rust/src/librustc/middle/check_match.rs
Chris Morgan d9874c0885 Rename the NaN and is_NaN methods to lowercase.
This is for consistency in naming conventions.

- ``std::num::Float::NaN()`` is changed to ``nan()``;
- ``std::num::Float.is_NaN()`` is changed to ``is_nan()``; and
- ``std::num::strconv::NumStrConv::NaN()`` is changed to ``nan()``.

Fixes #9319.
2013-09-19 23:59:51 +10:00

942 lines
33 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use middle::const_eval::{compare_const_vals, lookup_const_by_id};
use middle::const_eval::{eval_const_expr, const_val, const_bool, const_float};
use middle::pat_util::*;
use middle::ty::*;
use middle::ty;
use middle::typeck::method_map;
use middle::moves;
use util::ppaux::ty_to_str;
use std::iter;
use std::num;
use std::vec;
use extra::sort;
use syntax::ast::*;
use syntax::ast_util::{unguarded_pat, walk_pat};
use syntax::codemap::{Span, dummy_sp, Spanned};
use syntax::visit;
use syntax::visit::{Visitor,fn_kind};
pub struct MatchCheckCtxt {
tcx: ty::ctxt,
method_map: method_map,
moves_map: moves::MovesMap
}
struct CheckMatchVisitor {
cx: @MatchCheckCtxt
}
impl Visitor<()> for CheckMatchVisitor {
fn visit_expr(&mut self, ex:@Expr, e:()) {
check_expr(self, self.cx, ex, e);
}
fn visit_local(&mut self, l:@Local, e:()) {
check_local(self, self.cx, l, e);
}
fn visit_fn(&mut self, fk:&fn_kind, fd:&fn_decl, b:&Block, s:Span, n:NodeId, e:()) {
check_fn(self, self.cx, fk, fd, b, s, n, e);
}
}
pub fn check_crate(tcx: ty::ctxt,
method_map: method_map,
moves_map: moves::MovesMap,
crate: &Crate) {
let cx = @MatchCheckCtxt {tcx: tcx,
method_map: method_map,
moves_map: moves_map};
let mut v = CheckMatchVisitor { cx: cx };
visit::walk_crate(&mut v, crate, ());
tcx.sess.abort_if_errors();
}
pub fn check_expr(v: &mut CheckMatchVisitor,
cx: @MatchCheckCtxt,
ex: @Expr,
s: ()) {
visit::walk_expr(v, ex, s);
match ex.node {
ExprMatch(scrut, ref arms) => {
// First, check legality of move bindings.
for arm in arms.iter() {
check_legality_of_move_bindings(cx,
arm.guard.is_some(),
arm.pats);
}
check_arms(cx, *arms);
/* Check for exhaustiveness */
// Check for empty enum, because is_useful only works on inhabited
// types.
let pat_ty = node_id_to_type(cx.tcx, scrut.id);
if (*arms).is_empty() {
if !type_is_empty(cx.tcx, pat_ty) {
// We know the type is inhabited, so this must be wrong
cx.tcx.sess.span_err(ex.span, fmt!("non-exhaustive patterns: \
type %s is non-empty",
ty_to_str(cx.tcx, pat_ty)));
}
// If the type *is* empty, it's vacuously exhaustive
return;
}
match ty::get(pat_ty).sty {
ty_enum(did, _) => {
if (*enum_variants(cx.tcx, did)).is_empty() &&
(*arms).is_empty() {
return;
}
}
_ => { /* We assume only enum types can be uninhabited */ }
}
let arms = arms.iter().filter_map(unguarded_pat).collect::<~[~[@Pat]]>().concat_vec();
if arms.is_empty() {
cx.tcx.sess.span_err(ex.span, "non-exhaustive patterns");
} else {
check_exhaustive(cx, ex.span, arms);
}
}
_ => ()
}
}
// Check for unreachable patterns
pub fn check_arms(cx: &MatchCheckCtxt, arms: &[Arm]) {
let mut seen = ~[];
for arm in arms.iter() {
for pat in arm.pats.iter() {
// Check that we do not match against a static NaN (#6804)
let pat_matches_nan: &fn(@Pat) -> bool = |p| {
match cx.tcx.def_map.find(&p.id) {
Some(&DefStatic(did, false)) => {
let const_expr = lookup_const_by_id(cx.tcx, did).unwrap();
match eval_const_expr(cx.tcx, const_expr) {
const_float(f) if f.is_nan() => true,
_ => false
}
}
_ => false
}
};
do walk_pat(*pat) |p| {
if pat_matches_nan(p) {
cx.tcx.sess.span_warn(p.span, "unmatchable NaN in pattern, \
use the is_nan method in a guard instead");
}
true
};
let v = ~[*pat];
match is_useful(cx, &seen, v) {
not_useful => {
cx.tcx.sess.span_err(pat.span, "unreachable pattern");
}
_ => ()
}
if arm.guard.is_none() { seen.push(v); }
}
}
}
pub fn raw_pat(p: @Pat) -> @Pat {
match p.node {
PatIdent(_, _, Some(s)) => { raw_pat(s) }
_ => { p }
}
}
pub fn check_exhaustive(cx: &MatchCheckCtxt, sp: Span, pats: ~[@Pat]) {
assert!((!pats.is_empty()));
let ext = match is_useful(cx, &pats.map(|p| ~[*p]), [wild()]) {
not_useful => {
// This is good, wildcard pattern isn't reachable
return;
}
useful_ => None,
useful(ty, ref ctor) => {
match ty::get(ty).sty {
ty::ty_bool => {
match (*ctor) {
val(const_bool(true)) => Some(@"true"),
val(const_bool(false)) => Some(@"false"),
_ => None
}
}
ty::ty_enum(id, _) => {
let vid = match *ctor {
variant(id) => id,
_ => fail!("check_exhaustive: non-variant ctor"),
};
let variants = ty::enum_variants(cx.tcx, id);
match variants.iter().find(|v| v.id == vid) {
Some(v) => Some(cx.tcx.sess.str_of(v.name)),
None => {
fail!("check_exhaustive: bad variant in ctor")
}
}
}
ty::ty_unboxed_vec(*) | ty::ty_evec(*) => {
match *ctor {
vec(n) => Some(fmt!("vectors of length %u", n).to_managed()),
_ => None
}
}
_ => None
}
}
};
let msg = ~"non-exhaustive patterns" + match ext {
Some(ref s) => fmt!(": %s not covered", *s),
None => ~""
};
cx.tcx.sess.span_err(sp, msg);
}
pub type matrix = ~[~[@Pat]];
pub enum useful { useful(ty::t, ctor), useful_, not_useful }
#[deriving(Eq)]
pub enum ctor {
single,
variant(DefId),
val(const_val),
range(const_val, const_val),
vec(uint)
}
// Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html
//
// Whether a vector `v` of patterns is 'useful' in relation to a set of such
// vectors `m` is defined as there being a set of inputs that will match `v`
// but not any of the sets in `m`.
//
// This is used both for reachability checking (if a pattern isn't useful in
// relation to preceding patterns, it is not reachable) and exhaustiveness
// checking (if a wildcard pattern is useful in relation to a matrix, the
// matrix isn't exhaustive).
// Note: is_useful doesn't work on empty types, as the paper notes.
// So it assumes that v is non-empty.
pub fn is_useful(cx: &MatchCheckCtxt, m: &matrix, v: &[@Pat]) -> useful {
if m.len() == 0u { return useful_; }
if m[0].len() == 0u { return not_useful; }
let real_pat = match m.iter().find(|r| r[0].id != 0) {
Some(r) => r[0], None => v[0]
};
let left_ty = if real_pat.id == 0 { ty::mk_nil() }
else { ty::node_id_to_type(cx.tcx, real_pat.id) };
match pat_ctor_id(cx, v[0]) {
None => {
match missing_ctor(cx, m, left_ty) {
None => {
match ty::get(left_ty).sty {
ty::ty_bool => {
match is_useful_specialized(cx, m, v,
val(const_bool(true)),
0u, left_ty){
not_useful => {
is_useful_specialized(cx, m, v,
val(const_bool(false)),
0u, left_ty)
}
ref u => *u,
}
}
ty::ty_enum(eid, _) => {
for va in (*ty::enum_variants(cx.tcx, eid)).iter() {
match is_useful_specialized(cx, m, v, variant(va.id),
va.args.len(), left_ty) {
not_useful => (),
ref u => return *u,
}
}
not_useful
}
ty::ty_evec(_, ty::vstore_fixed(n)) => {
is_useful_specialized(cx, m, v, vec(n), n, left_ty)
}
ty::ty_unboxed_vec(*) | ty::ty_evec(*) => {
let max_len = do m.rev_iter().fold(0) |max_len, r| {
match r[0].node {
PatVec(ref before, _, ref after) => {
num::max(before.len() + after.len(), max_len)
}
_ => max_len
}
};
for n in iter::range(0u, max_len + 1) {
match is_useful_specialized(cx, m, v, vec(n), n, left_ty) {
not_useful => (),
ref u => return *u,
}
}
not_useful
}
_ => {
let arity = ctor_arity(cx, &single, left_ty);
is_useful_specialized(cx, m, v, single, arity, left_ty)
}
}
}
Some(ref ctor) => {
match is_useful(cx,
&m.iter().filter_map(|r| default(cx, *r)).collect::<matrix>(),
v.tail()) {
useful_ => useful(left_ty, *ctor),
ref u => *u,
}
}
}
}
Some(ref v0_ctor) => {
let arity = ctor_arity(cx, v0_ctor, left_ty);
is_useful_specialized(cx, m, v, *v0_ctor, arity, left_ty)
}
}
}
pub fn is_useful_specialized(cx: &MatchCheckCtxt,
m: &matrix,
v: &[@Pat],
ctor: ctor,
arity: uint,
lty: ty::t)
-> useful {
let ms = m.iter().filter_map(|r| specialize(cx, *r, &ctor, arity, lty)).collect::<matrix>();
let could_be_useful = is_useful(
cx, &ms, specialize(cx, v, &ctor, arity, lty).unwrap());
match could_be_useful {
useful_ => useful(lty, ctor),
ref u => *u,
}
}
pub fn pat_ctor_id(cx: &MatchCheckCtxt, p: @Pat) -> Option<ctor> {
let pat = raw_pat(p);
match pat.node {
PatWild => { None }
PatIdent(_, _, _) | PatEnum(_, _) => {
match cx.tcx.def_map.find(&pat.id) {
Some(&DefVariant(_, id, _)) => Some(variant(id)),
Some(&DefStatic(did, false)) => {
let const_expr = lookup_const_by_id(cx.tcx, did).unwrap();
Some(val(eval_const_expr(cx.tcx, const_expr)))
}
_ => None
}
}
PatLit(expr) => { Some(val(eval_const_expr(cx.tcx, expr))) }
PatRange(lo, hi) => {
Some(range(eval_const_expr(cx.tcx, lo), eval_const_expr(cx.tcx, hi)))
}
PatStruct(*) => {
match cx.tcx.def_map.find(&pat.id) {
Some(&DefVariant(_, id, _)) => Some(variant(id)),
_ => Some(single)
}
}
PatBox(_) | PatUniq(_) | PatTup(_) | PatRegion(*) => {
Some(single)
}
PatVec(ref before, slice, ref after) => {
match slice {
Some(_) => None,
None => Some(vec(before.len() + after.len()))
}
}
}
}
pub fn is_wild(cx: &MatchCheckCtxt, p: @Pat) -> bool {
let pat = raw_pat(p);
match pat.node {
PatWild => { true }
PatIdent(_, _, _) => {
match cx.tcx.def_map.find(&pat.id) {
Some(&DefVariant(_, _, _)) | Some(&DefStatic(*)) => { false }
_ => { true }
}
}
_ => { false }
}
}
pub fn missing_ctor(cx: &MatchCheckCtxt,
m: &matrix,
left_ty: ty::t)
-> Option<ctor> {
match ty::get(left_ty).sty {
ty::ty_box(_) | ty::ty_uniq(_) | ty::ty_rptr(*) | ty::ty_tup(_) |
ty::ty_struct(*) => {
for r in m.iter() {
if !is_wild(cx, r[0]) { return None; }
}
return Some(single);
}
ty::ty_enum(eid, _) => {
let mut found = ~[];
for r in m.iter() {
let r = pat_ctor_id(cx, r[0]);
for id in r.iter() {
if !found.contains(id) {
found.push(*id);
}
}
}
let variants = ty::enum_variants(cx.tcx, eid);
if found.len() != (*variants).len() {
for v in (*variants).iter() {
if !found.iter().any(|x| x == &(variant(v.id))) {
return Some(variant(v.id));
}
}
fail!();
} else { None }
}
ty::ty_nil => None,
ty::ty_bool => {
let mut true_found = false;
let mut false_found = false;
for r in m.iter() {
match pat_ctor_id(cx, r[0]) {
None => (),
Some(val(const_bool(true))) => true_found = true,
Some(val(const_bool(false))) => false_found = true,
_ => fail!("impossible case")
}
}
if true_found && false_found { None }
else if true_found { Some(val(const_bool(false))) }
else { Some(val(const_bool(true))) }
}
ty::ty_evec(_, ty::vstore_fixed(n)) => {
let mut missing = true;
let mut wrong = false;
for r in m.iter() {
match r[0].node {
PatVec(ref before, ref slice, ref after) => {
let count = before.len() + after.len();
if (count < n && slice.is_none()) || count > n {
wrong = true;
}
if count == n || (count < n && slice.is_some()) {
missing = false;
}
}
_ => {}
}
}
match (wrong, missing) {
(true, _) => Some(vec(n)), // should be compile-time error
(_, true) => Some(vec(n)),
_ => None
}
}
ty::ty_unboxed_vec(*) | ty::ty_evec(*) => {
// Find the lengths and slices of all vector patterns.
let vec_pat_lens = do m.iter().filter_map |r| {
match r[0].node {
PatVec(ref before, ref slice, ref after) => {
Some((before.len() + after.len(), slice.is_some()))
}
_ => None
}
}.collect::<~[(uint, bool)]>();
// Sort them by length such that for patterns of the same length,
// those with a destructured slice come first.
let mut sorted_vec_lens = sort::merge_sort(vec_pat_lens,
|&(len1, slice1), &(len2, slice2)| {
if len1 == len2 {
slice1 > slice2
} else {
len1 <= len2
}
}
);
sorted_vec_lens.dedup();
let mut found_slice = false;
let mut next = 0;
let mut missing = None;
for &(length, slice) in sorted_vec_lens.iter() {
if length != next {
missing = Some(next);
break;
}
if slice {
found_slice = true;
break;
}
next += 1;
}
// We found patterns of all lengths within <0, next), yet there was no
// pattern with a slice - therefore, we report vec(next) as missing.
if !found_slice {
missing = Some(next);
}
match missing {
Some(k) => Some(vec(k)),
None => None
}
}
_ => Some(single)
}
}
pub fn ctor_arity(cx: &MatchCheckCtxt, ctor: &ctor, ty: ty::t) -> uint {
match ty::get(ty).sty {
ty::ty_tup(ref fs) => fs.len(),
ty::ty_box(_) | ty::ty_uniq(_) | ty::ty_rptr(*) => 1u,
ty::ty_enum(eid, _) => {
let id = match *ctor { variant(id) => id,
_ => fail!("impossible case") };
match ty::enum_variants(cx.tcx, eid).iter().find(|v| v.id == id ) {
Some(v) => v.args.len(),
None => fail!("impossible case")
}
}
ty::ty_struct(cid, _) => ty::lookup_struct_fields(cx.tcx, cid).len(),
ty::ty_unboxed_vec(*) | ty::ty_evec(*) => {
match *ctor {
vec(n) => n,
_ => 0u
}
}
_ => 0u
}
}
pub fn wild() -> @Pat {
@Pat {id: 0, node: PatWild, span: dummy_sp()}
}
pub fn specialize(cx: &MatchCheckCtxt,
r: &[@Pat],
ctor_id: &ctor,
arity: uint,
left_ty: ty::t)
-> Option<~[@Pat]> {
// Sad, but I can't get rid of this easily
let r0 = (*raw_pat(r[0])).clone();
match r0 {
Pat{id: pat_id, node: n, span: pat_span} =>
match n {
PatWild => {
Some(vec::append(vec::from_elem(arity, wild()), r.tail()))
}
PatIdent(_, _, _) => {
match cx.tcx.def_map.find(&pat_id) {
Some(&DefVariant(_, id, _)) => {
if variant(id) == *ctor_id {
Some(r.tail().to_owned())
} else {
None
}
}
Some(&DefStatic(did, _)) => {
let const_expr =
lookup_const_by_id(cx.tcx, did).unwrap();
let e_v = eval_const_expr(cx.tcx, const_expr);
let match_ = match *ctor_id {
val(ref v) => {
match compare_const_vals(&e_v, v) {
Some(val1) => (val1 == 0),
None => {
cx.tcx.sess.span_err(pat_span,
"mismatched types between arms");
false
}
}
},
range(ref c_lo, ref c_hi) => {
let m1 = compare_const_vals(c_lo, &e_v);
let m2 = compare_const_vals(c_hi, &e_v);
match (m1, m2) {
(Some(val1), Some(val2)) => {
(val1 >= 0 && val2 <= 0)
}
_ => {
cx.tcx.sess.span_err(pat_span,
"mismatched types between ranges");
false
}
}
}
single => true,
_ => fail!("type error")
};
if match_ {
Some(r.tail().to_owned())
} else {
None
}
}
_ => {
Some(
vec::append(
vec::from_elem(arity, wild()),
r.tail()
)
)
}
}
}
PatEnum(_, args) => {
match cx.tcx.def_map.get_copy(&pat_id) {
DefStatic(did, _) => {
let const_expr =
lookup_const_by_id(cx.tcx, did).unwrap();
let e_v = eval_const_expr(cx.tcx, const_expr);
let match_ = match *ctor_id {
val(ref v) =>
match compare_const_vals(&e_v, v) {
Some(val1) => (val1 == 0),
None => {
cx.tcx.sess.span_err(pat_span,
"mismatched types between arms");
false
}
},
range(ref c_lo, ref c_hi) => {
let m1 = compare_const_vals(c_lo, &e_v);
let m2 = compare_const_vals(c_hi, &e_v);
match (m1, m2) {
(Some(val1), Some(val2)) => (val1 >= 0 && val2 <= 0),
_ => {
cx.tcx.sess.span_err(pat_span,
"mismatched types between ranges");
false
}
}
}
single => true,
_ => fail!("type error")
};
if match_ {
Some(r.tail().to_owned())
} else {
None
}
}
DefVariant(_, id, _) if variant(id) == *ctor_id => {
let args = match args {
Some(args) => args,
None => vec::from_elem(arity, wild())
};
Some(vec::append(args, r.tail()))
}
DefVariant(_, _, _) => None,
DefFn(*) |
DefStruct(*) => {
// FIXME #4731: Is this right? --pcw
let new_args;
match args {
Some(args) => new_args = args,
None => new_args = vec::from_elem(arity, wild())
}
Some(vec::append(new_args, r.tail()))
}
_ => None
}
}
PatStruct(_, ref flds, _) => {
// Is this a struct or an enum variant?
match cx.tcx.def_map.get_copy(&pat_id) {
DefVariant(_, variant_id, _) => {
if variant(variant_id) == *ctor_id {
// FIXME #4731: Is this right? --pcw
let args = flds.map(|ty_field| {
match flds.iter().find(|f|
f.ident == ty_field.ident) {
Some(f) => f.pat,
_ => wild()
}
});
Some(vec::append(args, r.tail()))
} else {
None
}
}
_ => {
// Grab the class data that we care about.
let class_fields;
let class_id;
match ty::get(left_ty).sty {
ty::ty_struct(cid, _) => {
class_id = cid;
class_fields =
ty::lookup_struct_fields(cx.tcx,
class_id);
}
_ => {
cx.tcx.sess.span_bug(
pat_span,
fmt!("struct pattern resolved to %s, \
not a struct",
ty_to_str(cx.tcx, left_ty)));
}
}
let args = class_fields.iter().map(|class_field| {
match flds.iter().find(|f|
f.ident.name == class_field.name) {
Some(f) => f.pat,
_ => wild()
}
}).collect();
Some(vec::append(args, r.tail()))
}
}
}
PatTup(args) => Some(vec::append(args, r.tail())),
PatBox(a) | PatUniq(a) | PatRegion(a) => {
Some(vec::append(~[a], r.tail()))
}
PatLit(expr) => {
let e_v = eval_const_expr(cx.tcx, expr);
let match_ = match *ctor_id {
val(ref v) => {
match compare_const_vals(&e_v, v) {
Some(val1) => val1 == 0,
None => {
cx.tcx.sess.span_err(pat_span,
"mismatched types between arms");
false
}
}
},
range(ref c_lo, ref c_hi) => {
let m1 = compare_const_vals(c_lo, &e_v);
let m2 = compare_const_vals(c_hi, &e_v);
match (m1, m2) {
(Some(val1), Some(val2)) => (val1 >= 0 && val2 <= 0),
_ => {
cx.tcx.sess.span_err(pat_span,
"mismatched types between ranges");
false
}
}
}
single => true,
_ => fail!("type error")
};
if match_ { Some(r.tail().to_owned()) } else { None }
}
PatRange(lo, hi) => {
let (c_lo, c_hi) = match *ctor_id {
val(ref v) => (*v, *v),
range(ref lo, ref hi) => (*lo, *hi),
single => return Some(r.tail().to_owned()),
_ => fail!("type error")
};
let v_lo = eval_const_expr(cx.tcx, lo);
let v_hi = eval_const_expr(cx.tcx, hi);
let m1 = compare_const_vals(&c_lo, &v_lo);
let m2 = compare_const_vals(&c_hi, &v_hi);
match (m1, m2) {
(Some(val1), Some(val2)) if val1 >= 0 && val2 <= 0 => {
Some(r.tail().to_owned())
},
(Some(_), Some(_)) => None,
_ => {
cx.tcx.sess.span_err(pat_span,
"mismatched types between ranges");
None
}
}
}
PatVec(before, slice, after) => {
match *ctor_id {
vec(_) => {
let num_elements = before.len() + after.len();
if num_elements < arity && slice.is_some() {
Some(vec::append(
vec::concat(&[
before,
vec::from_elem(
arity - num_elements, wild()),
after
]),
r.tail()
))
} else if num_elements == arity {
Some(vec::append(
vec::append(before, after),
r.tail()
))
} else {
None
}
}
_ => None
}
}
}
}
}
pub fn default(cx: &MatchCheckCtxt, r: &[@Pat]) -> Option<~[@Pat]> {
if is_wild(cx, r[0]) { Some(r.tail().to_owned()) }
else { None }
}
pub fn check_local(v: &mut CheckMatchVisitor,
cx: &MatchCheckCtxt,
loc: @Local,
s: ()) {
visit::walk_local(v, loc, s);
if is_refutable(cx, loc.pat) {
cx.tcx.sess.span_err(loc.pat.span,
"refutable pattern in local binding");
}
// Check legality of move bindings.
check_legality_of_move_bindings(cx, false, [ loc.pat ]);
}
pub fn check_fn(v: &mut CheckMatchVisitor,
cx: &MatchCheckCtxt,
kind: &visit::fn_kind,
decl: &fn_decl,
body: &Block,
sp: Span,
id: NodeId,
s: ()) {
visit::walk_fn(v, kind, decl, body, sp, id, s);
for input in decl.inputs.iter() {
if is_refutable(cx, input.pat) {
cx.tcx.sess.span_err(input.pat.span,
"refutable pattern in function argument");
}
}
}
pub fn is_refutable(cx: &MatchCheckCtxt, pat: &Pat) -> bool {
match cx.tcx.def_map.find(&pat.id) {
Some(&DefVariant(enum_id, _, _)) => {
if ty::enum_variants(cx.tcx, enum_id).len() != 1u {
return true;
}
}
Some(&DefStatic(*)) => return true,
_ => ()
}
match pat.node {
PatBox(sub) | PatUniq(sub) | PatRegion(sub) |
PatIdent(_, _, Some(sub)) => {
is_refutable(cx, sub)
}
PatWild | PatIdent(_, _, None) => { false }
PatLit(@Expr {node: ExprLit(@Spanned { node: lit_nil, _}), _}) => {
// "()"
false
}
PatLit(_) | PatRange(_, _) => { true }
PatStruct(_, ref fields, _) => {
fields.iter().any(|f| is_refutable(cx, f.pat))
}
PatTup(ref elts) => {
elts.iter().any(|elt| is_refutable(cx, *elt))
}
PatEnum(_, Some(ref args)) => {
args.iter().any(|a| is_refutable(cx, *a))
}
PatEnum(_,_) => { false }
PatVec(*) => { true }
}
}
// Legality of move bindings checking
pub fn check_legality_of_move_bindings(cx: &MatchCheckCtxt,
has_guard: bool,
pats: &[@Pat]) {
let tcx = cx.tcx;
let def_map = tcx.def_map;
let mut by_ref_span = None;
let mut any_by_move = false;
for pat in pats.iter() {
do pat_bindings(def_map, *pat) |bm, id, span, _path| {
match bm {
BindByRef(_) => {
by_ref_span = Some(span);
}
BindInfer => {
if cx.moves_map.contains(&id) {
any_by_move = true;
}
}
}
}
}
let check_move: &fn(@Pat, Option<@Pat>) = |p, sub| {
// check legality of moving out of the enum
// x @ Foo(*) is legal, but x @ Foo(y) isn't.
if sub.map_move_default(false, |p| pat_contains_bindings(def_map, p)) {
tcx.sess.span_err(
p.span,
"cannot bind by-move with sub-bindings");
} else if has_guard {
tcx.sess.span_err(
p.span,
"cannot bind by-move into a pattern guard");
} else if by_ref_span.is_some() {
tcx.sess.span_err(
p.span,
"cannot bind by-move and by-ref \
in the same pattern");
tcx.sess.span_note(
by_ref_span.unwrap(),
"by-ref binding occurs here");
}
};
if !any_by_move { return; } // pointless micro-optimization
for pat in pats.iter() {
do walk_pat(*pat) |p| {
if pat_is_binding(def_map, p) {
match p.node {
PatIdent(_, _, sub) => {
if cx.moves_map.contains(&p.id) {
check_move(p, sub);
}
}
_ => {
cx.tcx.sess.span_bug(
p.span,
fmt!("Binding pattern %d is \
not an identifier: %?",
p.id, p.node));
}
}
}
true
};
}
}