408 lines
16 KiB
Rust
408 lines
16 KiB
Rust
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! The Rust Linkage Model and Symbol Names
|
|
//! =======================================
|
|
//!
|
|
//! The semantic model of Rust linkage is, broadly, that "there's no global
|
|
//! namespace" between crates. Our aim is to preserve the illusion of this
|
|
//! model despite the fact that it's not *quite* possible to implement on
|
|
//! modern linkers. We initially didn't use system linkers at all, but have
|
|
//! been convinced of their utility.
|
|
//!
|
|
//! There are a few issues to handle:
|
|
//!
|
|
//! - Linkers operate on a flat namespace, so we have to flatten names.
|
|
//! We do this using the C++ namespace-mangling technique. Foo::bar
|
|
//! symbols and such.
|
|
//!
|
|
//! - Symbols for distinct items with the same *name* need to get different
|
|
//! linkage-names. Examples of this are monomorphizations of functions or
|
|
//! items within anonymous scopes that end up having the same path.
|
|
//!
|
|
//! - Symbols in different crates but with same names "within" the crate need
|
|
//! to get different linkage-names.
|
|
//!
|
|
//! - Symbol names should be deterministic: Two consecutive runs of the
|
|
//! compiler over the same code base should produce the same symbol names for
|
|
//! the same items.
|
|
//!
|
|
//! - Symbol names should not depend on any global properties of the code base,
|
|
//! so that small modifications to the code base do not result in all symbols
|
|
//! changing. In previous versions of the compiler, symbol names incorporated
|
|
//! the SVH (Stable Version Hash) of the crate. This scheme turned out to be
|
|
//! infeasible when used in conjunction with incremental compilation because
|
|
//! small code changes would invalidate all symbols generated previously.
|
|
//!
|
|
//! - Even symbols from different versions of the same crate should be able to
|
|
//! live next to each other without conflict.
|
|
//!
|
|
//! In order to fulfill the above requirements the following scheme is used by
|
|
//! the compiler:
|
|
//!
|
|
//! The main tool for avoiding naming conflicts is the incorporation of a 64-bit
|
|
//! hash value into every exported symbol name. Anything that makes a difference
|
|
//! to the symbol being named, but does not show up in the regular path needs to
|
|
//! be fed into this hash:
|
|
//!
|
|
//! - Different monomorphizations of the same item have the same path but differ
|
|
//! in their concrete type parameters, so these parameters are part of the
|
|
//! data being digested for the symbol hash.
|
|
//!
|
|
//! - Rust allows items to be defined in anonymous scopes, such as in
|
|
//! `fn foo() { { fn bar() {} } { fn bar() {} } }`. Both `bar` functions have
|
|
//! the path `foo::bar`, since the anonymous scopes do not contribute to the
|
|
//! path of an item. The compiler already handles this case via so-called
|
|
//! disambiguating `DefPaths` which use indices to distinguish items with the
|
|
//! same name. The DefPaths of the functions above are thus `foo[0]::bar[0]`
|
|
//! and `foo[0]::bar[1]`. In order to incorporate this disambiguation
|
|
//! information into the symbol name too, these indices are fed into the
|
|
//! symbol hash, so that the above two symbols would end up with different
|
|
//! hash values.
|
|
//!
|
|
//! The two measures described above suffice to avoid intra-crate conflicts. In
|
|
//! order to also avoid inter-crate conflicts two more measures are taken:
|
|
//!
|
|
//! - The name of the crate containing the symbol is prepended to the symbol
|
|
//! name, i.e. symbols are "crate qualified". For example, a function `foo` in
|
|
//! module `bar` in crate `baz` would get a symbol name like
|
|
//! `baz::bar::foo::{hash}` instead of just `bar::foo::{hash}`. This avoids
|
|
//! simple conflicts between functions from different crates.
|
|
//!
|
|
//! - In order to be able to also use symbols from two versions of the same
|
|
//! crate (which naturally also have the same name), a stronger measure is
|
|
//! required: The compiler accepts an arbitrary "disambiguator" value via the
|
|
//! `-C metadata` commandline argument. This disambiguator is then fed into
|
|
//! the symbol hash of every exported item. Consequently, the symbols in two
|
|
//! identical crates but with different disambiguators are not in conflict
|
|
//! with each other. This facility is mainly intended to be used by build
|
|
//! tools like Cargo.
|
|
//!
|
|
//! A note on symbol name stability
|
|
//! -------------------------------
|
|
//! Previous versions of the compiler resorted to feeding NodeIds into the
|
|
//! symbol hash in order to disambiguate between items with the same path. The
|
|
//! current version of the name generation algorithm takes great care not to do
|
|
//! that, since NodeIds are notoriously unstable: A small change to the
|
|
//! code base will offset all NodeIds after the change and thus, much as using
|
|
//! the SVH in the hash, invalidate an unbounded number of symbol names. This
|
|
//! makes re-using previously compiled code for incremental compilation
|
|
//! virtually impossible. Thus, symbol hash generation exclusively relies on
|
|
//! DefPaths which are much more robust in the face of changes to the code base.
|
|
|
|
use common::{CrateContext, SharedCrateContext, gensym_name};
|
|
use monomorphize::Instance;
|
|
use util::sha2::{Digest, Sha256};
|
|
|
|
use rustc::middle::weak_lang_items;
|
|
use rustc::hir::def_id::{DefId, LOCAL_CRATE};
|
|
use rustc::hir::map as hir_map;
|
|
use rustc::ty::{Ty, TyCtxt, TypeFoldable};
|
|
use rustc::ty::item_path::{self, ItemPathBuffer, RootMode};
|
|
use rustc::ty::subst::Substs;
|
|
use rustc::hir::map::definitions::{DefPath, DefPathData};
|
|
use rustc::util::common::record_time;
|
|
|
|
use syntax::attr;
|
|
use syntax::parse::token::{self, InternedString};
|
|
use serialize::hex::ToHex;
|
|
|
|
pub fn def_id_to_string<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> String {
|
|
let def_path = tcx.def_path(def_id);
|
|
def_path.to_string(tcx)
|
|
}
|
|
|
|
fn get_symbol_hash<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
|
|
|
|
// path to the item this name is for
|
|
def_path: &DefPath,
|
|
|
|
// type of the item, without any generic
|
|
// parameters substituted; this is
|
|
// included in the hash as a kind of
|
|
// safeguard.
|
|
item_type: Ty<'tcx>,
|
|
|
|
// values for generic type parameters,
|
|
// if any.
|
|
substs: Option<&Substs<'tcx>>)
|
|
-> String {
|
|
debug!("get_symbol_hash(def_path={:?}, parameters={:?})",
|
|
def_path, substs);
|
|
|
|
let tcx = scx.tcx();
|
|
|
|
return record_time(&tcx.sess.perf_stats.symbol_hash_time, || {
|
|
let mut hash_state = scx.symbol_hasher().borrow_mut();
|
|
|
|
hash_state.reset();
|
|
|
|
// the main symbol name is not necessarily unique; hash in the
|
|
// compiler's internal def-path, guaranteeing each symbol has a
|
|
// truly unique path
|
|
hash_state.input_str(&def_path.to_string(tcx));
|
|
|
|
// Include the main item-type. Note that, in this case, the
|
|
// assertions about `needs_subst` may not hold, but this item-type
|
|
// ought to be the same for every reference anyway.
|
|
assert!(!item_type.has_erasable_regions());
|
|
let encoded_item_type = tcx.sess.cstore.encode_type(tcx, item_type, def_id_to_string);
|
|
hash_state.input(&encoded_item_type[..]);
|
|
|
|
// also include any type parameters (for generic items)
|
|
if let Some(substs) = substs {
|
|
for t in substs.types() {
|
|
assert!(!t.has_erasable_regions());
|
|
assert!(!t.needs_subst());
|
|
let encoded_type = tcx.sess.cstore.encode_type(tcx, t, def_id_to_string);
|
|
hash_state.input(&encoded_type[..]);
|
|
}
|
|
}
|
|
|
|
format!("h{}", truncated_hash_result(&mut *hash_state))
|
|
});
|
|
|
|
fn truncated_hash_result(symbol_hasher: &mut Sha256) -> String {
|
|
let output = symbol_hasher.result_bytes();
|
|
// 64 bits should be enough to avoid collisions.
|
|
output[.. 8].to_hex()
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx> Instance<'tcx> {
|
|
pub fn symbol_name(self, scx: &SharedCrateContext<'a, 'tcx>) -> String {
|
|
let Instance { def: def_id, ref substs } = self;
|
|
|
|
debug!("symbol_name(def_id={:?}, substs={:?})",
|
|
def_id, substs);
|
|
|
|
let node_id = scx.tcx().map.as_local_node_id(def_id);
|
|
|
|
if let Some(id) = node_id {
|
|
if scx.sess().plugin_registrar_fn.get() == Some(id) {
|
|
let svh = &scx.link_meta().crate_hash;
|
|
let idx = def_id.index;
|
|
return scx.sess().generate_plugin_registrar_symbol(svh, idx);
|
|
}
|
|
if scx.sess().derive_registrar_fn.get() == Some(id) {
|
|
let svh = &scx.link_meta().crate_hash;
|
|
let idx = def_id.index;
|
|
return scx.sess().generate_derive_registrar_symbol(svh, idx);
|
|
}
|
|
}
|
|
|
|
// FIXME(eddyb) Precompute a custom symbol name based on attributes.
|
|
let attrs = scx.tcx().get_attrs(def_id);
|
|
let is_foreign = if let Some(id) = node_id {
|
|
match scx.tcx().map.get(id) {
|
|
hir_map::NodeForeignItem(_) => true,
|
|
_ => false
|
|
}
|
|
} else {
|
|
scx.sess().cstore.is_foreign_item(def_id)
|
|
};
|
|
|
|
if let Some(name) = weak_lang_items::link_name(&attrs) {
|
|
return name.to_string();
|
|
}
|
|
|
|
if is_foreign {
|
|
if let Some(name) = attr::first_attr_value_str_by_name(&attrs, "link_name") {
|
|
return name.to_string();
|
|
}
|
|
// Don't mangle foreign items.
|
|
return scx.tcx().item_name(def_id).as_str().to_string();
|
|
}
|
|
|
|
if let Some(name) = attr::find_export_name_attr(scx.sess().diagnostic(), &attrs) {
|
|
// Use provided name
|
|
return name.to_string();
|
|
}
|
|
|
|
if attr::contains_name(&attrs, "no_mangle") {
|
|
// Don't mangle
|
|
return scx.tcx().item_name(def_id).as_str().to_string();
|
|
}
|
|
|
|
let def_path = scx.tcx().def_path(def_id);
|
|
|
|
// We want to compute the "type" of this item. Unfortunately, some
|
|
// kinds of items (e.g., closures) don't have an entry in the
|
|
// item-type array. So walk back up the find the closest parent
|
|
// that DOES have an entry.
|
|
let mut ty_def_id = def_id;
|
|
let instance_ty;
|
|
loop {
|
|
let key = scx.tcx().def_key(ty_def_id);
|
|
match key.disambiguated_data.data {
|
|
DefPathData::TypeNs(_) |
|
|
DefPathData::ValueNs(_) => {
|
|
instance_ty = scx.tcx().lookup_item_type(ty_def_id);
|
|
break;
|
|
}
|
|
_ => {
|
|
// if we're making a symbol for something, there ought
|
|
// to be a value or type-def or something in there
|
|
// *somewhere*
|
|
ty_def_id.index = key.parent.unwrap_or_else(|| {
|
|
bug!("finding type for {:?}, encountered def-id {:?} with no \
|
|
parent", def_id, ty_def_id);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
// Erase regions because they may not be deterministic when hashed
|
|
// and should not matter anyhow.
|
|
let instance_ty = scx.tcx().erase_regions(&instance_ty.ty);
|
|
|
|
let hash = get_symbol_hash(scx, &def_path, instance_ty, Some(substs));
|
|
|
|
let mut buffer = SymbolPathBuffer {
|
|
names: Vec::with_capacity(def_path.data.len())
|
|
};
|
|
|
|
item_path::with_forced_absolute_paths(|| {
|
|
scx.tcx().push_item_path(&mut buffer, def_id);
|
|
});
|
|
|
|
mangle(buffer.names.into_iter(), Some(&hash[..]))
|
|
}
|
|
}
|
|
|
|
struct SymbolPathBuffer {
|
|
names: Vec<InternedString>,
|
|
}
|
|
|
|
impl ItemPathBuffer for SymbolPathBuffer {
|
|
fn root_mode(&self) -> &RootMode {
|
|
const ABSOLUTE: &'static RootMode = &RootMode::Absolute;
|
|
ABSOLUTE
|
|
}
|
|
|
|
fn push(&mut self, text: &str) {
|
|
self.names.push(token::intern(text).as_str());
|
|
}
|
|
}
|
|
|
|
pub fn exported_name_from_type_and_prefix<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
|
|
t: Ty<'tcx>,
|
|
prefix: &str)
|
|
-> String {
|
|
let empty_def_path = DefPath {
|
|
data: vec![],
|
|
krate: LOCAL_CRATE,
|
|
};
|
|
let hash = get_symbol_hash(scx, &empty_def_path, t, None);
|
|
let path = [token::intern_and_get_ident(prefix)];
|
|
mangle(path.iter().cloned(), Some(&hash[..]))
|
|
}
|
|
|
|
/// Only symbols that are invisible outside their compilation unit should use a
|
|
/// name generated by this function.
|
|
pub fn internal_name_from_type_and_suffix<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
t: Ty<'tcx>,
|
|
suffix: &str)
|
|
-> String {
|
|
let path = [token::intern(&t.to_string()).as_str(),
|
|
gensym_name(suffix).as_str()];
|
|
let def_path = DefPath {
|
|
data: vec![],
|
|
krate: LOCAL_CRATE,
|
|
};
|
|
let hash = get_symbol_hash(ccx.shared(), &def_path, t, None);
|
|
mangle(path.iter().cloned(), Some(&hash[..]))
|
|
}
|
|
|
|
// Name sanitation. LLVM will happily accept identifiers with weird names, but
|
|
// gas doesn't!
|
|
// gas accepts the following characters in symbols: a-z, A-Z, 0-9, ., _, $
|
|
pub fn sanitize(s: &str) -> String {
|
|
let mut result = String::new();
|
|
for c in s.chars() {
|
|
match c {
|
|
// Escape these with $ sequences
|
|
'@' => result.push_str("$SP$"),
|
|
'*' => result.push_str("$BP$"),
|
|
'&' => result.push_str("$RF$"),
|
|
'<' => result.push_str("$LT$"),
|
|
'>' => result.push_str("$GT$"),
|
|
'(' => result.push_str("$LP$"),
|
|
')' => result.push_str("$RP$"),
|
|
',' => result.push_str("$C$"),
|
|
|
|
// '.' doesn't occur in types and functions, so reuse it
|
|
// for ':' and '-'
|
|
'-' | ':' => result.push('.'),
|
|
|
|
// These are legal symbols
|
|
'a' ... 'z'
|
|
| 'A' ... 'Z'
|
|
| '0' ... '9'
|
|
| '_' | '.' | '$' => result.push(c),
|
|
|
|
_ => {
|
|
result.push('$');
|
|
for c in c.escape_unicode().skip(1) {
|
|
match c {
|
|
'{' => {},
|
|
'}' => result.push('$'),
|
|
c => result.push(c),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Underscore-qualify anything that didn't start as an ident.
|
|
if !result.is_empty() &&
|
|
result.as_bytes()[0] != '_' as u8 &&
|
|
! (result.as_bytes()[0] as char).is_xid_start() {
|
|
return format!("_{}", &result[..]);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
pub fn mangle<PI: Iterator<Item=InternedString>>(path: PI, hash: Option<&str>) -> String {
|
|
// Follow C++ namespace-mangling style, see
|
|
// http://en.wikipedia.org/wiki/Name_mangling for more info.
|
|
//
|
|
// It turns out that on OSX you can actually have arbitrary symbols in
|
|
// function names (at least when given to LLVM), but this is not possible
|
|
// when using unix's linker. Perhaps one day when we just use a linker from LLVM
|
|
// we won't need to do this name mangling. The problem with name mangling is
|
|
// that it seriously limits the available characters. For example we can't
|
|
// have things like &T in symbol names when one would theoretically
|
|
// want them for things like impls of traits on that type.
|
|
//
|
|
// To be able to work on all platforms and get *some* reasonable output, we
|
|
// use C++ name-mangling.
|
|
|
|
let mut n = String::from("_ZN"); // _Z == Begin name-sequence, N == nested
|
|
|
|
fn push(n: &mut String, s: &str) {
|
|
let sani = sanitize(s);
|
|
n.push_str(&format!("{}{}", sani.len(), sani));
|
|
}
|
|
|
|
// First, connect each component with <len, name> pairs.
|
|
for data in path {
|
|
push(&mut n, &data);
|
|
}
|
|
|
|
if let Some(s) = hash {
|
|
push(&mut n, s)
|
|
}
|
|
|
|
n.push('E'); // End name-sequence.
|
|
n
|
|
}
|