_by_copy' is used.
fn parse_pat(&self, refutable: bool) -> @pat {
maybe_whole!(self, nt_pat);
let lo = self.span.lo;
let mut hi = self.span.hi;
let pat;
match /*bad*/ copy *self.token {
// parse _
token::UNDERSCORE => { self.bump(); pat = pat_wild; }
// parse @pat
token::AT => {
self.bump();
let sub = self.parse_pat(refutable);
hi = sub.span.hi;
// HACK: parse @"..." as a literal of a vstore @str
pat = match sub.node {
pat_lit(e@@expr {
node: expr_lit(@codemap::spanned {
node: lit_str(_),
span: _}), _
}) => {
let vst = @expr {
id: self.get_id(),
callee_id: self.get_id(),
node: expr_vstore(e, expr_vstore_box),
span: mk_sp(lo, hi),
};
pat_lit(vst)
}
_ => pat_box(sub)
};
}
token::TILDE => {
// parse ~pat
self.bump();
let sub = self.parse_pat(refutable);
hi = sub.span.hi;
// HACK: parse ~"..." as a literal of a vstore ~str
pat = match sub.node {
pat_lit(e@@expr {
node: expr_lit(@codemap::spanned {
node: lit_str(_),
span: _}), _
}) => {
let vst = @expr {
id: self.get_id(),
callee_id: self.get_id(),
node: expr_vstore(e, expr_vstore_uniq),
span: mk_sp(lo, hi),
};
pat_lit(vst)
}
_ => pat_uniq(sub)
};
}
token::BINOP(token::AND) => {
// parse &pat
let lo = self.span.lo;
self.bump();
let sub = self.parse_pat(refutable);
hi = sub.span.hi;
// HACK: parse &"..." as a literal of a borrowed str
pat = match sub.node {
pat_lit(e@@expr {
node: expr_lit(@codemap::spanned {
node: lit_str(_), span: _}), _
}) => {
let vst = @expr {
id: self.get_id(),
callee_id: self.get_id(),
node: expr_vstore(e, expr_vstore_slice),
span: mk_sp(lo, hi)
};
pat_lit(vst)
}
_ => pat_region(sub)
};
}
token::LBRACE => {
self.bump();
let (_, _) = self.parse_pat_fields(refutable);
hi = self.span.hi;
self.bump();
self.obsolete(*self.span, ObsoleteRecordPattern);
pat = pat_wild;
}
token::LPAREN => {
// parse (pat,pat,pat,...) as tuple
self.bump();
if *self.token == token::RPAREN {
hi = self.span.hi;
self.bump();
let lit = @codemap::spanned {
node: lit_nil,
span: mk_sp(lo, hi)};
let expr = self.mk_expr(lo, hi, expr_lit(lit));
pat = pat_lit(expr);
} else {
let mut fields = ~[self.parse_pat(refutable)];
if self.look_ahead(1) != token::RPAREN {
while *self.token == token::COMMA {
self.bump();
fields.push(self.parse_pat(refutable));
}
}
if fields.len() == 1 { self.expect(&token::COMMA); }
hi = self.span.hi;
self.expect(&token::RPAREN);
pat = pat_tup(fields);
}
}
token::LBRACKET => {
// parse [pat,pat,...] as vector pattern
self.bump();
let (before, slice, after) =
self.parse_pat_vec_elements(refutable);
hi = self.span.hi;
self.expect(&token::RBRACKET);
pat = ast::pat_vec(before, slice, after);
}
ref tok => {
if !is_ident_or_path(tok)
|| self.is_keyword(&~"true")
|| self.is_keyword(&~"false")
{
// Parse an expression pattern or exp .. exp.
//
// These expressions are limited to literals (possibly
// preceded by unary-minus) or identifiers.
let val = self.parse_literal_maybe_minus();
if self.eat(&token::DOTDOT) {
let end = if is_ident_or_path(tok) {
let path = self.parse_path_with_tps(true);
let hi = self.span.hi;
self.mk_expr(lo, hi, expr_path(path))
} else {
self.parse_literal_maybe_minus()
};
pat = pat_range(val, end);
} else {
pat = pat_lit(val);
}
} else if self.eat_keyword(&~"ref") {
// parse ref pat
let mutbl = self.parse_mutability();
pat = self.parse_pat_ident(refutable, bind_by_ref(mutbl));
} else if self.eat_keyword(&~"copy") {
// parse copy pat
pat = self.parse_pat_ident(refutable, bind_by_copy);
} else {
// XXX---refutable match bindings should work same as let
let binding_mode =
if refutable {bind_infer} else {bind_by_copy};
let can_be_enum_or_struct;
match self.look_ahead(1) {
token::LPAREN | token::LBRACKET | token::LT |
token::LBRACE | token::MOD_SEP =>
can_be_enum_or_struct = true,
_ =>
can_be_enum_or_struct = false
}
if self.look_ahead(1) == token::DOTDOT {
let start = self.parse_expr_res(RESTRICT_NO_BAR_OP);
self.eat(&token::DOTDOT);
let end = self.parse_expr_res(RESTRICT_NO_BAR_OP);
pat = pat_range(start, end);
}
else if is_plain_ident(&*self.token) && !can_be_enum_or_struct {
let name = self.parse_path_without_tps();
let sub;
if self.eat(&token::AT) {
// parse foo @ pat
sub = Some(self.parse_pat(refutable));
} else {
// or just foo
sub = None;
}
pat = pat_ident(binding_mode, name, sub);
} else {
// parse an enum pat
let enum_path = self.parse_path_with_tps(true);
match *self.token {
token::LBRACE => {
self.bump();
let (fields, etc) =
self.parse_pat_fields(refutable);
self.bump();
pat = pat_struct(enum_path, fields, etc);
}
_ => {
let mut args: ~[@pat] = ~[];
match *self.token {
token::LPAREN => match self.look_ahead(1u) {
token::BINOP(token::STAR) => {
// This is a "top constructor only" pat
self.bump(); self.bump();
self.expect(&token::RPAREN);
pat = pat_enum(enum_path, None);
}
_ => {
args = self.parse_unspanned_seq(
&token::LPAREN,
&token::RPAREN,
seq_sep_trailing_disallowed(
token::COMMA
),
|p| p.parse_pat(refutable)
);
pat = pat_enum(enum_path, Some(args));
}
},
_ => {
if vec::len(enum_path.idents)==1u {
// it could still be either an enum
// or an identifier pattern, resolve
// will sort it out:
pat = pat_ident(binding_mode,
enum_path,
None);
} else {
pat = pat_enum(enum_path, Some(args));
}
}
}
}
}
}
}
hi = self.last_span.hi;
}
}
@ast::pat { id: self.get_id(), node: pat, span: mk_sp(lo, hi) }
}
// used by the copy foo and ref foo patterns to give a good
// error message when parsing mistakes like ref foo(a,b)
fn parse_pat_ident(&self,
refutable: bool,
binding_mode: ast::binding_mode)
-> ast::pat_ {
if !is_plain_ident(&*self.token) {
self.span_fatal(*self.last_span,
"expected identifier, found path");
}
// why a path here, and not just an identifier?
let name = self.parse_path_without_tps();
let sub = if self.eat(&token::AT) {
Some(self.parse_pat(refutable))
} else {
None
};
// just to be friendly, if they write something like
// ref Some(i)
// we end up here with ( as the current token. This shortly
// leads to a parse error. Note that if there is no explicit
// binding mode then we do not end up here, because the lookahead
// will direct us over to parse_enum_variant()
if *self.token == token::LPAREN {
self.span_fatal(
*self.last_span,
"expected identifier, found enum pattern");
}
pat_ident(binding_mode, name, sub)
}
// parse a local variable declaration
fn parse_local(&self, is_mutbl: bool) -> @local {
let lo = self.span.lo;
let pat = self.parse_pat(false);
let mut ty = @Ty {
id: self.get_id(),
node: ty_infer,
span: mk_sp(lo, lo),
};
if self.eat(&token::COLON) { ty = self.parse_ty(false); }
let init = self.parse_initializer();
@spanned(
lo,
self.last_span.hi,
ast::local_ {
is_mutbl: is_mutbl,
ty: ty,
pat: pat,
init: init,
id: self.get_id(),
}
)
}
// parse a "let" stmt
fn parse_let(&self) -> @decl {
let is_mutbl = self.eat_keyword(&~"mut");
let lo = self.span.lo;
let mut locals = ~[self.parse_local(is_mutbl)];
while self.eat(&token::COMMA) {
locals.push(self.parse_local(is_mutbl));
}
return @spanned(lo, self.last_span.hi, decl_local(locals));
}
// parse a structure field
fn parse_name_and_ty(&self,
pr: visibility,
attrs: ~[attribute]) -> @struct_field {
let lo = self.span.lo;
if self.eat_keyword(&~"mut") {
// Do nothing, for backwards compatibility.
// XXX: Remove after snapshot.
}
if !is_plain_ident(&*self.token) {
self.fatal(~"expected ident");
}
let name = self.parse_ident();
self.expect(&token::COLON);
let ty = self.parse_ty(false);
@spanned(lo, self.last_span.hi, ast::struct_field_ {
kind: named_field(name, pr),
id: self.get_id(),
ty: ty,
attrs: attrs,
})
}
// parse a statement. may include decl
fn parse_stmt(&self, first_item_attrs: ~[attribute]) -> @stmt {
maybe_whole!(self, nt_stmt);
fn check_expected_item(p: &Parser, current_attrs: &[attribute]) {
// If we have attributes then we should have an item
if !current_attrs.is_empty() {
p.fatal(~"expected item after attrs");
}
}
let lo = self.span.lo;
if self.is_keyword(&~"let") {
check_expected_item(self, first_item_attrs);
self.expect_keyword(&~"let");
let decl = self.parse_let();
return @spanned(lo, decl.span.hi, stmt_decl(decl, self.get_id()));
} else if is_ident(&*self.token)
&& !self.is_any_keyword(&copy *self.token)
&& self.look_ahead(1) == token::NOT {
// parse a macro invocation. Looks like there's serious
// overlap here; if this clause doesn't catch it (and it
// won't, for brace-delimited macros) it will fall through
// to the macro clause of parse_item_or_view_item. This
// could use some cleanup, it appears to me.
check_expected_item(self, first_item_attrs);
// Potential trouble: if we allow macros with paths instead of
// idents, we'd need to look ahead past the whole path here...
let pth = self.parse_path_without_tps();
self.bump();
let id = if *self.token == token::LPAREN {
token::special_idents::invalid // no special identifier
} else {
self.parse_ident()
};
let tts = self.parse_unspanned_seq(
&token::LPAREN,
&token::RPAREN,
seq_sep_none(),
|p| p.parse_token_tree()
);
let hi = self.span.hi;
if id == token::special_idents::invalid {
return @spanned(lo, hi, stmt_mac(
spanned(lo, hi, mac_invoc_tt(pth, tts)), false));
} else {
// if it has a special ident, it's definitely an item
return @spanned(lo, hi, stmt_decl(
@spanned(lo, hi, decl_item(
self.mk_item(
lo, hi, id /*id is good here*/,
item_mac(spanned(lo, hi, mac_invoc_tt(pth, tts))),
inherited, ~[/*no attrs*/]))),
self.get_id()));
}
} else {
let item_attrs = vec::append(first_item_attrs,
self.parse_outer_attributes());
match self.parse_item_or_view_item(/*bad*/ copy item_attrs,
false) {
iovi_item(i) => {
let hi = i.span.hi;
let decl = @spanned(lo, hi, decl_item(i));
return @spanned(lo, hi, stmt_decl(decl, self.get_id()));
}
iovi_view_item(vi) => {
self.span_fatal(vi.span,
"view items must be declared at the top of the block");
}
iovi_foreign_item(_) => {
self.fatal(~"foreign items are not allowed here");
}
iovi_none() => { /* fallthrough */ }
}
check_expected_item(self, item_attrs);
// Remainder are line-expr stmts.
let e = self.parse_expr_res(RESTRICT_STMT_EXPR);
return @spanned(lo, e.span.hi, stmt_expr(e, self.get_id()));
}
}
// is this expression a successfully-parsed statement?
fn expr_is_complete(&self, e: @expr) -> bool {
return *self.restriction == RESTRICT_STMT_EXPR &&
!classify::expr_requires_semi_to_be_stmt(e);
}
// parse a block. No inner attrs are allowed.
fn parse_block(&self) -> blk {
maybe_whole!(self, nt_block);
let lo = self.span.lo;
if self.eat_keyword(&~"unsafe") {
self.obsolete(copy *self.span, ObsoleteUnsafeBlock);
}
self.expect(&token::LBRACE);
return self.parse_block_tail_(lo, default_blk, ~[]);
}
// parse a block. Inner attrs are allowed.
fn parse_inner_attrs_and_block(&self)
-> (~[attribute], blk) {
maybe_whole!(pair_empty self, nt_block);
let lo = self.span.lo;
if self.eat_keyword(&~"unsafe") {
self.obsolete(copy *self.span, ObsoleteUnsafeBlock);
}
self.expect(&token::LBRACE);
let (inner, next) = self.parse_inner_attrs_and_next();
(inner, self.parse_block_tail_(lo, default_blk, next))
}
// Precondition: already parsed the '{' or '#{'
// I guess that also means "already parsed the 'impure'" if
// necessary, and this should take a qualifier.
// some blocks start with "#{"...
fn parse_block_tail(&self, lo: BytePos, s: blk_check_mode) -> blk {
self.parse_block_tail_(lo, s, ~[])
}
// parse the rest of a block expression or function body
fn parse_block_tail_(&self, lo: BytePos, s: blk_check_mode,
first_item_attrs: ~[attribute]) -> blk {
let mut stmts = ~[];
let mut expr = None;
let ParsedItemsAndViewItems {
attrs_remaining: attrs_remaining,
view_items: view_items,
items: items,
_
} = self.parse_items_and_view_items(first_item_attrs,
false, false);
for items.each |item| {
let decl = @spanned(item.span.lo, item.span.hi, decl_item(*item));
stmts.push(@spanned(item.span.lo, item.span.hi,
stmt_decl(decl, self.get_id())));
}
let mut initial_attrs = attrs_remaining;
if *self.token == token::RBRACE && !vec::is_empty(initial_attrs) {
self.fatal(~"expected item");
}
while *self.token != token::RBRACE {
match *self.token {
token::SEMI => {
self.bump(); // empty
}
_ => {
let stmt = self.parse_stmt(initial_attrs);
initial_attrs = ~[];
match stmt.node {
stmt_expr(e, stmt_id) => {
// Expression without semicolon
match *self.token {
token::SEMI => {
self.bump();
stmts.push(@codemap::spanned {
node: stmt_semi(e, stmt_id),
.. copy *stmt});
}
token::RBRACE => {
expr = Some(e);
}
copy t => {
if classify::stmt_ends_with_semi(stmt) {
self.fatal(
fmt!(
"expected `;` or `}` after \
expression but found `%s`",
self.token_to_str(&t)
)
);
}
stmts.push(stmt);
}
}
}
stmt_mac(ref m, _) => {
// Statement macro; might be an expr
match *self.token {
token::SEMI => {
self.bump();
stmts.push(@codemap::spanned {
node: stmt_mac(copy *m, true),
.. copy *stmt});
}
token::RBRACE => {
// if a block ends in `m!(arg)` without
// a `;`, it must be an expr
expr = Some(
self.mk_mac_expr(stmt.span.lo,
stmt.span.hi,
copy m.node));
}
_ => { stmts.push(stmt); }
}
}
_ => { // All other kinds of statements:
stmts.push(stmt);
if classify::stmt_ends_with_semi(stmt) {
self.expect(&token::SEMI);
}
}
}
}
}
}
let hi = self.span.hi;
self.bump();
let bloc = ast::blk_ {
view_items: view_items,
stmts: stmts,
expr: expr,
id: self.get_id(),
rules: s,
};
spanned(lo, hi, bloc)
}
fn mk_ty_path(&self, i: ident) -> @Ty {
@Ty {
id: self.get_id(),
node: ty_path(
ident_to_path(*self.last_span, i),
self.get_id()),
span: *self.last_span,
}
}
fn parse_optional_purity(&self) -> ast::purity {
if self.eat_keyword(&~"pure") {
self.obsolete(*self.last_span, ObsoletePurity);
ast::impure_fn
} else if self.eat_keyword(&~"unsafe") {
ast::unsafe_fn
} else {
ast::impure_fn
}
}
fn parse_optional_onceness(&self) -> ast::Onceness {
if self.eat_keyword(&~"once") { ast::Once } else { ast::Many }
}
// matches optbounds = ( ( : ( boundseq )? )? )
// where boundseq = ( bound + boundseq ) | bound
// and bound = 'static | ty
fn parse_optional_ty_param_bounds(&self) -> @OptVec<TyParamBound> {
if !self.eat(&token::COLON) {
return @opt_vec::Empty;
}
let mut result = opt_vec::Empty;
loop {
match *self.token {
token::LIFETIME(lifetime) => {
if str::eq_slice(*self.id_to_str(lifetime), "static") {
result.push(RegionTyParamBound);
} else {
self.span_err(*self.span,
"`'static` is the only permissible region bound here");
}
self.bump();
}
token::MOD_SEP | token::IDENT(*) => {
let obsolete_bound = match *self.token {
token::MOD_SEP => false,
token::IDENT(copy sid, _) => {
match *self.id_to_str(sid) {
~"send" |
~"copy" |
~"const" |
~"owned" => {
self.obsolete(
*self.span,
ObsoleteLowerCaseKindBounds);
self.bump();
true
}
_ => false
}
}
_ => fail!()
};
if !obsolete_bound {
let tref = self.parse_trait_ref();
result.push(TraitTyParamBound(tref));
}
}
_ => break,
}
if self.eat(&token::BINOP(token::PLUS)) {
loop;
}
if is_ident_or_path(self.token) {
self.obsolete(*self.span,
ObsoleteTraitBoundSeparator);
}
}
return @result;
}
// matches typaram = IDENT optbounds
fn parse_ty_param(&self) -> TyParam {
let ident = self.parse_ident();
let bounds = self.parse_optional_ty_param_bounds();
ast::TyParam { ident: ident, id: self.get_id(), bounds: bounds }
}
// parse a set of optional generic type parameter declarations
// matches generics = ( ) | ( < > ) | ( < typaramseq ( , )? > ) | ( < lifetimes ( , )? > )
// | ( < lifetimes , typaramseq ( , )? > )
// where typaramseq = ( typaram ) | ( typaram , typaramseq )
fn parse_generics(&self) -> ast::Generics {
if self.eat(&token::LT) {
let lifetimes = self.parse_lifetimes();
let ty_params = self.parse_seq_to_gt(
Some(token::COMMA),
|p| p.parse_ty_param());
ast::Generics { lifetimes: lifetimes, ty_params: ty_params }
} else {
ast_util::empty_generics()
}
}
// parse a generic use site
fn parse_generic_values(
&self) -> (OptVec<ast::Lifetime>, ~[@Ty])
{
if !self.eat(&token::LT) {
(opt_vec::Empty, ~[])
} else {
self.parse_generic_values_after_lt()
}
}
fn parse_generic_values_after_lt(
&self) -> (OptVec<ast::Lifetime>, ~[@Ty])
{
let lifetimes = self.parse_lifetimes();
let result = self.parse_seq_to_gt(
Some(token::COMMA),
|p| p.parse_ty(false));
(lifetimes, opt_vec::take_vec(result))
}
// parse the argument list and result type of a function declaration
fn parse_fn_decl(&self)
-> fn_decl
{
let args_or_capture_items: ~[arg_or_capture_item] =
self.parse_unspanned_seq(
&token::LPAREN,
&token::RPAREN,
seq_sep_trailing_disallowed(token::COMMA),
|p| p.parse_arg()
);
let inputs = either::lefts(args_or_capture_items);
let (ret_style, ret_ty) = self.parse_ret_ty();
ast::fn_decl {
inputs: inputs,
output: ret_ty,
cf: ret_style,
}
}
fn is_self_ident(&self) -> bool {
match *self.token {
token::IDENT(id, false) if id == special_idents::self_
=> true,
_ => false
}
}
fn expect_self_ident(&self) {
if !self.is_self_ident() {
self.fatal(
fmt!(
"expected `self` but found `%s`",
self.this_token_to_str()
)
);
}
self.bump();
}
// parse the argument list and result type of a function
// that may have a self type.
fn parse_fn_decl_with_self(
&self,
parse_arg_fn:
&fn(&Parser) -> arg_or_capture_item
) -> (self_ty, fn_decl) {
fn maybe_parse_self_ty(
cnstr: &fn(v: mutability) -> ast::self_ty_,
p: &Parser
) -> ast::self_ty_ {
// We need to make sure it isn't a mode or a type
if p.token_is_keyword(&~"self", &p.look_ahead(1)) ||
((p.token_is_keyword(&~"const", &p.look_ahead(1)) ||
p.token_is_keyword(&~"mut", &p.look_ahead(1))) &&
p.token_is_keyword(&~"self", &p.look_ahead(2))) {
p.bump();
let mutability = p.parse_mutability();
p.expect_self_ident();
cnstr(mutability)
} else {
sty_static
}
}
fn maybe_parse_borrowed_self_ty(this: &Parser) -> ast::self_ty_ {
// The following things are possible to see here:
//
// fn(&self)
// fn(&mut self)
// fn(&'lt self)
// fn(&'lt mut self)
//
// We already know that the current token is `&`.
if (this.token_is_keyword(&~"self", &this.look_ahead(1))) {
this.bump();
this.expect_self_ident();
sty_region(None, m_imm)
} else if (this.token_is_mutability(&this.look_ahead(1)) &&
this.token_is_keyword(&~"self", &this.look_ahead(2))) {
this.bump();
let mutability = this.parse_mutability();
this.expect_self_ident();
sty_region(None, mutability)
} else if (this.token_is_lifetime(&this.look_ahead(1)) &&
this.token_is_keyword(&~"self", &this.look_ahead(2))) {
this.bump();
let lifetime = @this.parse_lifetime();
this.expect_self_ident();
sty_region(Some(lifetime), m_imm)
} else if (this.token_is_lifetime(&this.look_ahead(1)) &&
this.token_is_mutability(&this.look_ahead(2)) &&
this.token_is_keyword(&~"self", &this.look_ahead(3))) {
this.bump();
let lifetime = @this.parse_lifetime();
let mutability = this.parse_mutability();
this.expect_self_ident();
sty_region(Some(lifetime), mutability)
} else {
sty_static
}
}
self.expect(&token::LPAREN);
// A bit of complexity and lookahead is needed here in order to to be
// backwards compatible.
let lo = self.span.lo;
let self_ty = match *self.token {
token::BINOP(token::AND) => {
maybe_parse_borrowed_self_ty(self)
}
token::AT => {
maybe_parse_self_ty(sty_box, self)
}
token::TILDE => {
maybe_parse_self_ty(sty_uniq, self)
}
token::IDENT(*) if self.is_self_ident() => {
self.bump();
sty_value
}
_ => {
sty_static
}
};
// If we parsed a self type, expect a comma before the argument list.
let args_or_capture_items;
if self_ty != sty_static {
match *self.token {
token::COMMA => {
self.bump();
let sep = seq_sep_trailing_disallowed(token::COMMA);
args_or_capture_items = self.parse_seq_to_before_end(
&token::RPAREN,
sep,
parse_arg_fn
);
}
token::RPAREN => {
args_or_capture_items = ~[];
}
_ => {
self.fatal(
fmt!(
"expected `,` or `)`, found `%s`",
self.this_token_to_str()
)
);
}
}
} else {
let sep = seq_sep_trailing_disallowed(token::COMMA);
args_or_capture_items = self.parse_seq_to_before_end(
&token::RPAREN,
sep,
parse_arg_fn
);
}
self.expect(&token::RPAREN);
let hi = self.span.hi;
let inputs = either::lefts(args_or_capture_items);
let (ret_style, ret_ty) = self.parse_ret_ty();
let fn_decl = ast::fn_decl {
inputs: inputs,
output: ret_ty,
cf: ret_style
};
(spanned(lo, hi, self_ty), fn_decl)
}
// parse the |arg, arg| header on a lambda
fn parse_fn_block_decl(&self) -> fn_decl {
let inputs_captures = {
if self.eat(&token::OROR) {
~[]
} else {
self.parse_unspanned_seq(
&token::BINOP(token::OR),
&token::BINOP(token::OR),
seq_sep_trailing_disallowed(token::COMMA),
|p| p.parse_fn_block_arg()
)
}
};
let output = if self.eat(&token::RARROW) {
self.parse_ty(false)
} else {
@Ty { id: self.get_id(), node: ty_infer, span: *self.span }
};
ast::fn_decl {
inputs: either::lefts(inputs_captures),
output: output,
cf: return_val,
}
}
// parse the name and optional generic types of a function header.
fn parse_fn_header(&self) -> (ident, ast::Generics) {
let id = self.parse_ident();
let generics = self.parse_generics();
(id, generics)
}
fn mk_item(&self, lo: BytePos, hi: BytePos, ident: ident,
node: item_, vis: visibility,
attrs: ~[attribute]) -> @item {
@ast::item { ident: ident,
attrs: attrs,
id: self.get_id(),
node: node,
vis: vis,
span: mk_sp(lo, hi) }
}
// parse an item-position function declaration.
fn parse_item_fn(&self, purity: purity, abis: AbiSet) -> item_info {
let (ident, generics) = self.parse_fn_header();
let decl = self.parse_fn_decl();
let (inner_attrs, body) = self.parse_inner_attrs_and_block();
(ident,
item_fn(decl, purity, abis, generics, body),
Some(inner_attrs))
}
// parse a method in a trait impl
fn parse_method(&self) -> @method {
let attrs = self.parse_outer_attributes();
let lo = self.span.lo;
let visa = self.parse_visibility();
let pur = self.parse_fn_purity();
let ident = self.parse_ident();
let generics = self.parse_generics();
let (self_ty, decl) = do self.parse_fn_decl_with_self() |p| {
p.parse_arg()
};
let (inner_attrs, body) = self.parse_inner_attrs_and_block();
let hi = body.span.hi;
let attrs = vec::append(attrs, inner_attrs);
@ast::method {
ident: ident,
attrs: attrs,
generics: generics,
self_ty: self_ty,
purity: pur,
decl: decl,
body: body,
id: self.get_id(),
span: mk_sp(lo, hi),
self_id: self.get_id(),
vis: visa,
}
}
// parse trait Foo { ... }
fn parse_item_trait(&self) -> item_info {
let ident = self.parse_ident();
self.parse_region_param();
let tps = self.parse_generics();
// Parse traits, if necessary.
let traits;
if *self.token == token::COLON {
self.bump();
traits = self.parse_trait_ref_list(&token::LBRACE);
} else {
traits = ~[];
}
let meths = self.parse_trait_methods();
(ident, item_trait(tps, traits, meths), None)
}
// Parses two variants (with the region/type params always optional):
// impl<T> Foo { ... }
// impl<T> ToStr for ~[T] { ... }
fn parse_item_impl(&self, visibility: ast::visibility) -> item_info {
// First, parse type parameters if necessary.
let generics = self.parse_generics();
// This is a new-style impl declaration.
// XXX: clownshoes
let ident = special_idents::clownshoes_extensions;
// Special case: if the next identifier that follows is '(', don't
// allow this to be parsed as a trait.
let could_be_trait = *self.token != token::LPAREN;
// Parse the trait.
let mut ty = self.parse_ty(false);
// Parse traits, if necessary.
let opt_trait = if could_be_trait && self.eat_keyword(&~"for") {
// New-style trait. Reinterpret the type as a trait.
let opt_trait_ref = match ty.node {
ty_path(path, node_id) => {
Some(@trait_ref {
path: path,
ref_id: node_id
})
}
_ => {
self.span_err(*self.span, "not a trait");
None
}
};
ty = self.parse_ty(false);
opt_trait_ref
} else if self.eat(&token::COLON) {
self.obsolete(copy *self.span, ObsoleteImplSyntax);
Some(self.parse_trait_ref())
} else {
None
};
// Do not allow visibility to be specified in `impl...for...`. It is
// meaningless.
if opt_trait.is_some() && visibility != ast::inherited {
self.obsolete(*self.span, ObsoleteTraitImplVisibility);
}
let mut meths = ~[];
if !self.eat(&token::SEMI) {
self.expect(&token::LBRACE);
while !self.eat(&token::RBRACE) {
meths.push(self.parse_method());
}
}
(ident, item_impl(generics, opt_trait, ty, meths), None)
}
// parse a::B<~str,int>
fn parse_trait_ref(&self) -> @trait_ref {
@ast::trait_ref {
path: self.parse_path_with_tps(false),
ref_id: self.get_id(),
}
}
// parse B + C<~str,int> + D
fn parse_trait_ref_list(&self, ket: &token::Token) -> ~[@trait_ref] {
self.parse_seq_to_before_end(
ket,
seq_sep_trailing_disallowed(token::BINOP(token::PLUS)),
|p| p.parse_trait_ref()
)
}
// parse struct Foo { ... }
fn parse_item_struct(&self) -> item_info {
let class_name = self.parse_ident();
self.parse_region_param();
let generics = self.parse_generics();
if self.eat(&token::COLON) {
self.obsolete(copy *self.span, ObsoleteClassTraits);
let _ = self.parse_trait_ref_list(&token::LBRACE);
}
let mut fields: ~[@struct_field];
let is_tuple_like;
if self.eat(&token::LBRACE) {
// It's a record-like struct.
is_tuple_like = false;
fields = ~[];
while *self.token != token::RBRACE {
for self.parse_struct_decl_field().each |struct_field| {
fields.push(*struct_field)
}
}
if fields.len() == 0 {
self.fatal(fmt!("Unit-like struct should be written as `struct %s;`",
*self.interner.get(class_name)));
}
self.bump();
} else if *self.token == token::LPAREN {
// It's a tuple-like struct.
is_tuple_like = true;
fields = do self.parse_unspanned_seq(
&token::LPAREN,
&token::RPAREN,
seq_sep_trailing_allowed(token::COMMA)
) |p| {
let attrs = self.parse_outer_attributes();
let lo = p.span.lo;
let struct_field_ = ast::struct_field_ {
kind: unnamed_field,
id: self.get_id(),
ty: p.parse_ty(false),
attrs: attrs,
};
@spanned(lo, p.span.hi, struct_field_)
};
self.expect(&token::SEMI);
} else if self.eat(&token::SEMI) {
// It's a unit-like struct.
is_tuple_like = true;
fields = ~[];
} else {
self.fatal(
fmt!(
"expected `{`, `(`, or `;` after struct name \
but found `%s`",
self.this_token_to_str()
)
);
}
let _ = self.get_id(); // XXX: Workaround for crazy bug.
let new_id = self.get_id();
(class_name,
item_struct(@ast::struct_def {
fields: fields,
ctor_id: if is_tuple_like { Some(new_id) } else { None }
}, generics),
None)
}
fn token_is_pound_or_doc_comment(&self, tok: token::Token) -> bool {
match tok {
token::POUND | token::DOC_COMMENT(_) => true,
_ => false
}
}
// parse a structure field declaration
fn parse_single_struct_field(&self,
vis: visibility,
attrs: ~[attribute]) -> @struct_field {
if self.eat_obsolete_ident("let") {
self.obsolete(*self.last_span, ObsoleteLet);
}
let a_var = self.parse_name_and_ty(vis, attrs);
match *self.token {
token::SEMI => {
self.obsolete(copy *self.span, ObsoleteFieldTerminator);
self.bump();
}
token::COMMA => {
self.bump();
}
token::RBRACE => {}
_ => {
self.span_fatal(
copy *self.span,
fmt!(
"expected `,`, or '}' but found `%s`",
self.this_token_to_str()
)
);
}
}
a_var
}
// parse an element of a struct definition
fn parse_struct_decl_field(&self) -> ~[@struct_field] {
let attrs = self.parse_outer_attributes();
if self.try_parse_obsolete_priv_section(attrs) {
return ~[];
}
if self.eat_keyword(&~"priv") {
return ~[self.parse_single_struct_field(private, attrs)]
}
if self.eat_keyword(&~"pub") {
return ~[self.parse_single_struct_field(public, attrs)];
}
if self.try_parse_obsolete_struct_ctor() {
return ~[];
}
return ~[self.parse_single_struct_field(inherited, attrs)];
}
// parse visiility: PUB, PRIV, or nothing
fn parse_visibility(&self) -> visibility {
if self.eat_keyword(&~"pub") { public }
else if self.eat_keyword(&~"priv") { private }
else { inherited }
}
fn parse_staticness(&self) -> bool {
if self.eat_keyword(&~"static") {
self.obsolete(*self.last_span, ObsoleteStaticMethod);
true
} else {
false
}
}
// given a termination token and a vector of already-parsed
// attributes (of length 0 or 1), parse all of the items in a module
fn parse_mod_items(&self, term: token::Token,
first_item_attrs: ~[attribute]) -> _mod {
// parse all of the items up to closing or an attribute.
// view items are legal here.
let ParsedItemsAndViewItems {
attrs_remaining: attrs_remaining,
view_items: view_items,
items: starting_items,
_
} = self.parse_items_and_view_items(first_item_attrs,
true, true);
let mut items: ~[@item] = starting_items;
let attrs_remaining_len = attrs_remaining.len();
// don't think this other loop is even necessary....
let mut first = true;
while *self.token != term {
let mut attrs = self.parse_outer_attributes();
if first {
attrs = attrs_remaining + attrs;
first = false;
}
debug!("parse_mod_items: parse_item_or_view_item(attrs=%?)",
attrs);
match self.parse_item_or_view_item(
/*bad*/ copy attrs,
true // macros allowed
) {
iovi_item(item) => items.push(item),
iovi_view_item(view_item) => {
self.span_fatal(view_item.span, "view items must be declared at the top of the \
module");
}
_ => {
self.fatal(
fmt!(
"expected item but found `%s`",
self.this_token_to_str()
)
);
}
}
debug!("parse_mod_items: attrs=%?", attrs);
}
if first && attrs_remaining_len > 0u {
// We parsed attributes for the first item but didn't find it
self.fatal(~"expected item");
}
ast::_mod { view_items: view_items, items: items }
}
fn parse_item_const(&self) -> item_info {
let id = self.parse_ident();
self.expect(&token::COLON);
let ty = self.parse_ty(false);
self.expect(&token::EQ);
let e = self.parse_expr();
self.expect(&token::SEMI);
(id, item_const(ty, e), None)
}
// parse a mod { ...} item
fn parse_item_mod(&self, outer_attrs: ~[ast::attribute]) -> item_info {
let id_span = *self.span;
let id = self.parse_ident();
let merge = ::attr::first_attr_value_str_by_name(outer_attrs, "merge");
let info_ = if *self.token == token::SEMI {
self.bump();
// This mod is in an external file. Let's go get it!
let (m, attrs) = self.eval_src_mod(id, outer_attrs, id_span);
(id, m, Some(attrs))
} else {
self.push_mod_path(id, outer_attrs);
self.expect(&token::LBRACE);
let (inner, next) = self.parse_inner_attrs_and_next();
let m = self.parse_mod_items(token::RBRACE, next);
self.expect(&token::RBRACE);
self.pop_mod_path();
(id, item_mod(m), Some(inner))
};
// XXX: Transitionary hack to do the template work inside core
// (int-template, iter-trait). If there's a 'merge' attribute
// on the mod, then we'll go and suck in another file and merge
// its contents
match merge {
Some(path) => {
let prefix = Path(
self.sess.cm.span_to_filename(*self.span));
let prefix = prefix.dir_path();
let path = Path(copy *path);
let (new_mod_item, new_attrs) = self.eval_src_mod_from_path(
prefix, path, ~[], id_span);
let (main_id, main_mod_item, main_attrs) = info_;
let main_attrs = main_attrs.get();
let (main_mod, new_mod) =
match (main_mod_item, new_mod_item) {
(item_mod(m), item_mod(n)) => (m, n),
_ => self.bug(~"parsed mod item should be mod")
};
let merged_mod = ast::_mod {
view_items: main_mod.view_items + new_mod.view_items,
items: main_mod.items + new_mod.items
};
let merged_attrs = main_attrs + new_attrs;
(main_id, item_mod(merged_mod), Some(merged_attrs))
}
None => info_
}
}
fn push_mod_path(&self, id: ident, attrs: ~[ast::attribute]) {
let default_path = self.sess.interner.get(id);
let file_path = match ::attr::first_attr_value_str_by_name(
attrs, ~"path") {
Some(d) => copy *d,
None => copy *default_path
};
self.mod_path_stack.push(file_path)
}
fn pop_mod_path(&self) {
self.mod_path_stack.pop();
}
// read a module from a source file.
fn eval_src_mod(&self, id: ast::ident,
outer_attrs: ~[ast::attribute],
id_sp: span) -> (ast::item_, ~[ast::attribute]) {
let prefix = Path(self.sess.cm.span_to_filename(*self.span));
let prefix = prefix.dir_path();
let mod_path_stack = &*self.mod_path_stack;
let mod_path = Path(".").push_many(*mod_path_stack);
let default_path = *self.sess.interner.get(id) + ~".rs";
let file_path = match ::attr::first_attr_value_str_by_name(
outer_attrs, ~"path") {
Some(d) => {
let path = Path(copy *d);
if !path.is_absolute {
mod_path.push(copy *d)
} else {
path
}
}
None => mod_path.push(default_path)
};
self.eval_src_mod_from_path(prefix, file_path,
outer_attrs, id_sp)
}
fn eval_src_mod_from_path(&self, prefix: Path, path: Path,
outer_attrs: ~[ast::attribute],
id_sp: span
) -> (ast::item_, ~[ast::attribute]) {
let full_path = if path.is_absolute {
path
} else {
prefix.push_many(path.components)
};
let full_path = full_path.normalize();
let p0 =
new_sub_parser_from_file(self.sess, copy self.cfg,
&full_path, id_sp);
let (inner, next) = p0.parse_inner_attrs_and_next();
let mod_attrs = vec::append(outer_attrs, inner);
let first_item_outer_attrs = next;
let m0 = p0.parse_mod_items(token::EOF, first_item_outer_attrs);
return (ast::item_mod(m0), mod_attrs);
fn cdir_path_opt(default: ~str, attrs: ~[ast::attribute]) -> ~str {
match ::attr::first_attr_value_str_by_name(attrs, ~"path") {
Some(d) => copy *d,
None => default
}
}
}
// parse a function declaration from a foreign module
fn parse_item_foreign_fn(&self, attrs: ~[attribute]) -> @foreign_item {
let lo = self.span.lo;
let vis = self.parse_visibility();
let purity = self.parse_fn_purity();
let (ident, generics) = self.parse_fn_header();
let decl = self.parse_fn_decl();
let hi = self.span.hi;
self.expect(&token::SEMI);
@ast::foreign_item { ident: ident,
attrs: attrs,
node: foreign_item_fn(decl, purity, generics),
id: self.get_id(),
span: mk_sp(lo, hi),
vis: vis }
}
// parse a const definition from a foreign module
fn parse_item_foreign_const(&self, vis: ast::visibility,
attrs: ~[attribute]) -> @foreign_item {
let lo = self.span.lo;
// XXX: Obsolete; remove after snap.
if self.eat_keyword(&~"const") {
self.obsolete(*self.last_span, ObsoleteConstItem);
} else {
self.expect_keyword(&~"static");
}
let ident = self.parse_ident();
self.expect(&token::COLON);
let ty = self.parse_ty(false);
let hi = self.span.hi;
self.expect(&token::SEMI);
@ast::foreign_item { ident: ident,
attrs: attrs,
node: foreign_item_const(ty),
id: self.get_id(),
span: mk_sp(lo, hi),
vis: vis }
}
// parse safe/unsafe and fn
fn parse_fn_purity(&self) -> purity {
if self.eat_keyword(&~"fn") { impure_fn }
else if self.eat_keyword(&~"pure") {
self.obsolete(*self.last_span, ObsoletePurity);
self.expect_keyword(&~"fn");
// NB: We parse this as impure for bootstrapping purposes.
impure_fn
} else if self.eat_keyword(&~"unsafe") {
self.expect_keyword(&~"fn");
unsafe_fn
}
else { self.unexpected(); }
}
// at this point, this is essentially a wrapper for
// parse_foreign_items.
fn parse_foreign_mod_items(&self,
sort: ast::foreign_mod_sort,
abis: AbiSet,
first_item_attrs: ~[attribute])
-> foreign_mod {
let ParsedItemsAndViewItems {
attrs_remaining: _,
view_items: view_items,
items: _,
foreign_items: foreign_items
} = self.parse_foreign_items(first_item_attrs, true);
assert!(*self.token == token::RBRACE);
ast::foreign_mod {
sort: sort,
abis: abis,
view_items: view_items,
items: foreign_items
}
}
// parse extern foo; or extern mod foo { ... } or extern { ... }
fn parse_item_foreign_mod(&self,
lo: BytePos,
opt_abis: Option<AbiSet>,
visibility: visibility,
attrs: ~[attribute],
items_allowed: bool)
-> item_or_view_item {
let mut must_be_named_mod = false;
if self.is_keyword(&~"mod") {
must_be_named_mod = true;
self.expect_keyword(&~"mod");
} else if *self.token != token::LBRACE {
self.span_fatal(
copy *self.span,
fmt!(
"expected `{` or `mod` but found `%s`",
self.this_token_to_str()
)
);
}
let (sort, ident) = match *self.token {
token::IDENT(*) => (ast::named, self.parse_ident()),
_ => {
if must_be_named_mod {
self.span_fatal(
copy *self.span,
fmt!(
"expected foreign module name but found `%s`",
self.this_token_to_str()
)
);
}
(ast::anonymous,
special_idents::clownshoes_foreign_mod)
}
};
// extern mod foo { ... } or extern { ... }
if items_allowed && self.eat(&token::LBRACE) {
// `extern mod foo { ... }` is obsolete.
if sort == ast::named {
self.obsolete(*self.last_span, ObsoleteNamedExternModule);
}
let abis = opt_abis.get_or_default(AbiSet::C());
let (inner, next) = self.parse_inner_attrs_and_next();
let m = self.parse_foreign_mod_items(sort, abis, next);
self.expect(&token::RBRACE);
return iovi_item(self.mk_item(lo, self.last_span.hi, ident,
item_foreign_mod(m), visibility,
maybe_append(/*bad*/ copy attrs,
Some(inner))));
}
if opt_abis.is_some() {
self.span_err(*self.span, "an ABI may not be specified here");
}
// extern mod foo;
let metadata = self.parse_optional_meta();
self.expect(&token::SEMI);
iovi_view_item(@ast::view_item {
node: view_item_extern_mod(ident, metadata, self.get_id()),
attrs: copy attrs,
vis: visibility,
span: mk_sp(lo, self.last_span.hi)
})
}
// parse type Foo = Bar;
fn parse_item_type(&self) -> item_info {
let ident = self.parse_ident();
self.parse_region_param();
let tps = self.parse_generics();
self.expect(&token::EQ);
let ty = self.parse_ty(false);
self.expect(&token::SEMI);
(ident, item_ty(ty, tps), None)
}
// parse obsolete region parameter
fn parse_region_param(&self) {
if self.eat(&token::BINOP(token::SLASH)) {
self.obsolete(*self.last_span, ObsoleteLifetimeNotation);
self.expect(&token::BINOP(token::AND));
}
}
// parse a structure-like enum variant definition
// this should probably be renamed or refactored...
fn parse_struct_def(&self) -> @struct_def {
let mut fields: ~[@struct_field] = ~[];
while *self.token != token::RBRACE {
for self.parse_struct_decl_field().each |struct_field| {
fields.push(*struct_field);
}
}
self.bump();
return @ast::struct_def {
fields: fields,
ctor_id: None
};
}
// parse the part of an "enum" decl following the '{'
fn parse_enum_def(&self, _generics: &ast::Generics) -> enum_def {
let mut variants = ~[];
let mut all_nullary = true, have_disr = false;
while *self.token != token::RBRACE {
let variant_attrs = self.parse_outer_attributes();
let vlo = self.span.lo;
let vis = self.parse_visibility();
let ident, kind;
let mut args = ~[], disr_expr = None;
ident = self.parse_ident();
if self.eat(&token::LBRACE) {
// Parse a struct variant.
all_nullary = false;
kind = struct_variant_kind(self.parse_struct_def());
} else if *self.token == token::LPAREN {
all_nullary = false;
let arg_tys = self.parse_unspanned_seq(
&token::LPAREN,
&token::RPAREN,
seq_sep_trailing_disallowed(token::COMMA),
|p| p.parse_ty(false)
);
for arg_tys.each |ty| {
args.push(ast::variant_arg {
ty: *ty,
id: self.get_id(),
});
}
kind = tuple_variant_kind(args);
} else if self.eat(&token::EQ) {
have_disr = true;
disr_expr = Some(self.parse_expr());
kind = tuple_variant_kind(args);
} else {
kind = tuple_variant_kind(~[]);
}
let vr = ast::variant_ {
name: ident,
attrs: variant_attrs,
kind: kind,
id: self.get_id(),
disr_expr: disr_expr,
vis: vis,
};
variants.push(spanned(vlo, self.last_span.hi, vr));
if !self.eat(&token::COMMA) { break; }
}
self.expect(&token::RBRACE);
if (have_disr && !all_nullary) {
self.fatal(~"discriminator values can only be used with a c-like \
enum");
}
ast::enum_def { variants: variants }
}
// parse an "enum" declaration
fn parse_item_enum(&self) -> item_info {
let id = self.parse_ident();
self.parse_region_param();
let generics = self.parse_generics();
// Newtype syntax
if *self.token == token::EQ {
// enum x = ty;
self.bump();
let ty = self.parse_ty(false);
self.expect(&token::SEMI);
let variant = spanned(ty.span.lo, ty.span.hi, ast::variant_ {
name: id,
attrs: ~[],
kind: tuple_variant_kind(
~[ast::variant_arg {ty: ty, id: self.get_id()}]
),
id: self.get_id(),
disr_expr: None,
vis: public,
});
self.obsolete(*self.last_span, ObsoleteNewtypeEnum);
return (
id,
item_enum(
ast::enum_def { variants: ~[variant] },
generics),
None
);
}
// enum X { ... }
self.expect(&token::LBRACE);
let enum_definition = self.parse_enum_def(&generics);
(id, item_enum(enum_definition, generics), None)
}
fn parse_fn_ty_sigil(&self) -> Option<Sigil> {
match *self.token {
token::AT => {
self.bump();
Some(ManagedSigil)
}
token::TILDE => {
self.bump();
Some(OwnedSigil)
}
token::BINOP(token::AND) => {
self.bump();
Some(BorrowedSigil)
}
_ => {
None
}
}
}
fn fn_expr_lookahead(&self, tok: token::Token) -> bool {
match tok {
token::LPAREN | token::AT | token::TILDE | token::BINOP(_) => true,
_ => false
}
}
// parse a string as an ABI spec on an extern type or module
fn parse_opt_abis(&self) -> Option<AbiSet> {
match *self.token {
token::LIT_STR(s) => {
self.bump();
let the_string = self.id_to_str(s);
let mut words = ~[];
for str::each_word(*the_string) |s| { words.push(s) }
let mut abis = AbiSet::empty();
for words.each |word| {
match abi::lookup(*word) {
Some(abi) => {
if abis.contains(abi) {
self.span_err(
*self.span,
fmt!("ABI `%s` appears twice",
*word));
} else {
abis.add(abi);
}
}
None => {
self.span_err(
*self.span,
fmt!("illegal ABI: \
expected one of [%s], \
found `%s`",
str::connect_slices(
abi::all_names(),
", "),
*word));
}
}
}
Some(abis)
}
_ => {
None
}
}
}
// parse one of the items or view items allowed by the
// flags; on failure, return iovi_none.
// NB: this function no longer parses the items inside an
// extern mod.
fn parse_item_or_view_item(
&self,
attrs: ~[attribute],
macros_allowed: bool
) -> item_or_view_item {
maybe_whole!(iovi self, nt_item);
let lo = self.span.lo;
let visibility = self.parse_visibility();
// must be a view item:
if self.eat_keyword(&~"use") {
// USE ITEM (iovi_view_item)
let view_item = self.parse_use();
self.expect(&token::SEMI);
return iovi_view_item(@ast::view_item {
node: view_item,
attrs: attrs,
vis: visibility,
span: mk_sp(lo, self.last_span.hi)
});
}
// either a view item or an item:
if self.eat_keyword(&~"extern") {
let opt_abis = self.parse_opt_abis();
if self.eat_keyword(&~"fn") {
// EXTERN FUNCTION ITEM
let abis = opt_abis.get_or_default(AbiSet::C());
let (ident, item_, extra_attrs) =
self.parse_item_fn(extern_fn, abis);
return iovi_item(self.mk_item(lo, self.last_span.hi, ident,
item_, visibility,
maybe_append(attrs,
extra_attrs)));
} else {
// EXTERN MODULE ITEM (iovi_view_item)
return self.parse_item_foreign_mod(lo, opt_abis, visibility, attrs,
true);
}
}
// the rest are all guaranteed to be items:
if (self.is_keyword(&~"const") ||
(self.is_keyword(&~"static") &&
!self.token_is_keyword(&~"fn", &self.look_ahead(1)))) {
// CONST / STATIC ITEM
if self.is_keyword(&~"const") {
self.obsolete(*self.span, ObsoleteConstItem);
}
self.bump();
let (ident, item_, extra_attrs) = self.parse_item_const();
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
}
if self.is_keyword(&~"fn") &&
!self.fn_expr_lookahead(self.look_ahead(1u)) {
// FUNCTION ITEM
self.bump();
let (ident, item_, extra_attrs) =
self.parse_item_fn(impure_fn, AbiSet::Rust());
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
}
if self.eat_keyword(&~"pure") {
// PURE FUNCTION ITEM (obsolete)
self.obsolete(*self.last_span, ObsoletePurity);
self.expect_keyword(&~"fn");
let (ident, item_, extra_attrs) =
self.parse_item_fn(impure_fn, AbiSet::Rust());
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
}
if self.is_keyword(&~"unsafe")
&& self.look_ahead(1u) != token::LBRACE {
// UNSAFE FUNCTION ITEM
self.bump();
self.expect_keyword(&~"fn");
let (ident, item_, extra_attrs) =
self.parse_item_fn(unsafe_fn, AbiSet::Rust());
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
}
if self.eat_keyword(&~"mod") {
// MODULE ITEM
let (ident, item_, extra_attrs) =
self.parse_item_mod(/*bad*/ copy attrs);
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
}
if self.eat_keyword(&~"type") {
// TYPE ITEM
let (ident, item_, extra_attrs) = self.parse_item_type();
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
}
if self.eat_keyword(&~"enum") {
// ENUM ITEM
let (ident, item_, extra_attrs) = self.parse_item_enum();
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
}
if self.eat_keyword(&~"trait") {
// TRAIT ITEM
let (ident, item_, extra_attrs) = self.parse_item_trait();
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
}
if self.eat_keyword(&~"impl") {
// IMPL ITEM
let (ident, item_, extra_attrs) =
self.parse_item_impl(visibility);
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
}
if self.eat_keyword(&~"struct") {
// STRUCT ITEM
let (ident, item_, extra_attrs) = self.parse_item_struct();
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
}
self.parse_macro_use_or_failure(attrs,macros_allowed,lo,visibility)
}
// parse a foreign item; on failure, return iovi_none.
fn parse_foreign_item(
&self,
attrs: ~[attribute],
macros_allowed: bool
) -> item_or_view_item {
maybe_whole!(iovi self, nt_item);
let lo = self.span.lo;
let visibility = self.parse_visibility();
if (self.is_keyword(&~"const") || self.is_keyword(&~"static")) {
// FOREIGN CONST ITEM
let item = self.parse_item_foreign_const(visibility, attrs);
return iovi_foreign_item(item);
}
if (self.is_keyword(&~"fn") || self.is_keyword(&~"pure") ||
self.is_keyword(&~"unsafe")) {
// FOREIGN FUNCTION ITEM
let item = self.parse_item_foreign_fn(attrs);
return iovi_foreign_item(item);
}
self.parse_macro_use_or_failure(attrs,macros_allowed,lo,visibility)
}
// this is the fall-through for parsing items.
fn parse_macro_use_or_failure(
&self,
attrs: ~[attribute],
macros_allowed: bool,
lo : BytePos,
visibility : visibility
) -> item_or_view_item {
if macros_allowed && !self.is_any_keyword(&copy *self.token)
&& self.look_ahead(1) == token::NOT
&& (is_plain_ident(&self.look_ahead(2))
|| self.look_ahead(2) == token::LPAREN
|| self.look_ahead(2) == token::LBRACE) {
// MACRO INVOCATION ITEM
if attrs.len() > 0 {
self.fatal(~"attrs on macros are not yet supported");
}
// item macro.
let pth = self.parse_path_without_tps();
self.expect(&token::NOT);
// a 'special' identifier (like what `macro_rules!` uses)
// is optional. We should eventually unify invoc syntax
// and remove this.
let id = if is_plain_ident(&*self.token) {
self.parse_ident()
} else {
token::special_idents::invalid // no special identifier
};
// eat a matched-delimiter token tree:
let tts = match *self.token {
token::LPAREN | token::LBRACE => {
let ket = token::flip_delimiter(&*self.token);
self.parse_unspanned_seq(
&copy *self.token,
&ket,
seq_sep_none(),
|p| p.parse_token_tree()
)
}
_ => self.fatal(~"expected open delimiter")
};
// single-variant-enum... :
let m = ast::mac_invoc_tt(pth, tts);
let m: ast::mac = codemap::spanned { node: m,
span: mk_sp(self.span.lo,
self.span.hi) };
let item_ = item_mac(m);
return iovi_item(self.mk_item(lo, self.last_span.hi, id, item_,
visibility, attrs));
}
// FAILURE TO PARSE ITEM
if visibility != inherited {
let mut s = ~"unmatched visibility `";
s += if visibility == public { ~"pub" } else { ~"priv" };
s += ~"`";
self.span_fatal(*self.last_span, s);
}
return iovi_none;
}
fn parse_item(&self, attrs: ~[attribute]) -> Option<@ast::item> {
match self.parse_item_or_view_item(attrs, true) {
iovi_none =>
None,
iovi_view_item(_) =>
self.fatal(~"view items are not allowed here"),
iovi_foreign_item(_) =>
self.fatal(~"foreign items are not allowed here"),
iovi_item(item) =>
Some(item)
}
}
// parse, e.g., "use a::b::{z,y}"
fn parse_use(&self) -> view_item_ {
return view_item_use(self.parse_view_paths());
}
// matches view_path : MOD? IDENT EQ non_global_path
// | MOD? non_global_path MOD_SEP LBRACE RBRACE
// | MOD? non_global_path MOD_SEP LBRACE ident_seq RBRACE
// | MOD? non_global_path MOD_SEP STAR
// | MOD? non_global_path
fn parse_view_path(&self) -> @view_path {
let lo = self.span.lo;
let first_ident = self.parse_ident();
let mut path = ~[first_ident];
debug!("parsed view_path: %s", *self.id_to_str(first_ident));
match *self.token {
token::EQ => {
// x = foo::bar
self.bump();
path = ~[self.parse_ident()];
while *self.token == token::MOD_SEP {
self.bump();
let id = self.parse_ident();
path.push(id);
}
let path = @ast::Path { span: mk_sp(lo, self.span.hi),
global: false,
idents: path,
rp: None,
types: ~[] };
return @spanned(lo, self.span.hi,
view_path_simple(first_ident,
path,
self.get_id()));
}
token::MOD_SEP => {
// foo::bar or foo::{a,b,c} or foo::*
while *self.token == token::MOD_SEP {
self.bump();
match *self.token {
token::IDENT(i, _) => {
self.bump();
path.push(i);
}
// foo::bar::{a,b,c}
token::LBRACE => {
let idents = self.parse_unspanned_seq(
&token::LBRACE,
&token::RBRACE,
seq_sep_trailing_allowed(token::COMMA),
|p| p.parse_path_list_ident()
);
let path = @ast::Path { span: mk_sp(lo, self.span.hi),
global: false,
idents: path,
rp: None,
types: ~[] };
return @spanned(lo, self.span.hi,
view_path_list(path, idents, self.get_id()));
}
// foo::bar::*
token::BINOP(token::STAR) => {
self.bump();
let path = @ast::Path { span: mk_sp(lo, self.span.hi),
global: false,
idents: path,
rp: None,
types: ~[] };
return @spanned(lo, self.span.hi,
view_path_glob(path, self.get_id()));
}
_ => break
}
}
}
_ => ()
}
let last = path[vec::len(path) - 1u];
let path = @ast::Path { span: mk_sp(lo, self.span.hi),
global: false,
idents: path,
rp: None,
types: ~[] };
return @spanned(lo,
self.last_span.hi,
view_path_simple(last, path, self.get_id()));
}
// matches view_paths = view_path | view_path , view_paths
fn parse_view_paths(&self) -> ~[@view_path] {
let mut vp = ~[self.parse_view_path()];
while *self.token == token::COMMA {
self.bump();
vp.push(self.parse_view_path());
}
return vp;
}
fn is_view_item(&self) -> bool {
let tok, next_tok;
if !self.is_keyword(&~"pub") && !self.is_keyword(&~"priv") {
tok = copy *self.token;
next_tok = self.look_ahead(1);
} else {
tok = self.look_ahead(1);
next_tok = self.look_ahead(2);
};
self.token_is_keyword(&~"use", &tok)
|| (self.token_is_keyword(&~"extern", &tok) &&
self.token_is_keyword(&~"mod", &next_tok))
}
// parse a view item.
fn parse_view_item(
&self,
attrs: ~[attribute],
vis: visibility
) -> @view_item {
let lo = self.span.lo;
let node = if self.eat_keyword(&~"use") {
self.parse_use()
} else if self.eat_keyword(&~"extern") {
self.expect_keyword(&~"mod");
let ident = self.parse_ident();
let metadata = self.parse_optional_meta();
view_item_extern_mod(ident, metadata, self.get_id())
} else {
self.bug(~"expected view item");
};
self.expect(&token::SEMI);
@ast::view_item { node: node,
attrs: attrs,
vis: vis,
span: mk_sp(lo, self.last_span.hi) }
}
// Parses a sequence of items. Stops when it finds program
// text that can't be parsed as an item
// - mod_items uses extern_mod_allowed = true
// - block_tail_ uses extern_mod_allowed = false
fn parse_items_and_view_items(&self,
first_item_attrs: ~[attribute],
mut extern_mod_allowed: bool,
macros_allowed: bool)
-> ParsedItemsAndViewItems {
let mut attrs = vec::append(first_item_attrs,
self.parse_outer_attributes());
// First, parse view items.
let mut (view_items, items) = (~[], ~[]);
let mut done = false;
// I think this code would probably read better as a single
// loop with a mutable three-state-variable (for extern mods,
// view items, and regular items) ... except that because
// of macros, I'd like to delay that entire check until later.
loop {
match self.parse_item_or_view_item(/*bad*/ copy attrs,
macros_allowed) {
iovi_none => {
done = true;
break;
}
iovi_view_item(view_item) => {
match view_item.node {
view_item_use(*) => {
// `extern mod` must precede `use`.
extern_mod_allowed = false;
}
view_item_extern_mod(*)
if !extern_mod_allowed => {
self.span_err(view_item.span,
"\"extern mod\" declarations are not allowed here");
}
view_item_extern_mod(*) => {}
}
view_items.push(view_item);
}
iovi_item(item) => {
items.push(item);
attrs = self.parse_outer_attributes();
break;
}
iovi_foreign_item(_) => {
fail!();
}
}
attrs = self.parse_outer_attributes();
}
// Next, parse items.
if !done {
loop {
match self.parse_item_or_view_item(/*bad*/ copy attrs,
macros_allowed) {
iovi_none => break,
iovi_view_item(view_item) => {
self.span_err(view_item.span,
"`use` and `extern mod` declarations must precede items");
}
iovi_item(item) => {
items.push(item)
}
iovi_foreign_item(_) => {
fail!();
}
}
attrs = self.parse_outer_attributes();
}
}
ParsedItemsAndViewItems {
attrs_remaining: attrs,
view_items: view_items,
items: items,
foreign_items: ~[]
}
}
// Parses a sequence of foreign items. Stops when it finds program
// text that can't be parsed as an item
fn parse_foreign_items(&self, first_item_attrs: ~[attribute],
macros_allowed: bool)
-> ParsedItemsAndViewItems {
let mut attrs = vec::append(first_item_attrs,
self.parse_outer_attributes());
let mut foreign_items = ~[];
loop {
match self.parse_foreign_item(/*bad*/ copy attrs, macros_allowed) {
iovi_none => break,
iovi_view_item(view_item) => {
// I think this can't occur:
self.span_err(view_item.span,
"`use` and `extern mod` declarations must precede items");
}
iovi_item(_) => {
// FIXME #5668: this will occur for a macro invocation:
fail!();
}
iovi_foreign_item(foreign_item) => {
foreign_items.push(foreign_item);
}
}
attrs = self.parse_outer_attributes();
}
ParsedItemsAndViewItems {
attrs_remaining: attrs,
view_items: ~[],
items: ~[],
foreign_items: foreign_items
}
}
// Parses a source module as a crate. This is the main
// entry point for the parser.
fn parse_crate_mod(&self) -> @crate {
let lo = self.span.lo;
// parse the crate's inner attrs, maybe (oops) one
// of the attrs of an item:
let (inner, next) = self.parse_inner_attrs_and_next();
let first_item_outer_attrs = next;
// parse the items inside the crate:
let m = self.parse_mod_items(token::EOF, first_item_outer_attrs);
@spanned(lo, self.span.lo,
ast::crate_ { module: m,
attrs: inner,
config: copy self.cfg })
}
fn parse_str(&self) -> @~str {
match *self.token {
token::LIT_STR(s) => {
self.bump();
self.id_to_str(s)
}
_ => self.fatal(~"expected string literal")
}
}
}