rust/src/librustc/middle/dataflow.rs
2016-04-06 09:04:15 +03:00

676 lines
24 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A module for propagating forward dataflow information. The analysis
//! assumes that the items to be propagated can be represented as bits
//! and thus uses bitvectors. Your job is simply to specify the so-called
//! GEN and KILL bits for each expression.
use cfg;
use cfg::CFGIndex;
use ty::TyCtxt;
use std::io;
use std::mem;
use std::usize;
use syntax::ast;
use syntax::print::pp;
use syntax::print::pprust::PrintState;
use util::nodemap::NodeMap;
use hir;
use hir::intravisit::{self, IdRange};
use hir::print as pprust;
#[derive(Copy, Clone, Debug)]
pub enum EntryOrExit {
Entry,
Exit,
}
#[derive(Clone)]
pub struct DataFlowContext<'a, 'tcx: 'a, O> {
tcx: &'a TyCtxt<'tcx>,
/// a name for the analysis using this dataflow instance
analysis_name: &'static str,
/// the data flow operator
oper: O,
/// number of bits to propagate per id
bits_per_id: usize,
/// number of words we will use to store bits_per_id.
/// equal to bits_per_id/usize::BITS rounded up.
words_per_id: usize,
// mapping from node to cfg node index
// FIXME (#6298): Shouldn't this go with CFG?
nodeid_to_index: NodeMap<Vec<CFGIndex>>,
// Bit sets per cfg node. The following three fields (`gens`, `kills`,
// and `on_entry`) all have the same structure. For each id in
// `id_range`, there is a range of words equal to `words_per_id`.
// So, to access the bits for any given id, you take a slice of
// the full vector (see the method `compute_id_range()`).
/// bits generated as we exit the cfg node. Updated by `add_gen()`.
gens: Vec<usize>,
/// bits killed as we exit the cfg node, or non-locally jump over
/// it. Updated by `add_kill(KillFrom::ScopeEnd)`.
scope_kills: Vec<usize>,
/// bits killed as we exit the cfg node directly; if it is jumped
/// over, e.g. via `break`, the kills are not reflected in the
/// jump's effects. Updated by `add_kill(KillFrom::Execution)`.
action_kills: Vec<usize>,
/// bits that are valid on entry to the cfg node. Updated by
/// `propagate()`.
on_entry: Vec<usize>,
}
pub trait BitwiseOperator {
/// Joins two predecessor bits together, typically either `|` or `&`
fn join(&self, succ: usize, pred: usize) -> usize;
}
/// Parameterization for the precise form of data flow that is used.
pub trait DataFlowOperator : BitwiseOperator {
/// Specifies the initial value for each bit in the `on_entry` set
fn initial_value(&self) -> bool;
}
struct PropagationContext<'a, 'b: 'a, 'tcx: 'b, O: 'a> {
dfcx: &'a mut DataFlowContext<'b, 'tcx, O>,
changed: bool
}
fn get_cfg_indices<'a>(id: ast::NodeId, index: &'a NodeMap<Vec<CFGIndex>>) -> &'a [CFGIndex] {
let opt_indices = index.get(&id);
opt_indices.map(|v| &v[..]).unwrap_or(&[])
}
impl<'a, 'tcx, O:DataFlowOperator> DataFlowContext<'a, 'tcx, O> {
fn has_bitset_for_nodeid(&self, n: ast::NodeId) -> bool {
assert!(n != ast::DUMMY_NODE_ID);
self.nodeid_to_index.contains_key(&n)
}
}
impl<'a, 'tcx, O:DataFlowOperator> pprust::PpAnn for DataFlowContext<'a, 'tcx, O> {
fn pre(&self,
ps: &mut pprust::State,
node: pprust::AnnNode) -> io::Result<()> {
let id = match node {
pprust::NodeName(_) => 0,
pprust::NodeExpr(expr) => expr.id,
pprust::NodeBlock(blk) => blk.id,
pprust::NodeItem(_) | pprust::NodeSubItem(_) => 0,
pprust::NodePat(pat) => pat.id
};
if !self.has_bitset_for_nodeid(id) {
return Ok(());
}
assert!(self.bits_per_id > 0);
let indices = get_cfg_indices(id, &self.nodeid_to_index);
for &cfgidx in indices {
let (start, end) = self.compute_id_range(cfgidx);
let on_entry = &self.on_entry[start.. end];
let entry_str = bits_to_string(on_entry);
let gens = &self.gens[start.. end];
let gens_str = if gens.iter().any(|&u| u != 0) {
format!(" gen: {}", bits_to_string(gens))
} else {
"".to_string()
};
let action_kills = &self.action_kills[start .. end];
let action_kills_str = if action_kills.iter().any(|&u| u != 0) {
format!(" action_kill: {}", bits_to_string(action_kills))
} else {
"".to_string()
};
let scope_kills = &self.scope_kills[start .. end];
let scope_kills_str = if scope_kills.iter().any(|&u| u != 0) {
format!(" scope_kill: {}", bits_to_string(scope_kills))
} else {
"".to_string()
};
ps.synth_comment(
format!("id {}: {}{}{}{}", id, entry_str,
gens_str, action_kills_str, scope_kills_str))?;
pp::space(&mut ps.s)?;
}
Ok(())
}
}
fn build_nodeid_to_index(decl: Option<&hir::FnDecl>,
cfg: &cfg::CFG) -> NodeMap<Vec<CFGIndex>> {
let mut index = NodeMap();
// FIXME (#6298): Would it be better to fold formals from decl
// into cfg itself? i.e. introduce a fn-based flow-graph in
// addition to the current block-based flow-graph, rather than
// have to put traversals like this here?
match decl {
None => {}
Some(decl) => add_entries_from_fn_decl(&mut index, decl, cfg.entry)
}
cfg.graph.each_node(|node_idx, node| {
if let cfg::CFGNodeData::AST(id) = node.data {
index.entry(id).or_insert(vec![]).push(node_idx);
}
true
});
return index;
fn add_entries_from_fn_decl(index: &mut NodeMap<Vec<CFGIndex>>,
decl: &hir::FnDecl,
entry: CFGIndex) {
//! add mappings from the ast nodes for the formal bindings to
//! the entry-node in the graph.
struct Formals<'a> {
entry: CFGIndex,
index: &'a mut NodeMap<Vec<CFGIndex>>,
}
let mut formals = Formals { entry: entry, index: index };
intravisit::walk_fn_decl(&mut formals, decl);
impl<'a, 'v> intravisit::Visitor<'v> for Formals<'a> {
fn visit_pat(&mut self, p: &hir::Pat) {
self.index.entry(p.id).or_insert(vec![]).push(self.entry);
intravisit::walk_pat(self, p)
}
}
}
}
/// Flag used by `add_kill` to indicate whether the provided kill
/// takes effect only when control flows directly through the node in
/// question, or if the kill's effect is associated with any
/// control-flow directly through or indirectly over the node.
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum KillFrom {
/// A `ScopeEnd` kill is one that takes effect when any control
/// flow goes over the node. A kill associated with the end of the
/// scope of a variable declaration `let x;` is an example of a
/// `ScopeEnd` kill.
ScopeEnd,
/// An `Execution` kill is one that takes effect only when control
/// flow goes through the node to completion. A kill associated
/// with an assignment statement `x = expr;` is an example of an
/// `Execution` kill.
Execution,
}
impl<'a, 'tcx, O:DataFlowOperator> DataFlowContext<'a, 'tcx, O> {
pub fn new(tcx: &'a TyCtxt<'tcx>,
analysis_name: &'static str,
decl: Option<&hir::FnDecl>,
cfg: &cfg::CFG,
oper: O,
id_range: IdRange,
bits_per_id: usize) -> DataFlowContext<'a, 'tcx, O> {
let usize_bits = mem::size_of::<usize>() * 8;
let words_per_id = (bits_per_id + usize_bits - 1) / usize_bits;
let num_nodes = cfg.graph.all_nodes().len();
debug!("DataFlowContext::new(analysis_name: {}, id_range={:?}, \
bits_per_id={}, words_per_id={}) \
num_nodes: {}",
analysis_name, id_range, bits_per_id, words_per_id,
num_nodes);
let entry = if oper.initial_value() { usize::MAX } else {0};
let zeroes = vec![0; num_nodes * words_per_id];
let gens = zeroes.clone();
let kills1 = zeroes.clone();
let kills2 = zeroes;
let on_entry = vec![entry; num_nodes * words_per_id];
let nodeid_to_index = build_nodeid_to_index(decl, cfg);
DataFlowContext {
tcx: tcx,
analysis_name: analysis_name,
words_per_id: words_per_id,
nodeid_to_index: nodeid_to_index,
bits_per_id: bits_per_id,
oper: oper,
gens: gens,
action_kills: kills1,
scope_kills: kills2,
on_entry: on_entry
}
}
pub fn add_gen(&mut self, id: ast::NodeId, bit: usize) {
//! Indicates that `id` generates `bit`
debug!("{} add_gen(id={}, bit={})",
self.analysis_name, id, bit);
assert!(self.nodeid_to_index.contains_key(&id));
assert!(self.bits_per_id > 0);
let indices = get_cfg_indices(id, &self.nodeid_to_index);
for &cfgidx in indices {
let (start, end) = self.compute_id_range(cfgidx);
let gens = &mut self.gens[start.. end];
set_bit(gens, bit);
}
}
pub fn add_kill(&mut self, kind: KillFrom, id: ast::NodeId, bit: usize) {
//! Indicates that `id` kills `bit`
debug!("{} add_kill(id={}, bit={})",
self.analysis_name, id, bit);
assert!(self.nodeid_to_index.contains_key(&id));
assert!(self.bits_per_id > 0);
let indices = get_cfg_indices(id, &self.nodeid_to_index);
for &cfgidx in indices {
let (start, end) = self.compute_id_range(cfgidx);
let kills = match kind {
KillFrom::Execution => &mut self.action_kills[start.. end],
KillFrom::ScopeEnd => &mut self.scope_kills[start.. end],
};
set_bit(kills, bit);
}
}
fn apply_gen_kill(&self, cfgidx: CFGIndex, bits: &mut [usize]) {
//! Applies the gen and kill sets for `cfgidx` to `bits`
debug!("{} apply_gen_kill(cfgidx={:?}, bits={}) [before]",
self.analysis_name, cfgidx, mut_bits_to_string(bits));
assert!(self.bits_per_id > 0);
let (start, end) = self.compute_id_range(cfgidx);
let gens = &self.gens[start.. end];
bitwise(bits, gens, &Union);
let kills = &self.action_kills[start.. end];
bitwise(bits, kills, &Subtract);
let kills = &self.scope_kills[start.. end];
bitwise(bits, kills, &Subtract);
debug!("{} apply_gen_kill(cfgidx={:?}, bits={}) [after]",
self.analysis_name, cfgidx, mut_bits_to_string(bits));
}
fn compute_id_range(&self, cfgidx: CFGIndex) -> (usize, usize) {
let n = cfgidx.node_id();
let start = n * self.words_per_id;
let end = start + self.words_per_id;
assert!(start < self.gens.len());
assert!(end <= self.gens.len());
assert!(self.gens.len() == self.action_kills.len());
assert!(self.gens.len() == self.scope_kills.len());
assert!(self.gens.len() == self.on_entry.len());
(start, end)
}
pub fn each_bit_on_entry<F>(&self, id: ast::NodeId, mut f: F) -> bool where
F: FnMut(usize) -> bool,
{
//! Iterates through each bit that is set on entry to `id`.
//! Only useful after `propagate()` has been called.
if !self.has_bitset_for_nodeid(id) {
return true;
}
let indices = get_cfg_indices(id, &self.nodeid_to_index);
for &cfgidx in indices {
if !self.each_bit_for_node(EntryOrExit::Entry, cfgidx, |i| f(i)) {
return false;
}
}
return true;
}
pub fn each_bit_for_node<F>(&self, e: EntryOrExit, cfgidx: CFGIndex, f: F) -> bool where
F: FnMut(usize) -> bool,
{
//! Iterates through each bit that is set on entry/exit to `cfgidx`.
//! Only useful after `propagate()` has been called.
if self.bits_per_id == 0 {
// Skip the surprisingly common degenerate case. (Note
// compute_id_range requires self.words_per_id > 0.)
return true;
}
let (start, end) = self.compute_id_range(cfgidx);
let on_entry = &self.on_entry[start.. end];
let temp_bits;
let slice = match e {
EntryOrExit::Entry => on_entry,
EntryOrExit::Exit => {
let mut t = on_entry.to_vec();
self.apply_gen_kill(cfgidx, &mut t);
temp_bits = t;
&temp_bits[..]
}
};
debug!("{} each_bit_for_node({:?}, cfgidx={:?}) bits={}",
self.analysis_name, e, cfgidx, bits_to_string(slice));
self.each_bit(slice, f)
}
pub fn each_gen_bit<F>(&self, id: ast::NodeId, mut f: F) -> bool where
F: FnMut(usize) -> bool,
{
//! Iterates through each bit in the gen set for `id`.
if !self.has_bitset_for_nodeid(id) {
return true;
}
if self.bits_per_id == 0 {
// Skip the surprisingly common degenerate case. (Note
// compute_id_range requires self.words_per_id > 0.)
return true;
}
let indices = get_cfg_indices(id, &self.nodeid_to_index);
for &cfgidx in indices {
let (start, end) = self.compute_id_range(cfgidx);
let gens = &self.gens[start.. end];
debug!("{} each_gen_bit(id={}, gens={})",
self.analysis_name, id, bits_to_string(gens));
if !self.each_bit(gens, |i| f(i)) {
return false;
}
}
return true;
}
fn each_bit<F>(&self, words: &[usize], mut f: F) -> bool where
F: FnMut(usize) -> bool,
{
//! Helper for iterating over the bits in a bit set.
//! Returns false on the first call to `f` that returns false;
//! if all calls to `f` return true, then returns true.
let usize_bits = mem::size_of::<usize>() * 8;
for (word_index, &word) in words.iter().enumerate() {
if word != 0 {
let base_index = word_index * usize_bits;
for offset in 0..usize_bits {
let bit = 1 << offset;
if (word & bit) != 0 {
// NB: we round up the total number of bits
// that we store in any given bit set so that
// it is an even multiple of usize::BITS. This
// means that there may be some stray bits at
// the end that do not correspond to any
// actual value. So before we callback, check
// whether the bit_index is greater than the
// actual value the user specified and stop
// iterating if so.
let bit_index = base_index + offset as usize;
if bit_index >= self.bits_per_id {
return true;
} else if !f(bit_index) {
return false;
}
}
}
}
}
return true;
}
pub fn add_kills_from_flow_exits(&mut self, cfg: &cfg::CFG) {
//! Whenever you have a `break` or `continue` statement, flow
//! exits through any number of enclosing scopes on its way to
//! the new destination. This function infers the kill bits of
//! those control operators based on the kill bits associated
//! with those scopes.
//!
//! This is usually called (if it is called at all), after
//! all add_gen and add_kill calls, but before propagate.
debug!("{} add_kills_from_flow_exits", self.analysis_name);
if self.bits_per_id == 0 {
// Skip the surprisingly common degenerate case. (Note
// compute_id_range requires self.words_per_id > 0.)
return;
}
cfg.graph.each_edge(|_edge_index, edge| {
let flow_exit = edge.source();
let (start, end) = self.compute_id_range(flow_exit);
let mut orig_kills = self.scope_kills[start.. end].to_vec();
let mut changed = false;
for &node_id in &edge.data.exiting_scopes {
let opt_cfg_idx = self.nodeid_to_index.get(&node_id);
match opt_cfg_idx {
Some(indices) => {
for &cfg_idx in indices {
let (start, end) = self.compute_id_range(cfg_idx);
let kills = &self.scope_kills[start.. end];
if bitwise(&mut orig_kills, kills, &Union) {
debug!("scope exits: scope id={} \
(node={:?} of {:?}) added killset: {}",
node_id, cfg_idx, indices,
bits_to_string(kills));
changed = true;
}
}
}
None => {
debug!("{} add_kills_from_flow_exits flow_exit={:?} \
no cfg_idx for exiting_scope={}",
self.analysis_name, flow_exit, node_id);
}
}
}
if changed {
let bits = &mut self.scope_kills[start.. end];
debug!("{} add_kills_from_flow_exits flow_exit={:?} bits={} [before]",
self.analysis_name, flow_exit, mut_bits_to_string(bits));
bits.copy_from_slice(&orig_kills[..]);
debug!("{} add_kills_from_flow_exits flow_exit={:?} bits={} [after]",
self.analysis_name, flow_exit, mut_bits_to_string(bits));
}
true
});
}
}
impl<'a, 'tcx, O:DataFlowOperator+Clone+'static> DataFlowContext<'a, 'tcx, O> {
// ^^^^^^^^^^^^^ only needed for pretty printing
pub fn propagate(&mut self, cfg: &cfg::CFG, blk: &hir::Block) {
//! Performs the data flow analysis.
if self.bits_per_id == 0 {
// Optimize the surprisingly common degenerate case.
return;
}
{
let words_per_id = self.words_per_id;
let mut propcx = PropagationContext {
dfcx: &mut *self,
changed: true
};
let mut temp = vec![0; words_per_id];
while propcx.changed {
propcx.changed = false;
propcx.reset(&mut temp);
propcx.walk_cfg(cfg, &mut temp);
}
}
debug!("Dataflow result for {}:", self.analysis_name);
debug!("{}", {
let mut v = Vec::new();
self.pretty_print_to(box &mut v, blk).unwrap();
String::from_utf8(v).unwrap()
});
}
fn pretty_print_to<'b>(&self, wr: Box<io::Write + 'b>,
blk: &hir::Block) -> io::Result<()> {
let mut ps = pprust::rust_printer_annotated(wr, self, None);
ps.cbox(pprust::indent_unit)?;
ps.ibox(0)?;
ps.print_block(blk)?;
pp::eof(&mut ps.s)
}
}
impl<'a, 'b, 'tcx, O:DataFlowOperator> PropagationContext<'a, 'b, 'tcx, O> {
fn walk_cfg(&mut self,
cfg: &cfg::CFG,
in_out: &mut [usize]) {
debug!("DataFlowContext::walk_cfg(in_out={}) {}",
bits_to_string(in_out), self.dfcx.analysis_name);
assert!(self.dfcx.bits_per_id > 0);
cfg.graph.each_node(|node_index, node| {
debug!("DataFlowContext::walk_cfg idx={:?} id={} begin in_out={}",
node_index, node.data.id(), bits_to_string(in_out));
let (start, end) = self.dfcx.compute_id_range(node_index);
// Initialize local bitvector with state on-entry.
in_out.copy_from_slice(&self.dfcx.on_entry[start.. end]);
// Compute state on-exit by applying transfer function to
// state on-entry.
self.dfcx.apply_gen_kill(node_index, in_out);
// Propagate state on-exit from node into its successors.
self.propagate_bits_into_graph_successors_of(in_out, cfg, node_index);
true // continue to next node
});
}
fn reset(&mut self, bits: &mut [usize]) {
let e = if self.dfcx.oper.initial_value() {usize::MAX} else {0};
for b in bits {
*b = e;
}
}
fn propagate_bits_into_graph_successors_of(&mut self,
pred_bits: &[usize],
cfg: &cfg::CFG,
cfgidx: CFGIndex) {
for (_, edge) in cfg.graph.outgoing_edges(cfgidx) {
self.propagate_bits_into_entry_set_for(pred_bits, edge);
}
}
fn propagate_bits_into_entry_set_for(&mut self,
pred_bits: &[usize],
edge: &cfg::CFGEdge) {
let source = edge.source();
let cfgidx = edge.target();
debug!("{} propagate_bits_into_entry_set_for(pred_bits={}, {:?} to {:?})",
self.dfcx.analysis_name, bits_to_string(pred_bits), source, cfgidx);
assert!(self.dfcx.bits_per_id > 0);
let (start, end) = self.dfcx.compute_id_range(cfgidx);
let changed = {
// (scoping mutable borrow of self.dfcx.on_entry)
let on_entry = &mut self.dfcx.on_entry[start.. end];
bitwise(on_entry, pred_bits, &self.dfcx.oper)
};
if changed {
debug!("{} changed entry set for {:?} to {}",
self.dfcx.analysis_name, cfgidx,
bits_to_string(&self.dfcx.on_entry[start.. end]));
self.changed = true;
}
}
}
fn mut_bits_to_string(words: &mut [usize]) -> String {
bits_to_string(words)
}
fn bits_to_string(words: &[usize]) -> String {
let mut result = String::new();
let mut sep = '[';
// Note: this is a little endian printout of bytes.
for &word in words {
let mut v = word;
for _ in 0..mem::size_of::<usize>() {
result.push(sep);
result.push_str(&format!("{:02x}", v & 0xFF));
v >>= 8;
sep = '-';
}
}
result.push(']');
return result
}
#[inline]
fn bitwise<Op:BitwiseOperator>(out_vec: &mut [usize],
in_vec: &[usize],
op: &Op) -> bool {
assert_eq!(out_vec.len(), in_vec.len());
let mut changed = false;
for (out_elt, in_elt) in out_vec.iter_mut().zip(in_vec) {
let old_val = *out_elt;
let new_val = op.join(old_val, *in_elt);
*out_elt = new_val;
changed |= old_val != new_val;
}
changed
}
fn set_bit(words: &mut [usize], bit: usize) -> bool {
debug!("set_bit: words={} bit={}",
mut_bits_to_string(words), bit_str(bit));
let usize_bits = mem::size_of::<usize>() * 8;
let word = bit / usize_bits;
let bit_in_word = bit % usize_bits;
let bit_mask = 1 << bit_in_word;
debug!("word={} bit_in_word={} bit_mask={}", word, bit_in_word, bit_mask);
let oldv = words[word];
let newv = oldv | bit_mask;
words[word] = newv;
oldv != newv
}
fn bit_str(bit: usize) -> String {
let byte = bit >> 8;
let lobits = 1 << (bit & 0xFF);
format!("[{}:{}-{:02x}]", bit, byte, lobits)
}
struct Union;
impl BitwiseOperator for Union {
fn join(&self, a: usize, b: usize) -> usize { a | b }
}
struct Subtract;
impl BitwiseOperator for Subtract {
fn join(&self, a: usize, b: usize) -> usize { a & !b }
}