rust/src/rustc/middle/check_alt.rs

474 lines
15 KiB
Rust

use syntax::ast::*;
use syntax::ast_util::{variant_def_ids, dummy_sp, unguarded_pat};
use const_eval::{eval_const_expr, const_val, const_int, const_bool,
compare_const_vals};
use syntax::codemap::span;
use syntax::print::pprust::pat_to_str;
use util::ppaux::ty_to_str;
use pat_util::*;
use syntax::visit;
use driver::session::session;
use middle::ty;
use middle::ty::*;
use std::map::HashMap;
fn check_crate(tcx: ty::ctxt, crate: @crate) {
visit::visit_crate(*crate, (), visit::mk_vt(@{
visit_expr: |a,b,c| check_expr(tcx, a, b, c),
visit_local: |a,b,c| check_local(tcx, a, b, c),
.. *visit::default_visitor::<()>()
}));
tcx.sess.abort_if_errors();
}
fn check_expr(tcx: ty::ctxt, ex: @expr, &&s: (), v: visit::vt<()>) {
visit::visit_expr(ex, s, v);
match ex.node {
expr_match(scrut, arms) => {
check_arms(tcx, arms);
/* Check for exhaustiveness */
// Check for empty enum, because is_useful only works on inhabited
// types.
let pat_ty = node_id_to_type(tcx, scrut.id);
if arms.is_empty() {
if !type_is_empty(tcx, pat_ty) {
// We know the type is inhabited, so this must be wrong
tcx.sess.span_err(ex.span, #fmt("non-exhaustive patterns: \
type %s is non-empty", ty_to_str(tcx, pat_ty)));
}
// If the type *is* empty, it's vacuously exhaustive
return;
}
match ty::get(pat_ty).sty {
ty_enum(did, _) => {
if (*enum_variants(tcx, did)).is_empty() && arms.is_empty() {
return;
}
}
_ => { /* We assume only enum types can be uninhabited */ }
}
let arms = vec::concat(vec::filter_map(arms, unguarded_pat));
check_exhaustive(tcx, ex.span, arms);
}
_ => ()
}
}
// Check for unreachable patterns
fn check_arms(tcx: ty::ctxt, arms: ~[arm]) {
let mut seen = ~[];
for arms.each |arm| {
for arm.pats.each |pat| {
let v = ~[*pat];
match is_useful(tcx, seen, v) {
not_useful => {
tcx.sess.span_err(pat.span, ~"unreachable pattern");
}
_ => ()
}
if arm.guard.is_none() { vec::push(seen, v); }
}
}
}
fn raw_pat(p: @pat) -> @pat {
match p.node {
pat_ident(_, _, Some(s)) => { raw_pat(s) }
_ => { p }
}
}
fn check_exhaustive(tcx: ty::ctxt, sp: span, pats: ~[@pat]) {
assert(pats.is_not_empty());
let ext = match is_useful(tcx, vec::map(pats, |p| ~[*p]), ~[wild()]) {
not_useful => return, // This is good, wildcard pattern isn't reachable
useful_ => None,
useful(ty, ctor) => {
match ty::get(ty).sty {
ty::ty_bool => {
match ctor {
val(const_bool(true)) => Some(~"true"),
val(const_bool(false)) => Some(~"false"),
_ => None
}
}
ty::ty_enum(id, _) => {
let vid = match ctor { variant(id) => id,
_ => fail ~"check_exhaustive: non-variant ctor" };
match vec::find(*ty::enum_variants(tcx, id),
|v| v.id == vid) {
Some(v) => Some(tcx.sess.str_of(v.name)),
None => fail ~"check_exhaustive: bad variant in ctor"
}
}
_ => None
}
}
};
let msg = ~"non-exhaustive patterns" + match ext {
Some(s) => ~": " + s + ~" not covered",
None => ~""
};
tcx.sess.span_err(sp, msg);
}
type matrix = ~[~[@pat]];
enum useful { useful(ty::t, ctor), useful_, not_useful }
enum ctor {
single,
variant(def_id),
val(const_val),
range(const_val, const_val),
}
impl ctor : cmp::Eq {
pure fn eq(other: &ctor) -> bool {
match (self, (*other)) {
(single, single) => true,
(variant(did_self), variant(did_other)) => did_self == did_other,
(val(cv_self), val(cv_other)) => cv_self == cv_other,
(range(cv0_self, cv1_self), range(cv0_other, cv1_other)) => {
cv0_self == cv0_other && cv1_self == cv1_other
}
(single, _) | (variant(_), _) | (val(_), _) | (range(*), _) => {
false
}
}
}
pure fn ne(other: &ctor) -> bool { !self.eq(other) }
}
// Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html
//
// Whether a vector `v` of patterns is 'useful' in relation to a set of such
// vectors `m` is defined as there being a set of inputs that will match `v`
// but not any of the sets in `m`.
//
// This is used both for reachability checking (if a pattern isn't useful in
// relation to preceding patterns, it is not reachable) and exhaustiveness
// checking (if a wildcard pattern is useful in relation to a matrix, the
// matrix isn't exhaustive).
// Note: is_useful doesn't work on empty types, as the paper notes.
// So it assumes that v is non-empty.
fn is_useful(tcx: ty::ctxt, m: matrix, v: ~[@pat]) -> useful {
if m.len() == 0u { return useful_; }
if m[0].len() == 0u { return not_useful; }
let real_pat = match vec::find(m, |r| r[0].id != 0) {
Some(r) => r[0], None => v[0]
};
let left_ty = if real_pat.id == 0 { ty::mk_nil(tcx) }
else { ty::node_id_to_type(tcx, real_pat.id) };
match pat_ctor_id(tcx, v[0]) {
None => {
match missing_ctor(tcx, m, left_ty) {
None => {
match ty::get(left_ty).sty {
ty::ty_bool => {
match is_useful_specialized(tcx, m, v, val(const_bool(true)),
0u, left_ty){
not_useful => {
is_useful_specialized(tcx, m, v, val(const_bool(false)),
0u, left_ty)
}
u => u
}
}
ty::ty_enum(eid, _) => {
for (*ty::enum_variants(tcx, eid)).each |va| {
match is_useful_specialized(tcx, m, v, variant(va.id),
va.args.len(), left_ty) {
not_useful => (),
u => return u
}
}
not_useful
}
_ => {
let arity = ctor_arity(tcx, single, left_ty);
is_useful_specialized(tcx, m, v, single, arity, left_ty)
}
}
}
Some(ctor) => {
match is_useful(tcx, vec::filter_map(m, |r| default(tcx, r) ),
vec::tail(v)) {
useful_ => useful(left_ty, ctor),
u => u
}
}
}
}
Some(v0_ctor) => {
let arity = ctor_arity(tcx, v0_ctor, left_ty);
is_useful_specialized(tcx, m, v, v0_ctor, arity, left_ty)
}
}
}
fn is_useful_specialized(tcx: ty::ctxt, m: matrix, v: ~[@pat], ctor: ctor,
arity: uint, lty: ty::t) -> useful {
let ms = vec::filter_map(m, |r| specialize(tcx, r, ctor, arity, lty) );
let could_be_useful = is_useful(
tcx, ms, specialize(tcx, v, ctor, arity, lty).get());
match could_be_useful {
useful_ => useful(lty, ctor),
u => u
}
}
fn pat_ctor_id(tcx: ty::ctxt, p: @pat) -> Option<ctor> {
let pat = raw_pat(p);
match pat.node {
pat_wild => { None }
pat_ident(_, _, _) | pat_enum(_, _) => {
match tcx.def_map.find(pat.id) {
Some(def_variant(_, id)) => Some(variant(id)),
_ => None
}
}
pat_lit(expr) => { Some(val(eval_const_expr(tcx, expr))) }
pat_range(lo, hi) => {
Some(range(eval_const_expr(tcx, lo), eval_const_expr(tcx, hi)))
}
pat_box(_) | pat_uniq(_) | pat_rec(_, _) | pat_tup(_) | pat_region(*) |
pat_struct(*) => {
Some(single)
}
}
}
fn is_wild(tcx: ty::ctxt, p: @pat) -> bool {
let pat = raw_pat(p);
match pat.node {
pat_wild => { true }
pat_ident(_, _, _) => {
match tcx.def_map.find(pat.id) {
Some(def_variant(_, _)) => { false }
_ => { true }
}
}
_ => { false }
}
}
fn missing_ctor(tcx: ty::ctxt, m: matrix, left_ty: ty::t) -> Option<ctor> {
match ty::get(left_ty).sty {
ty::ty_box(_) | ty::ty_uniq(_) | ty::ty_rptr(*) | ty::ty_tup(_) |
ty::ty_rec(_) | ty::ty_class(*) => {
for m.each |r| {
if !is_wild(tcx, r[0]) { return None; }
}
return Some(single);
}
ty::ty_enum(eid, _) => {
let mut found = ~[];
for m.each |r| {
do option::iter(&pat_ctor_id(tcx, r[0])) |id| {
if !vec::contains(found, id) { vec::push(found, id); }
}
}
let variants = ty::enum_variants(tcx, eid);
if found.len() != (*variants).len() {
for vec::each(*variants) |v| {
if !found.contains(variant(v.id)) {
return Some(variant(v.id));
}
}
fail;
} else { None }
}
ty::ty_nil => None,
ty::ty_bool => {
let mut true_found = false, false_found = false;
for m.each |r| {
match pat_ctor_id(tcx, r[0]) {
None => (),
Some(val(const_bool(true))) => true_found = true,
Some(val(const_bool(false))) => false_found = true,
_ => fail ~"impossible case"
}
}
if true_found && false_found { None }
else if true_found { Some(val(const_bool(false))) }
else { Some(val(const_bool(true))) }
}
_ => Some(single)
}
}
fn ctor_arity(tcx: ty::ctxt, ctor: ctor, ty: ty::t) -> uint {
match ty::get(ty).sty {
ty::ty_tup(fs) => fs.len(),
ty::ty_rec(fs) => fs.len(),
ty::ty_box(_) | ty::ty_uniq(_) | ty::ty_rptr(*) => 1u,
ty::ty_enum(eid, _) => {
let id = match ctor { variant(id) => id,
_ => fail ~"impossible case" };
match vec::find(*ty::enum_variants(tcx, eid), |v| v.id == id ) {
Some(v) => v.args.len(),
None => fail ~"impossible case"
}
}
ty::ty_class(cid, _) => ty::lookup_class_fields(tcx, cid).len(),
_ => 0u
}
}
fn wild() -> @pat {
@{id: 0, node: pat_wild, span: syntax::ast_util::dummy_sp()}
}
fn specialize(tcx: ty::ctxt, r: ~[@pat], ctor_id: ctor, arity: uint,
left_ty: ty::t) -> Option<~[@pat]> {
let r0 = raw_pat(r[0]);
match r0.node {
pat_wild => Some(vec::append(vec::from_elem(arity, wild()),
vec::tail(r))),
pat_ident(_, _, _) => {
match tcx.def_map.find(r0.id) {
Some(def_variant(_, id)) => {
if variant(id) == ctor_id { Some(vec::tail(r)) }
else { None }
}
_ => Some(vec::append(vec::from_elem(arity, wild()), vec::tail(r)))
}
}
pat_enum(_, args) => {
match tcx.def_map.get(r0.id) {
def_variant(_, id) if variant(id) == ctor_id => {
let args = match args {
Some(args) => args,
None => vec::from_elem(arity, wild())
};
Some(vec::append(args, vec::tail(r)))
}
def_variant(_, _) => None,
_ => None
}
}
pat_rec(flds, _) => {
let ty_flds = match ty::get(left_ty).sty {
ty::ty_rec(flds) => flds,
_ => fail ~"bad type for pat_rec"
};
let args = vec::map(ty_flds, |ty_f| {
match vec::find(flds, |f| f.ident == ty_f.ident ) {
Some(f) => f.pat,
_ => wild()
}
});
Some(vec::append(args, vec::tail(r)))
}
pat_struct(_, flds, _) => {
// Grab the class data that we care about.
let class_fields, class_id;
match ty::get(left_ty).sty {
ty::ty_class(cid, _) => {
class_id = cid;
class_fields = ty::lookup_class_fields(tcx, class_id);
}
_ => {
tcx.sess.span_bug(r0.span, ~"struct pattern didn't resolve \
to a struct");
}
}
let args = vec::map(class_fields, |class_field| {
match vec::find(flds, |f| f.ident == class_field.ident ) {
Some(f) => f.pat,
_ => wild()
}
});
Some(vec::append(args, vec::tail(r)))
}
pat_tup(args) => Some(vec::append(args, vec::tail(r))),
pat_box(a) | pat_uniq(a) | pat_region(a) =>
Some(vec::append(~[a], vec::tail(r))),
pat_lit(expr) => {
let e_v = eval_const_expr(tcx, expr);
let match_ = match ctor_id {
val(v) => compare_const_vals(e_v, v) == 0,
range(c_lo, c_hi) => {
compare_const_vals(c_lo, e_v) >= 0 &&
compare_const_vals(c_hi, e_v) <= 0
}
single => true,
_ => fail ~"type error"
};
if match_ { Some(vec::tail(r)) } else { None }
}
pat_range(lo, hi) => {
let (c_lo, c_hi) = match ctor_id {
val(v) => (v, v),
range(lo, hi) => (lo, hi),
single => return Some(vec::tail(r)),
_ => fail ~"type error"
};
let v_lo = eval_const_expr(tcx, lo),
v_hi = eval_const_expr(tcx, hi);
let match_ = compare_const_vals(c_lo, v_lo) >= 0 &&
compare_const_vals(c_hi, v_hi) <= 0;
if match_ { Some(vec::tail(r)) } else { None }
}
}
}
fn default(tcx: ty::ctxt, r: ~[@pat]) -> Option<~[@pat]> {
if is_wild(tcx, r[0]) { Some(vec::tail(r)) }
else { None }
}
fn check_local(tcx: ty::ctxt, loc: @local, &&s: (), v: visit::vt<()>) {
visit::visit_local(loc, s, v);
if is_refutable(tcx, loc.node.pat) {
tcx.sess.span_err(loc.node.pat.span,
~"refutable pattern in local binding");
}
}
fn is_refutable(tcx: ty::ctxt, pat: @pat) -> bool {
match tcx.def_map.find(pat.id) {
Some(def_variant(enum_id, _)) => {
if vec::len(*ty::enum_variants(tcx, enum_id)) != 1u {
return true;
}
}
_ => ()
}
match pat.node {
pat_box(sub) | pat_uniq(sub) | pat_region(sub) |
pat_ident(_, _, Some(sub)) => {
is_refutable(tcx, sub)
}
pat_wild | pat_ident(_, _, None) => { false }
pat_lit(@{node: expr_lit(@{node: lit_nil, _}), _}) => { false } // "()"
pat_lit(_) | pat_range(_, _) => { true }
pat_rec(fields, _) => {
fields.any(|f| is_refutable(tcx, f.pat))
}
pat_struct(_, fields, _) => {
fields.any(|f| is_refutable(tcx, f.pat))
}
pat_tup(elts) => {
elts.any(|elt| is_refutable(tcx, elt))
}
pat_enum(_, Some(args)) => {
args.any(|a| is_refutable(tcx, a))
}
pat_enum(_,_) => { false }
}
}
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End: